The present invention contains subject matter related to Japanese Patent Application JP 2007-197081 filed in the Japan Patent Office on Jul. 30, 2007, the entire contents of which being incorporated herein by reference.
1. Field of the Invention
The present invention relates to a display device and a method of driving the same, and can be applied to an active matrix type display device having pixels each of which is composed of an organic Electro Luminescence (EL) device, for example, using a polysilicon Thin Film Transistor (TFT). The present invention is made such that a signal level of a write signal for an entire time period or a partial time period of a time period for which no influence is exerted on the drive for a light emitting device at all within a non-emission time period for which the light emitting device is stopped to emit a light is set at a signal level on a short time period side in other time periods except for the entire time period or the partial time period, thereby making it possible to effectively avoid a phenomenon that an image quality deteriorates due to a variation with age, and gradation cannot be set.
2. Description of the Related Art
In related art, the various techniques have been proposed for the display devices each of which is composed of the organic EL devices. These various techniques, for example, are described in U.S. Pat. No. 5,684,365, and Japanese Patent Laid-Open No. Hei 8-234683.
Here,
Here, as shown in
In the pixel 3, one terminal of a signal level holding capacitor C1 is held at a given potential, and the other terminal of the signal level holding capacitor C1 is connected to the signal line SIG through an transistor TR1 which is turned ON or OFF by a write signal WS. As a result, in the pixel 3, the transistor TR1 is turned ON in accordance with the rising of the write signal WS, and the potential at the other terminal of the signal level holding capacitor C1 is set at the signal level on the signal line SIG. In addition, the signal level on the signal line SIG is sampled and held at the other terminal of the signal level holding capacitor C1 with timing at which the transistor TR1 is switched from the ON state over to the OFF state.
In the pixel 3, the other terminal of the signal level holding capacitor C1 is connected to a gate of a P-channel TFT transistor TR2 having a source connected to a power source Vcc, and a drain of the transistor TR2 is connected to an anode of the organic EL device 8. Here, the pixel 3 is set such that the transistor TR2 usually operates in a saturation region. As a result, the transistor TR2 constitutes a constant current circuit based on a drain to source current Ids expressed by the following Expression (1):
Where Vgs is a gate to source voltage of the transistor TR2, μ is a mobility, W is a channel width, L is a channel length, Cox is a capacity obtained based on a gate insulating film per unit area, and Vth is a threshold voltage of the transistor TR2. As a result, in each of the pixels 3, the organic EL device 8 is driven by the drive current Ids (drain to source current) corresponding to the signal level on the signal line SIG sampled and held in the signal level holding capacitor C1.
In the display device 1, predetermined sampling pulses are successively transferred by a write scanning circuit (WSCN) 4A of a vertical drive circuit 4 to generate write signals WS as timing signals to make instructions to successively write data to the pixels 3. In addition, predetermined sampling pulses are successively transferred by a horizontal selector (HSEL) 5A of a horizontal drive circuit 5 to successively generate timing signals. Also, each of the signal lines SIG is set at a signal level of an input signal S1 with each of the timing signals as a reference. As a result, the display device 1 sets a voltage across the terminals of the signal level holding capacitor C1 provided in the display portion 2 in accordance with the input signal S1, thereby displaying thereon an image corresponding to the input signal S1 in a dot-sequential or line-sequential manner.
Here, as shown in
Now, when all the transistors constituting the pixel circuits, the horizontal drive circuit, and the vertical drive circuit are configured in the form of N-channel TFT transistors, these circuits can be collectively formed on an insulating substrate such as a glass substrate in the amorphous silicon process. As a result, the display device can be simply manufactured.
However, as shown in
For this reason, it is expected to configure each of pixels, for example, as shown in
Here, in a display device 21 shown in
In the pixel 23, both terminals of the signal level holding capacitor C1 are connected to the source and the gate of the transistor TR2, respectively. Also, the drain of the transistor TR2 is connected to the scanning line SCN for supply of a power source voltage. As a result, in the pixel 23, the organic EL device 8 is driven by the transistor TR2 having a source follower circuit configuration in which the gate voltage is set at the signal level on the signal line SIG. It is noted that reference symbol Vcat designates a cathode potential of the organic EL device 8.
In the display circuit 21, a write scanning circuit (WSCN) 24A and a drive scanning circuit (DSCN) 24B of a vertical drive circuit 24 output a write signal WS and a drive signal DS for the power source to the scanning lines SCNs, respectively. In addition, a horizontal selector (HSEL) 25A of a horizontal drive circuit 25 outputs a drive signal Ssig to the signal line SIG. An operation of the pixel 23 is controlled in such a manner.
