This application claims priority from Republic of Korea Patent Application No. 10-2019-0126924, filed on Oct. 14, 2019, which is hereby incorporated by reference in its entirety.
The present disclosure relates to a technology for dynamically controlling ripples of a driving voltage of a power management integrated circuit.
The most important issue regarding electronic devices, including mobile devices, is how to reduce power consumption. As electronic devices become downsized, the power consumption needs to be reduced. For this reason, research into the reduction of power consumption is being done. A display device used in almost all electronic devices may be a component where a considerable reduction of power consumption can be made. For a typical example, static currents of a source driver may be reduced.
There are various ideas for the reduction of current consumption of a display device. Most research focuses on reducing static currents present in integrated circuits to drive or control a display device. For a typical example, static currents of a source driver may be reduced by lowering the frame rate of a display so as to maximize the length of a blank section.
However, there is little research into the reduction of power consumption of a power management integrated circuit itself. Power consumption of a power management integrated circuit as well may be reduced in a blank section where no operation for a display is necessary. As with other driving circuits, a power management integrated circuit may be improved in terms of its power consumption.
In this regard, the present disclosure is to provide a technology for reducing power consumption of a power management integrated circuit by improving the management of ripples of power supplied by the power management integrated circuit.
An aspect of the present disclosure is to provide a technology of roughly managing ripples of driving signals, supplied by a power management integrated circuit, in a section where there is no operation for a display.
Another aspect of the present disclosure is to provide a technology of controlling a ripple period of a driving voltage to be longer in a section where there is no operation for a display.
Still another aspect of the present disclosure is to provide a technology of reducing the number of times of driving voltage outputs in a section where there is no operation for a display.
To this end, in an aspect, there is provided a display device comprising: a panel comprising pixels to which image data is outputted; a data driving circuit to apply a data voltage corresponding to the image data to a pixel in a first time section, but not to apply a data voltage to a pixel in a second time section; and a power management integrated circuit to convert power supplied from outside to generate a driving voltage and to output the driving voltage to the data driving circuit, wherein the power management integrated circuit controls a fluctuation range of the driving voltage in the second time section to be wider than a fluctuation range of the driving voltage in the first time section.
In the display device, the power management integrated circuit may receive a timing control signal including timings for the first time section and the second time section and output the driving voltage in the first time section or in the second time section according to the timings.
In the display device, the timing control signal may be generated in the data driving circuit or a data processing circuit to control the data driving circuit and transmitted to the power management integrated circuit.
In the display device, the fluctuation range comprises a peak value which is a maximum level value of the driving voltage and a threshold value which is a minimum level value of the driving voltage, and the level of the driving voltage may ascend or descend between the threshold value and the peak value while it is being outputted.
In the display device, the power management integrated circuit may control the threshold value in the second time section to be lower than the threshold value in the first time section.
In the display device, the power management integrated circuit may stop generating the driving voltage during a skip period where the level of the driving voltage descends from the peak value to the threshold value and generate the driving voltage during a driving period where the level of the driving voltage ascends from the threshold value to the peak value.
In the display device, when the level of the driving voltage reaches the threshold value, the power management integrated circuit may start converting the power.
In the display device, the power management integrated circuit may stop converting the power when the level of the driving voltage reaches the peak value.
In the display device, the skip period may be longer than the driving period.
In the display device, the power management integrated circuit may control the skip period of the second time section to be longer as the threshold value of the second time section becomes lower.
In the display device, the power management integrated circuit may control the numbers of alternations of the driving period and the skip period in the second time section to be lesser as the threshold value of the second time section becomes lower.
In the display device, the driving voltage may form ripples by its level's ascending or descending between the threshold value and the peak value, a ripple may have a ripple amplitude which is a distance between the threshold value and the peak value, and the ripple amplitude of the second time section may be greater than the ripple amplitude of the first time section.
In another aspect, there is provided a power management integrated circuit comprising: a power stage to convert power supplied from outside to generate a driving voltage and to output the driving voltage; and a power control circuit to receive a timing control signal including timings for a first time section where a data voltage corresponding to image data is applied to a pixel and for a second time section where the data voltage is not applied to the pixel and to control the output of the driving voltage, wherein the power control circuit determines the first time section and the second time section according to the timings and controls the driving voltage such that a fluctuation range of the driving voltage in the second time section to be greater than a fluctuation range of the driving voltage in the first time section.
In the power management integrated circuit, the fluctuation range comprises a peak value which is a maximum level value of the driving voltage and a threshold value which is a minimum level value of the driving voltage, and the power control circuit may control the threshold value in the second time section to be lower than the threshold value in the first time section.
