This application claims priority to Taiwan Application Serial Number 108101694, filed Jan. 16, 2019, which is herein incorporated by reference in its entirety.
The present disclosure relates to a display device and a multiplexer. More particularly, the present disclosure relates to the display device and the multiplexer capable of reducing impulse noises.
Common display devices use multiplexers to write data signals into columns of pixels, so as to reduce a number of pins required by driver IC. However, numerous of parasitic elements exist in the display device, and thus switching signals for controlling the multiplexers induce impulse noises in other signals during rising edges and falling edges of the switching signals. As a result, the display device acts erroneously. For example, if the display device is an integrated display device which has display function and touch sensing function, the impulse noises induced by the switching signals causes deleterious effects on precision of the touch sensing function.
For reducing the number of the impulse noises induced by the switching signals, industries developed a solution which is to omit one switch in each of the multiplexers. However, in the solution, the multiplexer simultaneously transmits data signal to a path coupled with a switch and to a path whose switch is omitted. As a result, regarding the path coupled with the switch, charging speed of the multiplexer is decreased. Accordingly, if the foregoing solution is applied to a high-resolution display, pixels in the high-resolution display will encounter problems of insufficient charging currents.
The disclosure provides a display device comprising a plurality of pixels. The display device further comprises a plurality of multiplexers. Each of the plurality of multiplexers is coupled with N data lines, and configured to receive N−1 switching signals and a data signal. N is a positive integer larger than or equal to 3, and each of the N data lines is coupled with one column of pixels of the plurality of pixels. When any of the N−1 switching signals has an enabling voltage level, the multiplexer is disabled from transmitting the data signal to an N-th data line of the N data lines. When each of the N−1 switching signals has a disabling voltage level, the multiplexer transmits the data signal to the N-th data line.
The disclosure provides a multiplexer applicable to a display device comprising a plurality of pixels. The multiplexer is coupled with N data lines, and configured to receive N−1 switching signals and a data signal. N is a positive integer larger than or equal to 3, and each of the N data lines is coupled with a column of pixels of the plurality of pixels. When any of the N−1 switching signals has an enabling voltage level, the multiplexer is disabled from transmitting the data signal to a N-th data line of the N data lines. When each of the N−1 switching signals has a disabling voltage level, the multiplexer transmits the data signal to the N-th data line.
It is to be understood that both the foregoing general description and the following detailed description are by examples, and are intended to provide further explanation of the disclosure as claimed.
Reference will now be made in detail to the present embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
In this embodiment, N is a positive integer larger than or equal to 3. In practice, the timing control circuit 130 and the source driver 120 may be realized by different circuit blocks on a same substrate. However, the timing control circuit 130 and the source driver 120 may also be fabricated on different substrates, and coupled with each other through a flexible print circuit (FPC). In some embodiments, the timing control circuit 130 and the source driver 120 are fabricated as a single chip.
Throughout the specification and drawings, indexes [1]-[M] and [1]-[N] may be used in the reference labels of components and signals for ease of referring to respective components and signals. The use of indexes [1]-[M] and [1]-[N] does not intend to restrict the amount of components and signals to any specific number. In the specification and drawings, if a reference label of a particular component or signal is used without having the index, it means that the reference label is used to refer to any unspecific component or signals of corresponding component group or signals group. For example, the reference label 110[1] is used to refer to the specific multiplexer 110[1], and the reference label 110 is used to refer to any unspecific multiplexer of the multiplexers 110[1]-110[N].
With respect to an unspecific multiplexer 110, the multiplexer 110 outputs the data signal Din to the data lines DL[1]-DL[N] according to the switching signals Sw[1]-Sw[N−1]. For example, when the switching signal Sw[1] has an enabling voltage level, the multiplexer 110 outputs the data signal Din to the data line DL[1]. In another example, when the switching signal Sw[2] has the enabling voltage level, the multiplexer 110 outputs the data signal Din to the data line DL[2]. In yet another example, when the switching signal Sw[N−1] has the enabling voltage level, the multiplexer 110 outputs the data signal Din to the data line DL[N−1], and so forth.
Notably, when any of the switching signals Sw[1]-Sw[N−1] has the enabling voltage level, the multiplexer 110 is disabled from output the data signal Din to the data line DL[N]. Until each of the switching signals Sw[1]-Sw[N−1] has the disabling voltage level, the multiplexer 110 transmits the data signal Din to the data line DL[N]. As a result, the multiplexer 110 is disabled from transmitting the data signal Din to two of the data lines DL[1]-DL[N] in a same time, so as to reduce the output loading of the multiplexer 110 and to increase charging speed.
The second node of the current-dividing switch 210 is configured to receive the data signal Din. The control node of the current-dividing switch 210 is configured to correspondingly receive one of the switching signals Sw[1]-Sw[N−1]. For example, the control node of the current-dividing switch 210[1] is configured to receive the switching signal Sw[1], the control node of the current-dividing switch 210[2] is configured to receive the switching signal Sw[2], the control node of the current-dividing switch 210[N−1] is configured to receive the switching signal Sw[N−1], and so forth.
The current-dividing element 220 is configured to receive the switching signals Sw[1]-Sw[N−1] and the data signal Din, and coupled with the data line DL[N]. In practice, the current-dividing switches 210[1]-210[N−1] can be realized by various categories of N-type transistors, such as N-type thin-film transistors (TFTs).
