This patent application claims priority to Korean Patent Application No. 10-2020-0024251, filed on Feb. 27, 2020, and all the benefits accruing therefrom under 35 U.S.C. § 119, the content of which in its entirety is herein incorporated by reference.
The present disclosure relates generally to a display device and a method of operating the same. More particularly, the present disclosure relates to the display device supporting a variable frame mode and the method of operating the same.
A display device is provided with frame data from a host processor (e.g., a graphic processing unit (“GPU”)) and displays an image at a constant frame rate, and is generally driven at about 60 Hertz (Hz). Meanwhile, in order to provide a rich image, the host processor may perform rendering and high-definition game images, virtual reality images, and the like require a lot of time to render in the host processor. Accordingly, it may take a long time for the host processor to provide an image signal to the display device. In other words, as the frame rate of the host processor is changed, the frame rate of the host processor and the frame rate of the display device may not match each other. Due to such the mismatch of the frame rate of the host processor and the frame rate of the display device, a boundary line may be visually recognized in an image displayed on the display device, or an image displayed on the display device may be delayed.
To prevent such boundary line visibility and image delay, by synchronizing a start of the frame with a time when the host processor performs rendering, the frame rate of the host processor and the frame rate of the display device can be synchronized. This technique is called a variable frame mode (e.g., a free-sync mode, a G-sync mode, etc.).
However, the blank period of the display device supporting the variable frame mode may increase compared to a blank period in a normal mode displaying an image at a constant frame rate. Accordingly, a luminance may be further degraded due to a leakage current leaked during the increased blank period, and an image quality may be deteriorated.
An embodiment of the inventive concept provides a display device capable of improving an image quality in a variable frame mode.
Another embodiment of the inventive concept provides a method of operating the display device.
According to an embodiment of the inventive concept, a display device includes a display panel, a data driver, a gate driver, and a controller. The display panel includes a plurality of pixels. The data driver provides data voltages to the plurality of pixels through data lines during an active period of a frame period and provides a blank voltage to the plurality of pixels through the data lines during a blank period of the frame period. The gate driver provides a gate-on voltage to the plurality of pixels through gate lines during the active period and provides a gate-off voltage to the plurality of pixels through the gate lines during the blank period. The controller controls the data driver and the gate driver. The blank voltage increases and the gate-off voltage increases, when a time in the blank period reaches a predetermined time.
In an embodiment, the active period may have a constant time length, and the blank period may have a variable time length.
In an embodiment, the predetermined time may be a length of the blank period corresponding to the maximum frame rate in a variable frame rate range supported by the display device.
In an embodiment, the gate-off voltage before the predetermined time is reached may have a first negative value and the gate-off voltage after the predetermined time may have a second negative value. An absolute value of the second negative value may be smaller than an absolute value of the first negative value.
In an embodiment, the gate-off voltage after the predetermined time may be constant.
In an embodiment, the gate-off voltage after the predetermined time may increase gradually as the time in the blank period increases.
In an embodiment, the blank voltage after the predetermined time may be set to an average value of the data voltages provided to the plurality of pixels during the active period.
In an embodiment, the blank voltage after the predetermined time may be set to the maximum value of the data voltages provided to the plurality of pixels during the active period.
In an embodiment, the blank voltage after the predetermined time may be set to the same value as the data voltage corresponding to the maximum gray level.
In an embodiment, the blank voltage after the predetermined time may be set for each of the data lines.
In an embodiment, a leakage current of the plurality of pixels may reduce based on the blank voltage during the blank period after the predetermined time.
According to an embodiment of the inventive concept, a method of operating a display device includes providing data voltages to a plurality of pixels during an active period of a frame period, providing a gate-on voltage to the plurality of pixels during the active period, providing a blank voltage to the plurality of pixels during an blank period of the frame period, providing a gate-off voltage to the plurality of pixels during the blank period, increasing the blank voltage when a time in the blank period reaches a predetermined time, and increasing the gate-off voltage when the time in the blank period reaches a predetermined time.
In an embodiment, the active period may have a constant time length and the blank period may have a variable time length.
In an embodiment, the predetermined time may be a length of the blank period corresponding to the maximum frame rate in a variable frame rate range supported by the display device.
In an embodiment, the gate-off voltage after the predetermined time may be constant.