In the power management integrated circuit, when the level of the driving voltage reaches the threshold value, the power stage may convert the power.
In the display device, when the level of the driving voltage reaches the peak value, the power management integrated circuit may stop converting the power.
As described above, the present disclosure allows reducing power consumption in a power management integrated circuit in a section where there is no operation for a display. In addition, the present disclosure allows reducing power consumption as much as the numbers of outputs of driving voltages supplied by a power management integrated circuit in a section where there is no operation for a display.
Referring to
On the panel 110, a plurality of data lines DL and a plurality of gate lines GL may be disposed and a plurality of pixels P may also be disposed.
The gate driving circuit 130 may supply scan signals of turn-on voltages or turn-off voltages through the gate lines GL. When a scan signal of a turn-on voltage is supplied to a pixel P, the pixel P is connected with a data line DL and when a scan signal of a turn-off voltage is supplied to the pixel P, the pixel P is disconnected from the data line DL.
The data driving circuit 120 supplies data voltages through the data lines DL. A data voltage supplied through a data line DL is transferred to a pixel P connected with the data line DL according to a scan signal.
The data processing circuit 140 may supply various control signals to the gate driving circuit 130 and the data driving circuit 120. The data processing circuit 140 may generate a gate control signal GCS to initiate a scan according to a timing for each frame and transmit the gate control signal GCS to the gate driving circuit 130. The data processing circuit 140 may convert image data RGB inputted from outside into image data RGB in a data format used in the data driving circuit 120 and output the converted image data RGB to the data driving circuit 120. In addition, the data processing circuit 140 may transmit a data control signal DCS to control the data driving circuit 120 to supply a data voltage to each pixel P at an appropriate timing.
Meanwhile, a data driving circuit 120 may be referred to as a source driver, a gate driving circuit 130 may be referred to as a gate driver, and a data processing circuit 140 may be referred to as a timing controller. A data driving circuit 120 may be comprised in one integrated circuit together with a pixel sensing circuit and referred to as a source driver integrated circuit (IC). Otherwise, a data driving circuit 120, a pixel sensing circuit, and a data processing circuit may be comprised in one integrated circuit and referred to as a combined IC. Although the present disclosure is not limited to this, descriptions about some generally known components of a source driver, a gate driver, or a timing controller will be omitted in the descriptions of embodiments below. Accordingly, the descriptions of embodiments should be understood considering the fact that the descriptions about such some components are omitted.
The power management integrated circuit 150 may supply power to the panel 110, the data driving circuit 120, the gate driving circuit 130, and the data processing circuit 140. The power management integrated circuit 150 may supply power to them by transmitting driving voltages DRV to the panel 110, the data driving circuit 120, the gate driving circuit 130, and the data processing circuit 140 through power lines. Driving voltages DRV having different voltage values may respectively be supplied to the respective circuits. The power management integrated circuit 150 may act as a power source of the panel 110, the data driving circuit 120, the gate driving circuit 130, and the data processing circuit 140.
The panel 110 may be an organic light emitting display panel. In this case, each pixel P disposed on the panel 110 may comprise an organic light emitting diode (OLED) and at least one transistor. Characteristics of an organic light emitting diode OLED and at least one transistor comprised in each pixel P may vary depending on time or surrounding environments.
Referring to
The timing control signal DIS_T may be generated in the data driving circuit 120 or the data processing circuit 140 and transmitted to the power management integrated circuit 150.
The timing control signal DIS_T may comprise information regarding an operation status of the panel 110. The timing control signal DIS_T will be described in detail below.
The power management integrated circuit 150 may receive a timing control signal DIS_T and control a driving voltage DRV according to an operation status of the panel 110. In one embodiment, the power management integrated circuit 150 may differently adjust the fluctuation range of a driving voltage DRV according to an operation status of the panel 110.
A timing control signal DIS_T may indicate an operation status of the panel (110 in
A timing control signal DIS_T may be a horizontal synchronization signal HSYNC or a vertical synchronization signal VSYNC. The display driving section DISPLAY_ON and the display non-driving section DISPLAY_OFF may correspond respectively to a section, where a data voltage is applied, and a section, where a data voltage is not applied, indicated by a horizontal synchronization signal HSYNC or a vertical synchronization signal VSYNC.
Power consumed by the display device in the display driving section DISPLAY_ON may be different from power consumed thereby in the display non-driving section DISPLAY_OFF. In the display driving section DISPLAY_ON, a relatively large amount of power may be consumed compared with in the display non-driving section DISPLAY_OFF. The reason is that various circuits operate for driving the panel in the display driving section DISPLAY_ON, whereas relatively few circuits operate in the display non-driving section DISPLAY_OFF. In this figure, power PWR consumed in the display device corresponding to the display driving section DISPLAY_ON is indicated by HIGH and power PWR corresponding to the display non-driving section DISPLAY_OFF is indicated by LOW (sections in shade).