Here,
In the pixel 23, when the emission time period is completed, as shown in
At this time, in the pixel 23, as indicated by an arrow in
Subsequently, in the pixel 23, as shown in
Subsequently, for a time period designated by reference symbol Tth1 in
Subsequently, in the pixel 23, the transistor TR1 is switched from the ON state over to the OFF state by the write signal WS, and the signal level of the signal on the signal line SIG is set at a signal level Vsig representing the gradation of the corresponding pixel belonging to the signal line adjacent to the signal line SIG but one. As a result, in the pixel 23, the charge current continuously flows from the power source Vcc into the organic EL device 8 side terminal of the signal level holding capacitor C1 through the transistor TR2, so that the source voltage Vs of the transistor TR2 continues to rise. In addition, in this case, the gate voltage Vg of the transistor TR2 rises so as to follow the rise in the source voltage Vs of the transistor TR2. It is noted that the signal level Vsig on the signal line SIG for this time period is used to set the gradation for the corresponding pixel belonging to the signal line adjacent to the signal line SIG but one.
In the pixel 23, after a lapse of a given time, the signal level on the signal line SIG is switched over to the voltage Vofs again. As a result, for a time period designated by reference symbol Tth2 in
In the pixel 23, the processing for the inflow of the charge current into the organic EL device 8 side terminal of the signal level holding capacitor C1 through the transistor TR2 is repeatedly executed given times enough for the gate to source voltage Vgs of the transistor TR2 to come to be equal to the threshold voltage Vth of the transistor TR2 (three times designated by reference numerals Tth1, Tth2 and Tth3 in the example shown in
After that, in the pixel 23, the potential at the signal line SIG side terminal of the signal level holding capacitor C1 is set at the voltage Vsig representing the emission luminance of the organic EL device 8, whereby the voltage representing the gradation is set in the signal level holding capacitor C1 so as to cancel the threshold voltage Vth of the transistor TR2. As a result, there is prevented the dispersion in the emission luminance due to the dispersion in the threshold voltage Vth of the transistor TR2.
That is to say, as shown in
Here, the current flowing from the power source Vcc into the signal level holding capacitor C1 side terminal of the organic EL device 8 through the transistor TR2 changes in accordance with a mobility of the transistor TR2. Thus, as shown in
Thus, in the pixel 23, for the time period designated by reference symbol Tμ, the transistor TR2 is turned ON to cause the charge current to flow into the organic EL device 8 side terminal of the signal level holding capacitor C1 in the state in which the signal line SIG side voltage of the signal level holding capacitor C1 is held at the signal level Vsig on the signal line SIG. As a result, the voltage across the terminals of the signal level holding capacitor C1 is reduced by the degree corresponding to the mobility of the transistor TR2, thereby preventing the dispersion in the emission luminance due to the dispersion in the mobility of the transistor TR2.
In the pixel 23, after a lapse of the given time period Tμ, the transistor TR1 is turned OFF by the write signal WS, and the signal level Vsig of the signal on the signal line SIG is held in the signal level holding capacitor C1, thereby starting the emission time period. It is noted that from these facts, the drive signal Ssig for the signal line SIG is repeated in a state in which the fixed potential Vofs is held between the signal levels Vsig which represent the gradations in order of the pixels 23 connected to one signal line.
Now, in the polysilicon TFT or the like, as shown in
On the other hand, in the pixel 23, as shown in
As a result, the display device having the configuration in the related art involves such a problem that the image quality deteriorates due to the variation with age, and further the gradation cannot be set.
The present invention has been made in consideration of the respects described above, and it is therefore desirable to provide a display device which is capable of effectively avoiding a phenomenon that an image quality deteriorates due to a variation with age, and a gradation cannot be set, and a method of driving the same.