In an embodiment, the gate-off voltage after the predetermined time may increase gradually as the time in the blank period increases.
In an embodiment, the blank voltage after the predetermined time may be set to an average value of the data voltages provided to the plurality of pixels during the active period.
In an embodiment, the blank voltage after the predetermined time may be set to the maximum value of the data voltages provided to the plurality of pixels during the active period.
In an embodiment, the blank voltage after the predetermined time may be set to the same value as the data voltage corresponding to the maximum gray level.
In an embodiment, the blank voltage after the predetermined time may be set for each of the data lines.
Therefore, in a display device according to an embodiment, during a blank period after a predetermined time, a blank voltage provided to the pixel may increase, and a gate-off voltage provided to the pixel may increase. Accordingly, the display device may reduce a leakage current leaked from the pixel during the blank period after the predetermined time. Accordingly, even if time lengths of the blank periods are different for each frame period, a deviation in the amount of leakage current leaked for each frame period may be reduced.
The above and other features of the inventive concept will become more apparent by describing in detail embodiments thereof with reference to the accompanying drawings, in which:
Hereinafter, exemplary embodiments of the present inventive concept will be explained in detail with reference to the accompanying drawings. It will be understood that, although the terms “first,” “second,” “third” etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, “a first element,” “component,” “region,” “layer” or “section” discussed below could be termed a second element, component, region, layer or section without departing from the teachings herein. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms, including “at least one,” unless the content clearly indicates otherwise. “At least one” is not to be construed as limiting “a” or “an.” “Or” means “and/or.” As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” or “includes” and/or “including” when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.
Referring to
The display panel 100 may include the data lines DL, the gate lines GL, and the plurality of pixels PX connected to the data lines DL and the gate lines GL. For example, the display panel 100 may be a liquid crystal display (“LCD”), but the invention is not limited thereto, and may be any display panel.
Each of the plurality of pixels PX may include a switching transistor TR, a liquid crystal capacitor CLC connected to the switching transistor TR, and a storage capacitor CST connected to the switching transistor TR.
The switching transistor TR may be electrically connected to a gate line GL and a data line DL. The switching transistor TR may output the data signals DS in response to the gate signal GS. The liquid crystal capacitor CLC and the storage capacitor CST may be charged based on the data signals DS (e.g., the data voltages) output from the switching transistor TR. The liquid crystal capacitor CLC may change an arrangement of liquid crystal directors of the liquid crystal display, and the storage capacitor CST may maintain the arrangement of the liquid crystal directors of liquid crystal display for a preset time.
As an off characteristic of the switching transistor TR is weakened during a blank period, the data voltage charged in the liquid crystal capacitor CLC and the storage capacitor CST may leak through the switching transistor TR. In particular, as the blank voltage having a lower voltage level is provided to the switching transistor TR through the data line DL, a greater amount of current may leak through the switching transistor TR.
The data driver 200 may generate the data signals DS based on an image data ODAT and a data control signal DCTRL provided from the controller 400, and may provide the data signals DS to the plurality of pixels PX. In an embodiment, the data driver 200 may provide the data voltages as data signals DS corresponding to the image data ODAT to the plurality of pixels PX through the data lines DL during an active period of a frame period and may provide the blank voltage as data signals DS to the plurality of pixels PX through the data lines DL during a blank period of the frame period. For example, the data control signal DCTRL may include an output data enable signal, a horizontal start signal, and a load signal. In an embodiment, the data driver 200 may be implemented with one or more integrated circuits (“IC”s). In another embodiment, the data driver 200 may be directly mounted on the display panel 100, may be connected to the display panel 100 in a form of a chip on film (“COF”), or may be integrated on a periphery of the display panel 100.
The gate driver 300 may generate the gate signals GS based on a gate control signal GCTRL provided from the controller 400 and may transmit the gate signals GS to the plurality of pixels PX through the gate lines GL. For example, the gate control signal GCTRL may include a vertical start signal, a clock signal, and the like. In addition, the gate driver 300 may be further provided with the gate-on voltage and the gate-off voltage from the controller 400 or from a power management circuit (not shown) and may provide the gate-on voltage and the gate-off voltage as the gate signals GS to each pixel. In an embodiment, the gate driver 300 may sequentially provide the gate-on voltage as the gate signals GS to the plurality of pixels PX through the gate lines GL during the active period by pixel row unit (i.e., pixels PX connected to the same gate line GL) and may provide the gate-off voltage as the gate signals GS to the plurality of pixels PX through the gate lines GL during the blank period. In an embodiment, the gate driver 300 may be directly mounted on the display panel 100. In another embodiment, the gate driver 300 may be connected to the display panel 100 in the form of the COF.