In each section, consumed power PWR may correspond to power supplied by the power management integrated circuit (150 in
For example, in the display driving section DISPLAY_ON, power may be required from the gate driving circuit (130 in
On the contrary, in the display non-driving section DISPLAY_OFF, since there is no panel driving, power may be required only from the touch sensing circuit (not shown) for sensing a touch. The power management integrated circuit (150 in
As described above, power supplied by the power management integrated circuit (150 in
The load LD on the power management integrated circuit may be different in the display driving section DISPLAY_ON and in the display non-driving section DISPLAY_OFF.
The load LD in the display driving section DISPLAY_ON may be greater than the load LD in the display non-driving section DISPLAY_OFF. Since various circuits operate for driving the panel in the display driving section DISPLAY_ON and the circuits are loads, the load may be greater as the number of circuits in operation increases. On the contrary, since relatively few circuits, which are loads, operate in the display non-driving section DISPLAY_OFF, the load may be lesser as the number of circuits in operation decreases. The load LD imposed on the power management integrated circuit (150 in
Depending on operations of the panel, power PWR supplied by the power management integrated circuit (150 in
A conventional power management integrated circuit may output driving voltages to have a uniform amplitude of ripples regardless of in the display driving section DISPLAY_ON or in the display non-driving section DISPLAY_OFF. However, the period of a ripple may be longer in the display non-driving section DISPLAY_OFF than in the display driving section DISPLAY_ON.
Power PWR to be supplied may be transferred from the power management integrated circuit to external circuits in a form of a driving voltage DRV. The power management integrated circuit may output some driving voltages as soon as it generates them. The power management integrated circuit may also store some other voltages, generated during a predetermined period of time, in a capacitor and output them from the capacitor. For example, generated voltages may be outputted in a first term and stored voltages may be outputted in a second term.
When the stored voltages are outputted so that the capacitor is discharged, the level of a driving voltage DRV may be lowered. Since, when the level of a driving voltage is too low, operations of external circuits are unstable, the power management integrated circuit may again generate voltages when the level of the driving voltage DRV is lowered to a threshold value. The generated voltages may be stored in the capacitor. The level of the driving voltage DRV may increase again to the peak value. The power management integrated circuit (150 in
As described above, driving voltages may be generated during predetermined periods of time at regular intervals and may not be generated during the aforementioned intervals. However, regardless of being generated or not, driving voltages are continuously outputted.
A peak value and a threshold value may define a fluctuation range of the level of the driving voltage DRV to be outputted. A peak value and a threshold value may be an upper limit and a lower limit of the level of a driving voltage. A peak value and a threshold value may be a maximum level and a minimum level of a driving voltage.
When generated voltages and stored voltages are alternately outputted, the driving voltage DRV may have ripples. Because of a charging time delay during which the capacitor is charged by generated voltages, the level of the driving voltage DRV may not immediately come up to a desired value, but may slowly increase to the value. In addition, because of a discharging time delay during which the capacitor is discharged, the level of the driving voltage may not immediately come down to a desired value as soon as they are outputted, but may slowly decrease to the value. The repetition of such increases and decreases of the level of the driving voltage may form ripples.
In a case when power PWR supplied by the power management integrated circuit (150 in
Whenever the level of the driving voltage decreases to a threshold value, driving voltages DRV are generated. Here, since the generation of driving voltages lifts the level of the driving voltage DRV up, it may be referred to as a ‘boost of driving voltages’.
The generation (boost) of driving voltages may cause power consumption in the power management integrated circuit (150 in
Here, the frequent generations (boosts) of driving voltages DRV may increase power consumption of the power management integrated circuit (150 in
Referring to
However, the fluctuation ranges of the driving voltage DRV may be the same in the display driving section DISPLAY_ON and in the display non-driving section DISPLY_OFF. That is, the driving voltage DRV may fluctuate between the same peak value and the same threshold value in both sections while they are outputted.
Driving voltages DRV may be intermittently generated in the display non-driving section DISPLAY_OFF and frequently generated in the display driving section DISPLAY_ON. In other words, the number of generations in the display non-driving section DISPLAY_OFF may be lesser than that in the display driving section DISPLAY_ON.