In order to attain the desire described above, according to an embodiment of the present invention, there is provided a display device including a display portion formed by disposing pixels in a matrix, a horizontal drive circuit and a vertical drive circuit, signal lines and scanning lines of the display portion being driven by the horizontal drive circuit and the vertical drive circuit, thereby displaying a desired image on the display portion. The pixel includes: a light emitting device; a signal level holding capacitor; a writing transistor for receiving a write signal outputted from the vertical drive circuit at its gate, and performing an ON/OFF operation by the write signal, thereby setting a voltage across the terminals of the signal level holding capacitor at a signal level of a signal on corresponding one of the signal lines; and a driving transistor for driving the light emitting device to emit a light in accordance with the voltage across the terminals of the signal level holding capacitor. The vertical drive circuit sets a signal level of the write signal for an entire time period or a partial time period of a time period for which no influence is exerted on the drive for the light emitting device in a non-emission time period for which the light emitting device is stopped to emit a light at a signal level of the write signal on a shorter time period side in other time periods except for the entire time period or the partial time period.
In the display device according to the embodiment of the present invention, a change in threshold voltage of the writing transistor is corrected in accordance with the setting of the signal level of the write signal for the entire or partial time period.
In the display device according to the embodiment of the present invention, in the pixel, both the terminals of the signal level holding capacitor are connected to a gate and a source of the driving transistor, respectively. For the non-emission time period, charges accumulated in the signal level holding capacitor are discharged through the driving transistor after a potential across both the terminals of the signal level holding capacitor is set at a predetermined potential, thereby setting a threshold voltage of the driving transistor in the signal level holding capacitor. After that, the voltage across the terminals of the signal level holding capacitor is corrected with the threshold voltage of the driving transistor by setting a voltage at the one terminal of the signal level holding capacitor at the signal level of the signal on the signal line by the writing transistor, thereby preventing a dispersion in an emission luminance of the light emitting device due to a dispersion in the threshold voltage of the driving transistor.
In the display device according to the embodiment of the present invention, in the pixel, for the non-emission time period, the driving transistor is turned ON to charge the other terminal of the signal level holding capacitor with electricity by the driving transistor after the voltage at the one terminal of the signal level holding capacitor is set at the signal level on the signal line by the writing transistor, thereby preventing the dispersion in the emission luminance of the light emitting device due to a dispersion in a mobility of the driving transistor.
According to another embodiment of the present invention, there is provided a method of driving a display device including a display portion formed by disposing pixels in a matrix, a horizontal drive circuit and a vertical drive circuit, signal lines and scanning lines of the display portion being driven by the horizontal drive circuit and the vertical drive circuit, thereby displaying a desired image on the display portion. The pixel includes: a light emitting device; a signal level holding capacitor; a writing transistor for receiving a write signal outputted from the vertical drive circuit at its gate, and performing an ON/OFF operation by the write signal, thereby setting a voltage across the terminals of the signal level holding capacitor at a signal level on corresponding one of the signal lines; and a driving transistor for driving the light emitting device to emit a light in accordance with the voltage across the terminals of the signal level holding capacitor. The driving method includes the step of setting a signal level of the write signal for an entire time period or a partial time period of a time period for which no influence is exerted on the drive for the light emitting device in a non-emission time period for which the light emitting device is stopped to emit a light at a signal level of the write signal on a shorter time period side in other time periods except for the entire time period or the partial time period.
According to the embodiment or another embodiment of the present invention, the signal level of the write signal for the entire time period or the partial time period of the time period for which no influence is exerted on the drive for the light emitting device in the non-emission time period for which the light emitting device is stopped to emit the light is set at the signal level of the write signal on the shorter time period side in other time periods except for the entire time period or the partial time period. As a result, it is possible to reduce the bias of the signal level in the write signal. Accordingly, the change in threshold voltage of the writing transistor due to the variation with age can be prevented as compared with the case of the related art. As a result, it is possible to efficiently avoid the phenomenon that the image quality deteriorates due to the variation with age resulting from the change in threshold voltage, and the gradation cannot be set.
According to the present invention, it is possible to efficiently avoid the phenomenon that the image quality is deteriorated due to the variation with age resulting from the change in threshold voltage of the writing transistor, and the gradation cannot be set.
Preferred embodiments of the present invention will be described in detail hereinafter with reference to the accompanying drawings.
The write scanning circuit 24A of the display device of Embodiment 1 sets the signal level of the write signal for a time period T for which no influence is exerted on the drive for the pixel 23 at all within the non-emission time period for which the organic EL device 8 is stopped to emit the light at the signal level on a shorter time period side in other time periods except for the time period T. Therefore, in Embodiment 1 shown in
With the configuration described above, in the display device of Embodiment 1 (refer to
That is to say, in the display device of Embodiment 1, for the non-emission time period, the voltage at one terminal of the signal level holding capacitor C1 is set at the signal level Vsig on the signal line SIG. On the other hand, for the emission time period, the organic EL device 8 is driven by the transistor TR2 in accordance with the gate to source voltage Vgs based on the voltage across the terminals of the signal level holding capacitor C1. As a result, in the display device of Embodiment 1, the organic EL devices 8 of the pixels 23 emit the lights with the emission luminances corresponding to the signal levels Vsig on the signal lines SIG, respectively.