The controller 400 (e.g., a timing controller T-CON) may receive an input image data IDAT and a control signal CTRL from an external host processor (e.g., GPU). For example, the input image data IDAT may be a RGB data including a red (R) image data, a green (G) image data, and a blue (B) image data. In addition, the control signal CTRL may include a vertical synchronization signal, a horizontal synchronization signal, an input data enable signal, a master clock signal, and the like. The controller 400 may provide the gate control signal GCTRL to the gate driver 300 and may provide the data control signal DCTRL and the image data ODAT to the data driver 200, based on the input image data IDAT and the control signal CTRL.
In the display device 1000 according to an embodiment of the inventive concept, the controller 400 may control the data driver 200 to increase the blank voltage when a time of the blank period reaches a predetermined time and may control the gate driver 300 to increase the gate-off voltage when the time of the blank period reaches the predetermined time. Accordingly, in the plurality of pixels PX of the display device 1000, a leakage current leaked during the blank period after the predetermined time may be reduced. Therefore, the display device 1000 can reduce a deviation of a leakage current leaked in each frame period, even if time lengths of the blank periods are different for each frame period.
Referring to
The data driver 200 may provide the blank voltage as the data signals DS to the plurality of pixels PX during the blank period following the active period (S150). The gate driver 300 may provide the gate-off voltage as the gate signals GS to the plurality of pixels PX during the blank period (S170). In other words, the blank voltage may be provided to a source of the switching transistor TR of each of the plurality of pixels PX, and the gate-off voltage may be provided to a gate of the switching transistor TR of each of the plurality of pixels PX. In an embodiment, the blank voltage may be the same as the data voltage corresponding to the lowest gray level, but the invention is not limited thereto.
The controller 400 may compare the time of the blank period with the predetermined time (S190). In an embodiment, the active period may be a fixed active period having a constant time length and the blank period may be a variable blank period having a variable time length. In addition, the predetermined time may be the time of the blank period corresponding to the maximum frame rate in a variable frame rate range supported by the display device. A detailed description of this will be described later with reference to
When the time of the blank period reaches the predetermined time, if the blank period ends and a next frame period starts (S190: NO), the controller 400 may control the data driver 200 such that the data driver 200 provides the data voltages to the plurality of pixels PX during the active period of the next frame period (S110) and may control the gate driver 300 such that the gate driver 300 provides the gate-on voltage to the plurality of pixels PX during the active period of the next frame period (S130).
On the other hand, when the time of the blank period reaches the predetermined time, if the blank period continues without being finished (S190: YES), the controller 400 may control the data driver 200 such that the data driver 200 provides an increased blank voltage to the plurality of pixels PX during the blank period after the predetermined time (S210) and may control the gate driver 300 such that the gate driver 300 provides an increased gate-off voltage to the plurality of pixels PX during the blank period after the predetermined time (S230).
For example, as shown in
In detail, when the second frame data FD2 is rendered 410 at a frequency greater than about 144 Hz in the first frame period F1, the host processor may provide the first frame data FD1 at a frame rate of about 144 Hz to the display device 1000. In addition, the host processor may output the second frame data FD2 during the active period ACT2 of the second frame period F2, and may continue the blank period BLANK2 of the second frame period F2 until the rendering 430 for the third frame data FD3 is completed. Accordingly, when the third frame data FD3 is rendered 430 at a frequency of about 60 Hz in the second frame period F2, the host processor may provide the second frame data FD2 to the display device 1000 at a frame rate of about 60 Hz by increasing the blank period BLANK2 of the second frame period F2. When the fourth frame data FD4 is again rendered 450 at a frequency of about 144 Hz in the third frame period F3, the host processor may provide the third frame data FD3 to the display device 1000 again at a frame rate of about 144 Hz.