For example, in a case when the display driving section DISPLAY_ON and the display non-driving section DISPLAY_OFF have the same duration, driving voltages DRV may be generated eleven times b1 to b11 in the display driving section DISPLAY_ON and four times b12 to b15 in the display non-driving section DISPLAY_OFF.
Since the load is heavy and the power PWR consumed due to the load is high in the display driving section DISPLAY_ON, a period of time, during which the level of the driving voltage drops from the peak value to the threshold value, may be short. On the contrary, since the load is light and the power PWR consumed due to the load is low in the display non-driving section DISPLAY_OFF, a period of time, during which the level of the driving voltage drops from the peak value to the threshold value, may be long. Since the level of the driving voltage decreases more slowly in the display non-driving section DISPLAY_OFF than in the display driving section DISPLAY_ON, driving voltages DRV may be generated lesser frequently in the display non-driving section DISPLAY_OFF than in the display driving section DISPLAY_ON. Accordingly, a period of a ripple may be longer in the display non-driving section DISPLAY_OFF than in the display driving section DISPLAY_ON.
A driving voltage control signal CTR_DRV may comprise information for adjusting the fluctuation range of the driving voltage DRV. A driving voltage control signal CTR_DRV may determine the fluctuation ranges in the display driving section DISPLAY_ON and in the display non-driving section DISPLAY_OFF by changing its level.
According to a conventional art, the fluctuation ranges may be identical in both the display driving section DISPLAY_ON and the display non-driving section DISPLAY_OFF. This means that the driving voltage control signal CTR_DRV may have the same level for the display driving section DISPLAY_ON and for the display non-driving section DISPLAY_OFF.
Referring to
The driving voltage may have a ripple amplitude of h in the display driving voltage DISPLAY_ON and the display non-driving voltage DISPLAY_OFF. While driving voltages are generated, the level of the driving voltage may increase from a first threshold value Vth to a peak value Vpeak and while the generation is stopped, the level of the driving voltage may decrease from the peak value Vpeak to the first threshold value Vth. The ripple amplitude of h may correspond to a difference between the first threshold value Vth and the peak value Vpeak. The level of the driving voltage may maintain the ripple amplitude of h in both the display driving section DISPLAY_ON and the display non-driving section DISPLAY_OFF while alternately ascending and descending.
However, the level of the driving voltage DRV may have different ripple periods in the display driving section DISPLAY_ON and in the display non-driving section DISPLAY_OFF. A ripple period in the display non-driving section DISPLAY_OFF may be longer than that in the display driving section DISPLAY_ON.
A ripple period of the level of the driving voltage may comprise a driving period and a skip period. A driving period is a period where driving voltages DRV are generated and a skip period is a period where driving voltages are stopped being generated. A skip period in the display non-driving section DISPLAY_OFF is much longer than that in the display driving section DISPLAY_ON. Therefore, a ripple period in the display non-driving section DISPLAY_OFF may be longer than that in the display driving section DISPLAY_ON.
For example, a ripple period T1 in the display driving section DISPLAY_ON may comprise a driving period T1d and a skip period T1s. A ripple period T2 in the display non-driving section DISPLAY_OFF may also comprise a driving period T2d and a skip period T2s. Since the load is light and the power consumption is low in the display non-driving section DISPLAY_OFF, the level of the driving voltage may descend more slowly compared with in the display driving section DISPLAY_ON. Accordingly, a skip period T2s in the display non-driving section DISPLAY_OFF may be longer than a skip period T1s in the display driving section DISPLAY_ON.
When the ripple periods are different in the display driving section DISPLAY_ON and in the display non-driving section DISPLAY_OFF, ripple frequencies of the level of driving voltages may be different in the display driving section DISPLAY_ON and in the display non-driving section DISPLAY_OFF. The ripple frequency in the display non-driving section DISPLAY_OFF may be fewer than that in the display driving section DISPLAY_ON.
The power management integrated circuit (150 in
When the fluctuation range in the display non-driving section DISPLAY_OFF is wider than the fluctuation range in the display driving section DISPLAY_ON, a ripple period in the display non-driving section DISPLAY_OFF may be longer than the ripple period according to a conventional art in which the fluctuation ranges are the same in the display driving section and in the display non-driving section.
In addition, a ripple amplitude in the display non-driving section DISPLAY_OFF may be greater than the ripple amplitude according to a conventional art and it may preferably be greater than a ripple amplitude in the display driving section DISPLAY_ON.
As the fluctuation range in the display non-driving section DISPLAY_OFF is wider, the number of times driving voltages DRV are generated may decrease and as the number of times of that the generation of the driving voltages DRV decreases, power consumption in the power management integrated circuit (150 in
Referring to
A ripple period in the display non-driving section DISPLAY_OFF may be longer as the fluctuation range of a ripple is wider. Preferably, a ripple period may be longer as a threshold value is lower. The reason is that it takes more time for the level of the driving voltage to descend to the threshold value.