When any of the switching signals Sw[1]-Sw[N−1] has the enabling voltage level, the current-dividing element 220 is disabled from transmitting the data signal Din to the data line DL[N]. Until each of the switching signals Sw[1]-Sw[N−1] has the disabling voltage level (e.g., a low voltage level), the current-dividing element 220 transmits the data signal Din to the data line DL[N].
In practice, the time period Th may have a length equal to that of a horizontal line time of a row of pixels PX. For example, if the display device 100 having a resolution of 4096×2160 and a frame rate of 120 Hz, the time period Th may be approximate 3.86 μS.
The NOR gate 420 comprises a plurality of input nodes 422[1]-422[N−1] and an output node 424. The input nodes 422[1]-422[N−1] are configured to correspondingly receive the switching signals Sw[1]-Sw[N−1]. The output node 424 is coupled with the control node of the driving transistor 410, and configured to output the control signal CT. When one of the switching signals Sw[1]-Sw[N−1] has the enabling voltage level, the NOR gate 420 outputs the control signal CT having the disabling voltage level to the control node of the driving transistor 410. As a result, the driving transistor 410 is switched-off. On the other hand, when each of the switching signals Sw[1]-Sw[N−1] has the disabling voltage level, the NOR gate 420 outputs the control signal CT having the enabling voltage level to the control node of the driving transistor 410. As a result, the driving transistor 410 is conducted.
Each of the pull-down transistors 520[1]-520[N−1] comprises a first node, a second node, and a control node. With respect to an unspecific pull-down transistor 520, the first node is coupled with the first nodal point N1 and the second node is configured to receive the second reference voltage Vgl. The control node of the pull-down transistor 520 is coupled with one of the input nodes 422[1]-422[N−1] of the NOR gate 420 to receive one of the switching signals Sw[1]-Sw[N−1]. For example, the control node of the pull-down transistor 520[1] is coupled with the input node 422[1], and configured to receive the switching signal Sw[1]. In another example, the control node of the pull-down transistor 520[2] is coupled with the input node 422 [2], and configured to receive the switching signal Sw[2]. In yet another example, the control node of the pull-down transistor 520[N−1] is coupled with the input node 422[N−1], and configured to receive the switching signal Sw[N−1], and so forth.
The pull-up element 510 comprises a pull-up transistor 512. The pull-up transistor 512 comprises a first node, a second node, and a control node. The first node and the control node of the pull-up transistor 512 are coupled together. In addition, the first node and the control node of the pull-up transistor 512 are configured to receive the first reference voltage Vgh. The second node of the pull-up transistor 512 is coupled with the first nodal point N1.
In this embodiment, the first reference voltage Vgh is higher than the second reference voltage Vgl, and the width-to-length ratio of the pull-down transistor 520 is larger than that of the pull-up transistor 512. Therefore, when one of the switching signals Sw[1]-Sw[N−1] has the enabling voltage level to conduct the pull-down transistor 520, the first nodal point N1 has a voltage level similar to the second reference voltage Vgl. As a result, the control signal CT has the disabling voltage level.
On the contrary, when each of the switching signals Sw[1]-Sw[N−1] has the disabling voltage level to switch off the pull-down transistors 520[1]-520[N−1], the first nodal point N1 has a voltage level similar to the first reference voltage Vgh. As a result, the control signal CT has the enabling voltage level.
In practice, the pull-down transistors 520[1]-520[N−1] and the pull-up transistor 512 may be realized by various categories of N-type transistors, such as the N-type TFTs.
As can be appreciated from the foregoing descriptions, the current-dividing element 220 and the current-dividing switches 210[1]-210[N−1] of the multiplexer 110 are together controlled by the switching signals Sw[1]-Sw[N], so that a number of control signals required by the display device 100 is reduced to decrease the number of impulse noises. In addition, the current-dividing element 220 prevents the multiplexer 110 from charging two data lines DL in the same time, so that the multiplexer 110 has sufficient charging capability for each data line DL. Therefore, the display device 100 is capable of providing high-quality and high-resolution images. Furthermore, when the display device 100 is integrated with a touch panel, the display device 100 will not induce erroneous acts of the touch panel.
Certain terms are used throughout the description and the claims to refer to particular components. One skilled in the art appreciates that a component may be referred to as different names. This disclosure does not intend to distinguish between components that differ in name but not in function. In the description and in the claims, the term “comprise” is used in an open-ended fashion, and thus should be interpreted to mean “include, but not limited to.” The term “couple” is intended to compass any indirect or direct connection. Accordingly, if this disclosure mentioned that a first device is coupled with a second device, it means that the first device may be directly or indirectly connected to the second device through electrical connections, wireless communications, optical communications, or other signal connections with/without other intermediate devices or connection means.
In addition, the singular forms “a,” “an,” and “the” herein are intended to comprise the plural forms as well, unless the context clearly indicates otherwise.
Although the present disclosure has been described in considerable detail with reference to certain embodiments thereof, other embodiments are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the embodiments contained herein. It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present disclosure without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the present disclosure cover modifications and variations of this disclosure provided they fall within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
108101694 | Jan 2019 | TW | national |