The invention relates to a method of displaying an image, the method comprising a step of providing a first density of image pixels, each comprising a sub-pixel, a step of providing a display having a second density of display pixels, the second density being smaller than the first density and each display pixel comprising two spatially offset display sub-pixels being able to display a first color and a second color, respectively, and a step of displaying the display sub-pixels with an intensity which depends on the corresponding image sub-pixels.
The invention also relates to a display device for carrying out this method.
The method can be used for displaying images on Plasma Display Panels and for displaying images on very large displays with a screen diagonal of, for example, several meters. Such a large display may consist of a screen with different red, green and blue LEDs. Several different patterns can be used to distribute the LEDs on the screen. One configuration is, for example, a hexagonal configuration as shown in FIG. 2.
A method and display device as mentioned in the opening paragraph are known from U.S. Pat. No. 5,341,153. In the known method, a red display sub-pixel is displayed with an intensity which is a function of at least two red image sub-pixels extending across a first region centered at the position of the red display sub-pixel. The first region has an area which is larger than the area of the red display sub-pixel. A green display sub-pixel is displayed with an intensity which is a function of at least two green image sub-pixels, extending across a second region centered at the position of the green display pixel. The second region has an area which is larger than the area of the green display sub-pixel. A blue display sub-pixel is displayed with an intensity which is a function of at least two blue image sub-pixels, extending across a third region centered at the position of the blue display sub-pixel. The third region has an area which is larger than the area of the blue display sub-pixel. A disadvantage of this method is that the scaling factor between the first density of image pixels and the second density of display pixels may be a non-integer value. In this case, the relation between the image pixels and the red, green and blue display sub-pixels, i.e. the LED positions changes with the positions of the image pixels resulting in complex calculations or artifacts in the displayed image. Therefore, integer values of the scaling factors are selected. This limits the flexibility with respect to the resolution and/or size of the display screen given the modular building possibilities making up the LED screens and the different display standards, for example NTSC, PAL, VGA, SVGA, XVGA. A modular LED screen can be assembled with modules consisting of, for example, 32×32 LEDs.
It is an object of the invention to provide a method of displaying an image with improved image quality on the display screen having a predetermined resolution and/or size and for use with different display standards. This object is achieved by a method in accordance with the invention, which is characterized in that the method further comprises, before the step of displaying, a step of resizing the first density of first image pixels to a third density of intermediate image pixels, each comprising an intermediate image sub-pixel, and a step of determining the display sub-pixels from a predetermined number of corresponding intermediate image sub-pixels. This allows selection of suitable scaling factors for obtaining the display pixels from the intermediate image sub-pixels. A further advantage is that these scaling factors enable the step of determining the display sub-pixels from the intermediate sub-pixels to be carried out by using simple calculations. This may result in a simple hardware implementation using existing scaling circuits, which can only perform filter operations in a rectangular grid for converting the intermediate image from the image. The method as claimed allows application of a display screen with a predetermined resolution, pixel configuration and/or size for use with different video standards, which display screen can be made of several display modules consisting of a predetermined number of LEDs.
A preferred embodiment of the method in accordance with the invention is characterized in that intermediate pixels have a higher density than the display pixels. In this way, an improved resolution of the display is perceived.
A further embodiment of the method in accordance with the invention is characterized in that the display sub-pixels are arranged in a display grid and the intermediate image pixels are arranged in an intermediate grid, and the ratio between the third density and the second density is determined from an integer multiple of the minimum number of points of the intermediate grid to depict the grid corresponding to the display sub-pixels. This allows selection of the intermediate grid, so that for one selected color on optimal filter configuration can be obtained for calculating the display sub-pixels from the intermediate sub-pixels.
A further embodiment of the method in accordance with the invention is characterized in that the display sub-pixels are arranged in a hexagonal grid and the third density of intermediate pixels is an integer multiple of 3×2. For this selection of the intermediate grid, the two-dimensional filters for determining the display sub-pixels from the intermediate sub-pixels may be identical for each color of the display screen and can be performed by a single processor.
It is a further object of the invention to provide a display device for displaying an image with improved image quality on a display screen with a predetermined resolution and/or size and for use with different display standards. This object is achieved by a device in accordance with the invention, which is characterized in that the display device comprises means for resizing the first density of first image pixels to a third density of intermediate image pixels, each comprising an intermediate image sub-pixel, and in that the processing means are further arranged to determine the display sub-pixels from a predetermined number of corresponding intermediate image sub-pixels.