One frame period of the display device 1000 may include the active period in which frame data is output and the blank period following the active period. For example, the first frame period F1 of the display device 1000 may include the active period ACT1 in which the first frame data FD1 is output and the blank period BLANK1 following the active period ACT1. The second frame period F2 of the display device 1000 may include the active period ACT2 in which the second frame data FD2 is output and the blank period BLANK2 following the active period ACT2. During each active period ACT1, ACT2, and ACT3, the data voltages may be charged in the plurality of pixels PX, and accordingly, the display device 1000 may display an image. During each blank period BLANK1, BLANK2, and BLANK3, the data voltages may be stored in the plurality of pixels PX, and accordingly, the display device 1000 may maintain the displayed image.
In an embodiment, the active period (e.g., ACT1) may be the fixed active period having the constant time length. In other words, the time lengths of the active periods ACT1, ACT2, and ACT3 may be the same. On the other hand, the blank period may be the variable blank period having the variable time length. In other words, the time lengths of the blank periods BLANK1, BLANK2, and BLANK3 may differ from each other according to the time lengths of the frame periods F1, F2, and F3. For example, the time length of the blank period BLANK2 of the second frame period F2 may be longer than the time length of the blank period BLANK1 of the first frame period F1.
The frame periods F1, F2, and F3 may include the active periods ACT1, ACT2, and ACT3 having the constant time length and the blank periods BLANK1, BLANK2, and BLANK3 having the variable time length, respectively. A technique of synchronizing the time length of the frame period and the time length at which the host processor performs rendering by varying the time length of the blank period may be called a variable frame mode. In the display device 1000 supporting the variable frame mode, unlike a display device supporting a normal mode, a boundary line due to a frame rate mismatch may not be visually recognized, and an image displayed on the display device 1000 may not be delayed.
The data voltage charged in the liquid crystal capacitor CLC and the storage capacitor CST during the active period must be maintained during the blank period. However, during the blank period in which the blank voltage is applied to the switching transistor TR, the data voltage charged in the liquid crystal capacitor CLC and the storage capacitor CST may leak through the switching transistor TR. In particular, as the time lengths of the blank periods are different from each other as described above, the amount of leakage current leaked through the switching transistor TR for each frame period F1, F2, and F3 may vary.
However, in an embodiment, when the time of the blank period reaches the predetermined time, the controller 400 may control the data driver 200 to increase the blank voltage and may control the gate driver to increase the gate-off voltage VSS. In other words, when the time of the blank period reaches the predetermined time, the blank voltage may be increased, and the gate-off voltage VSS may be increased. Accordingly, the amount of leakage current leaked during the blank period after the predetermined time may be reduced. Accordingly, the deviation between the amount of the leakage current leaked during the blank period having a time length equal to the predetermined time and the amount of leakage current leaked during the blank period having a time length greater than the predetermined time may be reduced in the embodiment. In other words, the deviation between the amount of the leakage current leaked during the blank period BLANK1 of the first frame period F1 and the amount of leakage current leaked during the blank period BLANK2 of the second frame period F2 may be reduced.
In an embodiment, the predetermined time is a time of the blank period corresponding to the maximum frame rate in the variable frame rate range supported by the display device 1000. For example, the variable frame rate range supported by the display device 1000 may be about 48 Hz to about 144 Hz. In this case, the maximum frame rate may be 144 Hz, and the time of the blank period corresponding to the maximum frame rate may be the same as the time of the blank period BLANK1 of the first frame period F1. In addition, the time of the blank period corresponding to the maximum frame rate may be the same as the time of the blank period BLANK3 of the third frame period F3.
As described above, the time of the blank period BLANK2 of the second frame period F2 may be longer than the time of the blank period BLANK1 of the first frame period F1. Accordingly, the blank period BLANK2 of the second frame period F2 may be divided into a blank period BLANK2_1 which corresponds to the predetermined time and a blank period BLANK2_2 which is a period after the predetermined time. Therefore, in the second frame period F2, the time of the blank period BLANK2_1 may be the same as the time of the blank period BLANK1 of the first frame period F1.
As described above, when the time of the blank period BLANK2 of the second frame period F2 reaches the predetermined time, the controller 400 may control the gate driver 300 to increase the gate-off voltage VSS (S210). In other words, the plurality of pixels PX may receive the increased gate-off voltage VSS during the blank period BLANK2_2.