In the display device of Embodiment 1, for the non-emission time period, firstly, the voltages at the both terminals of the signal level holding capacitor C1 are set at the fixed potentials Vofs and Vss, respectively. After that, the threshold voltage Vth of the transistor TR2 is set at the signal level holding capacitor C1 by discharging the charges accumulated in the signal level holding capacitor C1 through the transistor TR2 for driving the organic EL device 8 (refer to the time periods Tth1, Tth2 and Tth3 of
In addition, thereafter, the transistor TR1 is set in the ON state by the write signal WS to connect the signal line SIG side terminal of the signal level holding capacitor C1 to the signal line SIG. In this state, the transistor TR2 is turned ON to charge the other terminal of the signal level holding capacitor C1 with electricity (for the time period Tμ of
In the display device of Embodiment 1, after a lapse of a given time, the transistor TR2 is switched from the ON state over to the OFF state by the write signal WS. As a result, the signal level Vsig on the signal line SIG is sampled and held in the signal level holding capacitor C1, and the emission luminance of the organic EL device 8 is set.
As a result, in the display device of Embodiment 1, when the threshold voltage Vth changes in the transistor TR1 through which the signal level holding capacitor C1 is connected to the signal line SIG, the time period Tμ changes for which the mobility of the transistor TR2 is corrected. Also, the dispersion in the mobility is over-corrected, which results in the problem that the image quality deteriorates and the gradation cannot be set.
On the other hand, in the polysilicon TFTs or the amorphous transistors constituting the transistors TR1 and TR2, the threshold voltage Vth deteriorates with time depending on the gate voltage Vg with respect to the source voltage Vs (refer to
In consideration of the foregoing, in Embodiment 1, for the time period for which no influence is exerted on the drive for the organic EL device 8 (refer to
As a result, in the display device of Embodiment 1, the signal level of the write signal WS can be made to rise for a longer time period as compared with the case where the signal level of the write signal WS is merely made to rise only for the time periods Tth1, Tth2 and Tth3 for which the voltage across the terminals of the signal level holding capacitor C1 is set at the threshold voltage Vth of the transistor TR1, and for the time period Tμ for which the mobility is corrected. Thus, the bias of the signal level of the write signal WS can be reduced. Therefore, the change in threshold voltage of the writing transistor due to the variation with age can be prevented as compared with the case in the related art. As a result, it is possible to effectively avoid the phenomenon that the image quality deteriorates due to the variation with age resulting from the change in threshold value, and the gradation cannot be set.
It is noted that in the pixel having the organic EL device 8, the H level of the write signal WS is about 30 V, whereas the L level of the write signal WS is about −3 V. On the other hand, the change in threshold voltage Vth due to the variation with age has the features that the threshold voltage Vth changes due to not only the polarity of the gate to source voltage, but also the voltage value thereof.
As a result, it seems likely that when the bias of the signal level of the write signal WS is perfectly removed, that is, when the time period for which the signal level rises in the write signal WS, and the time period for which the signal level falls in the write signal WS are made approximately equal to each other, the variation with age of the threshold Vth of the transistor TR1 due to the bias of the signal level of the write signal WS can be perfectly prevented. However, even when the bias still remains as in Embodiment 1, the variation with age of the threshold voltage Vth of the transistor TR1 can be sufficiently prevented in terms of practical use.
As a result, even when the time period for which the signal level is held at the H level is still shorter than that for which the signal level is held at the L level even in the write signal WS as in Embodiment 1, the variation with age of the threshold voltage Vth of the transistor TR1 can be sufficiently prevented in terms of practical use.
According to Embodiment 1 of the present invention, for the entire time period for which no influence is exerted on the drive for the light emitting device within the non-emission time period for which the light emitting device is stopped to emit the light, the signal level of the write signal is set at the signal level on the shorter time period side in other time periods. As a result, it is possible to effectively avoid the phenomenon that the image quality deteriorates due to the variation with age resulting from the change in threshold value, and the gradation cannot be set.
