Information
-
Patent Grant
-
6380768
-
Patent Number
6,380,768
-
Date Filed
Wednesday, November 29, 200024 years ago
-
Date Issued
Tuesday, April 30, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
-
CPC
-
US Classifications
Field of Search
US
- 327 108
- 327 109
- 327 111
- 327 427
- 327 433
- 327 534
- 327 535
- 327 537
- 327 440
- 327 382
- 327 383
- 327 389
- 327 390
- 365 204
- 349 38
- 349 39
- 349 54
-
International Classifications
-
Abstract
There is provided a display device composed of a display panel having a capacitive load such as an ELDP and a PDP and a semiconductor device for driving the capacitive load which can reliably operate, collect substantially all the power charged to the capacitive load irrespective of the current amplification factor of a parasitic bipolar transistor. The semiconductor device has a high potential side power terminal, low potential side power terminal, power charge/discharge terminal and an output terminal to which a capacitive load is connected. The semiconductor device also includes a first p-channel MOS transistor in which the source is connected to the power charge/discharge terminal, the drain is connected to the output terminal and the backgate is connected to the high potential side power terminal and a first control signal C1 indicating that the first P-channel MOS transistor should be in ON state during an output period is applied to a gate.
Description
BACKGROUND OF THE INVENTION
The present invention relates to a display device. More specifically, the present invention relates to a display device provided with a display panel having a capacitive load such as an electroluminescent display panel (hereinafter, referred to as ELDP) or a plasma display panel (hereinafter, referred to as PDP), in which an electric field is generated to emit light, as well as a semiconductor device for driving the capacitive load.
A known display device of this type is exemplified in FIG.
10
. The ELDP
1
to be driven has electrodes
8
,
9
arranged in a grid at the same intervals both in the vertical and horizontal directions. Each intersection point of the electrodes
8
and
9
constitutes a pixel, which is inevitably parasitized by large capacitance
7
due to the principle of the ELDP or PDP that light is emitted by generating high electric fields between the electrodes
8
in the vertical direction and the electrodes
9
in the horizontal direction. In a driving semiconductor device
2
, a few tens of high voltage CMOS (Complementary Metal Oxide Semiconductor) circuits
10
are arranged in an array to constitute output stages on a semiconductor chip. The logic state of these high voltage CMOS circuits
10
is controlled by a low voltage CMOS control circuit such as a shift register circuit or latch circuit mounted on the same chip although it is not shown in the figure. In this driving semiconductor device
2
, a low potential side power terminal
11
is connected to the ground potential
12
and the power charge/discharge terminal
6
is connected to the output part of the power supply voltage control circuit
3
(composed of high voltage CMOS circuits). It is noted that the low potential side power supply of the power supply voltage control circuit
3
is connected to the ground potential
12
and the high potential side power supply is connected to a constant voltage power supply 5 of 70 V. There is provided a circuit for collecting power in the power supply voltage control circuit
3
in practice although it is not shown in the figure.
FIG. 11
shows a cross-sectional structure of an output-stage CMOS circuit in the driving semiconductor device (designated by reference numeral
2
in FIG.
10
). An n-type epitaxial layer
22
is formed on a p-type semiconductor substrate
20
. A high voltage n-channel MOS (hereinafter, referred to as NMOS) transistor
39
and a high voltage p-channel MOS (hereinafter, referred to as PMOS) transistor
40
are formed on this n-type epitaxial layer
22
. These NMOS transistor
39
and PMOS transistor
40
are electrically isolated by a diffused p-type insulating isolation layer
21
between the surface of the n-type epitaxial layer
22
and the p-type semiconductor substrate
20
. It is noted that a low voltage CMOS control circuit is also formed on the same semiconductor substrate
20
in a state that it is electrically isolated by the p-type insulating isolation layer
21
although it is not shown in the figure. The NMOS transistor
39
has a VDMOS (Vertical Double Diffused Metal Oxide Semiconductor) structure and is provided with a p-type base diffusion layer
35
, gate electrode
32
, source electrode
30
and drain electrode
29
. It is noted that the drain current of the NMOS transistor
39
is drawn by a high-concentration n-type buried diffusion layer
23
and a high-concentration n-type drawing diffusion layer
25
.