These and other aspects of the invention are apparent from and will be elucidated with reference to the embodiments described hereinafter.
In the drawings:
Furthermore, the display screen may be assembled from a number of modules consisting of, for example, 32×32 LEDs. The display screen may consist of, for example, 384 (horizontal)×288 (vertical) modules. Different combinations of these 32×32 modules allow adaptation of the resolution and/or size of the display screen 9 to different viewing conditions is both outside and inside applications.
In order to increase the flexibility of screen sizes and resolutions of the display screen, the scaler 5 resizes the input image 11 with a first density of image pixels to an intermediate image 13 with a third density of intermediate pixels. Preferably, the third density of intermediate pixels is larger than the first density of image pixels. The ratio of the third density of intermediate pixels and the second density of display pixels is an integer multiple of the minimum number of points of the intermediate grid to describe the display grid of the display screen 9 with the intermediate grid.
In a first example, the red, green and blue display sub-pixels are calculated via different two-dimensional filters from the intermediate red, green and blue sub-pixels of the intermediate image 13.
Rhexagonal=R(x,y)(Δ2Δx,Δy(x−Δx/3,y)+Δ2Δx,Δy(x+2Δx/3,y))
Ghexagonal=G(x,y)(Δ2Δx,Δy(x,y)+Δ2Δx,Δy(x+Δx,y+Δy/2))
Bhexagonal=B(x,y)((Δ2Δx,Δy(x+Δx/3,y)+Δ2Δx,Δy(x−2Δx/3,y+Δy/2))
wherein ΔΔx,Δy(x,y) represents a two-dimensional sampling function,
x, y represent the coordinates in the display grid, and
Δx, Δy represent the pitch in the respective horizontal and vertical directions in the display grid.
In this example, the pitches Δx, Δy are equal to the distance of two adjacent centers of the region occupied by the display pixel in the respective orthogonal directions.
In order to improve the picture quality, the ratio between the third density of the intermediate grid and the second density of the display grid should be an integer multiple of the number of points of the intermediate grid to depict the hexagonal grid of the display pixels with the intermediate grid. In this example, an integer multiple of 1×2 such as 2×2 or 3×2 may be used.
RGBhexagonal=R(x,y)(Δ2Δx,Δy(x−Δx/3,y)+Δ2Δx,Δy(x+2Δx/3,y+Δy/2))
+G(x,y)((Δ2Δx,Δy(x,y)+Δ2Δx,Δy(x+Δx,y+Δy/2))+
B(x,y)((Δ2Δx,Δy(x+Δx/3,y)+Δ2Δx,Δy(x−2Δx/3,y+Δy/2))
wherein ΔΔx,Δy(x,y) represents a two-dimensional sampling function,
x, y represent the coordinates in the sampling grid, and
Δx, Δy represent the pitch in the respective horizontal and vertical directions.
In this second example, the pitches Δx, Δy are equal to the distance of two adjacent centers of the region occupied by the display pixel.
The rectangular grid of the intermediate pixels is described by a second two-dimensional sampling function ΔΔx/3,Δy/2(x,y). In this second example, the ratio of the third density of the intermediate pixels and the second density of the display pixels should be equal to an integer multiple of the number of points of the intermediate grid to depict the hexagonal display grid using the intermediate grid. The ratio between the densities of the intermediate grid and the display grid should then be an integer multiple of 3×2 such as 3×4 or 6×2.
It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design many alternative solutions without departing from the scope of the claims. In the claims enumerating several means, several of these means can be embodied by one and the same item of hardware. The invention is preferably applied in large-screen displays and other matrix displays (digital micro-mirrored devices, plasma display panels (PDP), PALC displays, LCD, etc.).
Number | Date | Country | Kind |
---|---|---|---|
01201166 | Mar 2001 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4630307 | Cok | Dec 1986 | A |
4652912 | Masubuchi | Mar 1987 | A |
5341153 | Benzschawel et al. | Aug 1994 | A |
5450208 | Murata | Sep 1995 | A |
6624828 | Dresevic et al. | Sep 2003 | B1 |
20020084962 | Yamaguchi | Jul 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20020140713 A1 | Oct 2002 | US |