In an embodiment, the gate-off voltage VSS before the predetermined time is reached may have a first negative value, and the increased gate-off voltage VSS after the predetermined time may have a second negative value whose absolute value is smaller than an absolute value of the first negative value. In an embodiment, for example, in the second frame period F2, the increased gate-off voltage VSS provided to the plurality of pixels PX during the blank period BLANK2_2 after the predetermined time may be approximately −7 voltages (V) and the increased gate-off voltage VSS provided to the plurality of pixels PX during the blank period BLANK2_1 before the predetermined time is reached may be approximately −9V.
In addition, the increased gate-off voltage VSS may be constant during the blank period after the predetermined time. For example, in the second frame period F2, the gate-off voltage VSS provided to the plurality of pixels PX during the blank period BLANK2_2 after the predetermined time may be constant at about −7V.
As described above, the controller 400 may control the data driver 200 to increase the blank voltage when the blank period BLANK2 of the second frame period F2 reaches the predetermined time (S230). In other words, the plurality of pixels PX may receive the increased blank voltage during the blank period BLANK2_2 after the predetermined time.
Referring to
In an embodiment, as shown in
In another embodiment, as shown in
In still another embodiment, the increased blank voltage may be set to the same value as the data voltage corresponding to the maximum gray level. For example, each of the plurality of pixels PX may display gray levels within 0 to 255 gray levels, and the increased blank voltage may be set to the same value as the data voltage corresponding to 255 gray level.
Referring to
In an embodiment, as shown in
In another embodiment, as shown in
In
Referring to
In an embodiment, as shown in
In another embodiment, as shown in
A method of setting the increased blank voltage according to the inventive concept is not limited to the method described with reference to
Referring to
In addition, in the display device 1000, as the blank voltage VBLANK provided to the source S of the switching transistor TR and the gate-off voltage VSS provided to a gate G of the switching transistor TR increase during the blank period after the predetermined time (e.g., BLANK2_2 in
The display device 1000 may increase the blank voltage VBLANK provided to the source of the switching transistor TR and the gate-off voltage VSS provided to the gate of the switching transistor TR during the blank period after the predetermined time. Accordingly, even if the time lengths of the blank periods are different for each frame period, the deviation between the amount of leakage current leaked for each frame period may be reduced. Therefore, the display device 1000 may prevent the luminance from decreasing during the blank period after the predetermined time.
Referring to
The data driver 200 may provide the blank voltage as the data signals DS to the plurality of pixels PX during the blank period following the active period (S350). The gate driver 300 may provide the gate-off voltage as the gate signals GS to the plurality of pixels PX during the blank period (S370).
The controller 400 may compare the time of the blank period with the predetermined time (S390). In an embodiment, the active period may be the fixed active period having the constant time length, and the blank period may be the variable blank period having the variable time length. In addition, the predetermined time may be the time of the blank period corresponding to the maximum frame rate in the variable frame rate range supported by the display device 1000.
When the time of the blank period reaches the predetermined time, if the blank period ends and the next frame period starts (S390: NO), the controller 400 may control the data driver 200 such that the data driver 200 provides the data voltages to the plurality of pixels PX during the active period of the next frame period (S310) and may control the gate driver 300 such that the gate driver provides the gate-on voltage to the plurality of pixels PX during the active period of the next frame period (S330).
On the other hand, when the time of the blank period reaches the predetermined time, if the blank period continues without being finished (S390: YES), the controller 400 may control the data driver 200 such that the data driver 200 provides the increased blank voltage to the plurality of pixels PX during the blank period after the predetermined time (S410). In addition, the controller 400 may control the gate driver 300 such that the gate driver 300 provides a gradually increasing gate-off voltage to the plurality of pixels PX during the blank period after the predetermined time (S430).
In other words, when the time of the blank period reaches the predetermined time, if the blank period continues without being finished (S390: YES), the data driver 200 may provide the increased blank voltage to the plurality of pixels PX during the blank period BLANK2_2 after the predetermined time.
In addition, when the time of the blank period reaches the predetermined time, if the blank period continues without being finished (S390: YES), the gate driver 300 may provide the gate-off voltage VSS, which is gradually increased, to the plurality of pixels PX during the blank period BLANK2_2 after the predetermined time. For example, during the blank period BLANK2_1 before the predetermined time passes, the gate-off voltage VSS of about −9V may be provided to the plurality of pixels PX, and during the blank period BLANK2_2 after the predetermined time, the gate-off voltage VSS gradually increased to about −7V may be provided to the plurality of pixels PX.