That is to say, the change in threshold voltage of the writing transistor is corrected in accordance with the setting of the signal level of the write signal, whereby it is possible to effectively avoid the phenomenon that the image quality deteriorates due to the variation with age resulting from the change in threshold value, and the gradation cannot be set.
In addition, in each of the pixels, the threshold voltage of the driving transistor is set in the signal level holding capacitor, so that the dispersion in the emission luminance due to the dispersion in the threshold voltage is prevented, thereby making it possible to obtain the displayed image having the high image quality.
In addition, the driving transistor is turned ON to charge the other terminal of the signal level holding capacitor with electricity, the dispersion in the mobility of the driving transistor is corrected, and the dispersion in the emission luminance of the light emitting device due to the dispersion in the mobility of the driving transistor is prevented. As a result, it is possible to obtain the displayed image having the higher image quality. Also, it is possible to prevent the change in time period for which the dispersion in the mobility due to the change in threshold voltage Vth of the driving transistor is corrected. As a result, it is possible to obtain the displayed image having the higher image quality.
It is noted that although in Embodiment 1 described above, the description has been given so far with respect to the case where for the entire time period for which no influence is exerted on the drive for the light emitting device within the non-emission time period, the signal level of the write signal is set at the signal level on the shorter time period side in other time periods, the present invention is by no means limited thereto. That is to say, in the case where the variation with age of the threshold voltage of the writing transistor is over-corrected, or the like, for a partial time period as well for which no influence is exerted on the drive for the light emitting device within the non-emission time period, the signal level of the write signal may be set at the signal level on the shorter time period side.
In addition, although in Embodiment 1 described above, the description has been given with respect to the case where the pixel circuit having the circuit configuration shown in
In addition, although in Embodiment 1 described above, the description has been given with respect to the case where each of the transistors is formed in the form of the polysilicon TFT, the present invention is by no means limited thereto. That is to say, the present invention can also be generally applied to the case where each of the transistors is formed in the form of any of various transistors.
In addition, although in Embodiment 1 described above, the description has been given with respect to the case where the signal level holding capacitor is connected to the signal line through the N-channel TFT transistor, the present invention is by no means limited thereto. That is to say, the present invention can also be generally applied to the case where the signal level holding capacitor is adapted to be connected to the signal line through the P-channel TFT transistor.
Also, although in Embodiment 1 described above, the description has been given with respect to the case where the organic EL device is used as the light emitting device, the present invention is by no means limited thereto. That is to say, the present invention can also be generally applied to the case where any of various current drive type light emitting devices is used as the light emitting device.
The present invention, for example, can be applied to an active matrix type display device having pixels each of which is composed of the organic EL device using the polysilicon TFT.
Number | Date | Country | Kind |
---|---|---|---|
2007-197081 | Jul 2007 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5684365 | Tang et al. | Nov 1997 | A |
20040174349 | Libsch et al. | Sep 2004 | A1 |
20050083270 | Miyazawa | Apr 2005 | A1 |
20050269959 | Uchino et al. | Dec 2005 | A1 |
20060061560 | Yamashita et al. | Mar 2006 | A1 |
20060066530 | Azami et al. | Mar 2006 | A1 |
20060170628 | Yamashita et al. | Aug 2006 | A1 |
20060187154 | Tsuchida | Aug 2006 | A1 |
20060267884 | Takahashi et al. | Nov 2006 | A1 |
20070115224 | Yamamoto et al. | May 2007 | A1 |
20070115225 | Uchino et al. | May 2007 | A1 |
20070268210 | Uchino et al. | Nov 2007 | A1 |
20070273620 | Yumoto | Nov 2007 | A1 |
20080018629 | Uchino et al. | Jan 2008 | A1 |
20080030436 | Iida et al. | Feb 2008 | A1 |
20080111774 | Iida et al. | May 2008 | A1 |
20080198103 | Toyomura et al. | Aug 2008 | A1 |
20080225027 | Toyomura et al. | Sep 2008 | A1 |
20080246747 | Taneda et al. | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
08-234683 | Sep 1996 | JP |
2003-271095 | Sep 2003 | JP |
2004-118132 | Apr 2004 | JP |
2006-208966 | Aug 2006 | JP |
2008-033193 | Feb 2008 | JP |
WO2007055376 | May 2007 | WO |
Entry |
---|
Japanese Office Action issued Mar. 6, 2012 for corresponding Japanese Patent No. 2007-197081. |
Number | Date | Country | |
---|---|---|---|
20090033652 A1 | Feb 2009 | US |