The number of times of generating (boosting) driving voltages in the display non-driving section DISPLAY_OFF may be reduced as the fluctuation range is wider. For example, driving voltages DRV are generated 4 times (b12 to b15 in
Meanwhile, a driving voltage control signal CTR_DRV may comprise information to widen the fluctuation range of a driving voltage in the display non-driving section DISPLAY_OFF.
For example, in order to comprise information to adjust the fluctuation range in the display non-driving section DISPLAY_OFF to be wider than that in the display driving section DISPLAY_ON, a driving voltage control signal CTR_DRV may have a different level in the display non-driving section DISPLAY_OFF. The power stage of the power management integrated circuit (150 in
Referring to
When the lower limit of the fluctuation range of the driving voltage DRV decreases to the second threshold value Vth′ in the display non-driving section DISPLAY_OFF, the ripple amplitude of the driving voltage may be wider. The ripple amplitude h′ in the display non-driving section DISPLAY_OFF may be wider than the ripple amplitude h in the display driving section DISPLAY_ON.
Additionally, the ripple period T2′ in the display non-driving section DISPLAY_OFF according to the present disclosure may be longer than the ripple period (T2 in
On the contrary, the ripple frequency in the display non-driving section DISPLAY_OFF according to the present disclosure may be lower than the ripple frequency in the display non-driving section according to a conventional art. Since the ripple period T2′ in the display non-driving section DISPLAY_OFF is longer than the ripple period in a case when the fluctuation range is not wide, the ripple frequency may be lower because the period is in inverse proportion to the frequency.
Referring to
The power control circuit 151 may receive a control signal comprising a timing control signal DIS_T. A control signal may be generated in the data driving circuit (120 in
The power stage 152 may receive a power signal PW and convert it into a driving voltage DRV suitable for driving a circuit. For example, for the data driving circuit (120 in
The power stage 152 may output driving voltages DRV. The power stage 152 may convert a power signal PW into a driving voltage DRV. In other words, the power stage 152 may generate driving voltages. Since driving voltages are generated while they are continuously supplied to external circuits, their level may increase from the low to the high.
The power stage 152 may not convert a power signal PW into a driving voltage. In other words, the power stage 152 may not generate driving voltages. Since driving voltages are not generated while they are continuously supplied to external circuits, their level may decrease from the high to the low.
The level of a driving voltage may ascend or descend between the low and the high. Such ascending and descending of the level of a driving voltage may form ripples.
The power control circuit 151 may generate a driving voltage control signal CTR_DRV to control the power stage 152 and transmit it to the power stage 152. A driving voltage control signal CTR_DRV may include information to determine the fluctuation range of the driving voltage DRV. The power control circuit 151 may adjust the peak value, which is a upper limit of the fluctuation range, and the threshold value, which is the lower limit of the fluctuation range, using a driving voltage control signal CTR_DRV.
For example, the power control circuit 151 may transmit a driving voltage control signal CTR_DRV to the power stage 152 to lower the threshold value of the fluctuation range. The power stage 152 may output driving voltages DRV on the basis of a lowered threshold value, instead of the original threshold value. When the display non-driving section starts, the power stage 152 may convert the power and the level of a driving voltage DRV may increase to the peak value. When the level of the driving voltage reaches the peak value, the power stage 152 may stop converting the power and the level of the driving voltage DRV may decrease to the lowered threshold value, which is lower than the original threshold value.
The aforementioned timing control signal may be a synchronization signal or a signal induced by a synchronization signal. For example, a timing control signal may be a horizontal synchronization signal HSYNC, a vertical synchronization signal VSYNC, or a signal induced by a horizontal synchronization signal HSYNC or a vertical synchronization signal VSYNC. The power management integrated circuit may receive a horizontal synchronization signal and generate a timing control signal using an internal clock signal. Or, the power management integrated circuit may receive a vertical synchronization signal VSYNC and generate a timing control signal using an internal clock signal.
Number | Date | Country | Kind |
---|---|---|---|
10-2019-0126924 | Oct 2019 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
5731797 | Akiyama | Mar 1998 | A |
6188395 | Yatabe | Feb 2001 | B1 |
20180068627 | Ota | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
4803629 | Oct 2011 | JP |
2016061848 | Apr 2016 | JP |
6462207 | Jan 2019 | JP |
Number | Date | Country | |
---|---|---|---|
20210110751 A1 | Apr 2021 | US |