Since the gate-off voltage VSS gradually increases, during a period in which the gate-off voltage VSS is relatively low in the blank period BLANK2_2 after the predetermined time, an amount of current flowing through the switching transistor TR may be relatively small. Accordingly, the data voltage charged in the liquid crystal capacitor CLC and the storage capacitor CST may not leak through the switching transistor TR. In addition, during a period in which the gate-off voltage VSS is relatively high in the blank period BLANK2_2 after the predetermined time, the increased blank voltage may be provided to the liquid crystal capacitor CLC and the storage capacitor CST through the switching transistor TR. Accordingly, the data voltage charged in the liquid crystal capacitor CLC and the storage capacitor CST may not leak through the switching transistor TR.
Referring to
In the above-described variable frame mode, time lengths of the blank periods BLANK1, BLANK2, and BLANK3 may vary according to time lengths of each of the frame periods F1, F2, and F3. For example, the time length of the blank period BLANK2 of the second frame period F2 may be increased than the time length of the blank period BLANK1 of the first frame period F1, and the time length of the blank period BLANK3 of the third frame period F3 may be increased than the time length of the blank period BLANK2 of the second frame period F2.
For example, the host processor may output the third frame data FD3 during the active period ACT3 of the third frame period F3, and may continue the blank period BLANK3 of the third frame period F3 until the rendering 470 of the fourth frame data FD4 is completed. Therefore, when the fourth frame data FD4 is rendered 470 at a frequency of about 48 Hz in the third frame period F3, the host processor may provide the third frame data FD3 to the display device 1000 at a frame rate of about 48 Hz by increasing the blank period BLANK3 of the third frame period F3.
Accordingly, the blank period BLANK3 of the third frame period F3 may be divided into a blank period BLANK3_1 before the predetermined time passes and blank periods BLANK3_2 and BLANK3_3 after the predetermined time. The blank periods BLANK3_2 and BLANK3_3 after the predetermined time of the third frame period F3 may include the blank period BLANK3_2 having the same time length as the blank period BLANK2_2 after the predetermined time among the blank period BLANK2 of the second frame period F2 and the blank period BLANK3_3 after the blank period BLANK3_2.
In an embodiment, as shown in
In another embodiment, the plurality of pixels PX may be provided with the constant gate-off voltage VSS during the blank period BLANK3_1 before the predetermined time is reached, may be provided with the gate-off voltage VSS that gradually increases with the constant slope during the subsequent blank period BLANK3_2, and may be provided with a gate-off voltage VSS that gradually increases with a slope smaller than the constant slope of the subsequent blank period BLANK3_2 during the subsequent blank period BLANK3_3 (not shown).
In still another embodiment, as shown in
In still another embodiment, as shown in
In still another embodiment, as shown in
Methods of controlling the gate driver 300 by the controller 400 to set the gate-off voltage VSS provided to the plurality of pixels PX during the blank period according to the inventive concept are not limited to the above. In another embodiment, for example, the controller 400 may control the data driver 200 to set the blank voltage provided to the plurality of pixels PX during the blank period. For another example, the controller 400 may control the data driver 200 to gradually increase the blank voltage, to increase the blank voltage in a step shape, to increase the blank voltage in an upwardly convex shape, or to increase the blank voltage in a downwardly convex shape.
Embodiments of the present inventive concept may be applied to display devices and electronic devices including the display devices. For example, the present inventive concept may be applied to a cellular phone, a smart phone, a video phone, a smart pad, a smart watch, a tablet PC, a car navigation system, a television, a computer monitor, a laptop or notebook computer, a head mounted display device, an MP3 player, etc.
While the inventive concept has been particularly shown and described with reference to the exemplary embodiments thereof, it will be understood by one of ordinary skill in the art that variations in form and detail may be made therein without departing from the spirit and scope of the inventive concept as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2020-0024251 | Feb 2020 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
20060221016 | Nakamura | Oct 2006 | A1 |
20160275903 | Park | Sep 2016 | A1 |
20180103231 | Ahn | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
100153053 | Dec 1998 | KR |
1020180039232 | Apr 2018 | KR |
1020180078996 | Jul 2018 | KR |
101954934 | Mar 2019 | KR |
Number | Date | Country | |
---|---|---|---|
20210272531 A1 | Sep 2021 | US |