33
denotes an oxide film and
38
denotes a surface insulating film. The PMOS transistor
40
has a horizontal-type structure containing a p-type drain diffusion layer
34
for a high voltage specification and is provided with a gate electrode
31
, source electrode
27
and drain electrode
26
. Since the n-type epitaxial layer
22
and the p-type semiconductor substrate
20
are disposed vertically corresponding to the p-type drain diffusion layer
34
beneath this PMOS transistor
40
, a parasitic bipolar transistor
4
(also shown in
FIG. 10
) is generated as shown in the figure. In order to keep the current amplification factor hFE of this parasitic bipolar transistor
4
low, a high-concentration n-type buried diffusion layer
23
is formed below the p-type drain diffusion layer
34
as well. Consequently, the current amplification factor hFE of the parasitic bipolar transistor
4
is reduced to about 0.05 or less.
FIGS. 12A
,
12
B,
12
C and
12
D show waveforms of respective parts in the driving semiconductor device
2
. A periodic rectangular wave
50
is applied to the power charge/discharge terminal
6
by the power supply voltage control circuit
3
. The voltage (see
FIG. 12C
) of the i-th output terminal (exemplified by the one with reference numeral
14
for convenience) out of output terminals
13
,
14
,
15
,
16
is controlled by the periodic rectangular wave
50
(see
FIG. 12A
) applied to the power charge/discharge terminal
6
and the logic state
51
(see
FIG. 12B
) of the i-th output CMOS circuit
10
determined by image information (an H level represents an output; an L level represents a halt) and has a waveform
52
(see
FIG. 12C
) showing rises and falls representing integration due to the capacitive load. In
FIG. 12C
,
55
represents charge to the load and
56
represents discharge from the load. In
FIG. 12D
,
53
is a current waveform in the i-th output terminal
14
. The positive direction represents output from the output terminal.
57
is charge current to the electrode
8
in the vertical direction corresponding to the i-th output terminal
14
. The charge current
57
during a charge process
55
flows through the path shown as
17
in
FIG. 10
, that is, flows from the high-voltage constant voltage power supply 5 of 70 V through the power charge/discharge terminal
6
, the PMOS transistor
40
in the ON state and the i-th output terminal
14
and charges the electrode
8
in the vertical direction. On the other hand, the discharge current
58
is returned through the path shown as
18
in
FIG. 10
during a discharge process
56
, that is, to the high-voltage constant voltage power supply
5
side through the path in the direction reverse to that of the charge process
55
. This is because the voltage
50
(see
FIG. 12A
) applied to the power charge/discharge terminal
6
drops from 70 V to 0 V rapidly while the logic state
51
of the i-th output CMOS circuit is maintained at the H level. If the discharge current is returned to the high-voltage constant voltage power supply
5
, the power accumulated in the capacitive component of the load can be collected. Thus, power consumption in the ELDP can be reduced. However, since a current path
61
flowing to the ground side
12
is generated by the parasitic bipolar transistor
4
during the discharge process
56
, the power collection efficiency decreases. The ratio (i
1
/i
2
) of the current component i
1
that can collect power by returning this discharge current to the high-voltage constant voltage power supply
5
and the current component i
2
that cannot return the discharge current to the high-voltage constant voltage power supply
5
, thereby being unable to collect power, is expressed by
i
1
/
i
2
=1/hFE
where hFE is the current amplification factor of the parasitic bipolar transistor
4
. As described above, since the current amplification factor hFE of this parasitic bipolar transistor
4
is reduced to about 0.05 or less, most of the power accumulated in the capacitive component of the load can be collected.
In the above method, however, an buried diffusion layer
23
, epitaxial layer
22
, insulating isolation layer
21
and the like need to be provided within the chip of the driving semiconductor device
2
to increase the power collection efficiency by reducing the current amplification factor hFE of the parasitic bipolar transistor
4
. Therefore, there is a problem that the driving semiconductor device
2
to be used requires a complicated fabricating process.
It has been proposed that as shown in
FIG. 13
, the current flowing to the ground potential
12
is eliminated by inserting a switching element
71
between the low potential side power terminal
11
of the driving semiconductor device
2
and the ground potential
12
and keeping the switching element
71
off during the discharge process and substantially all the power charged to the capacitive load is collected irrespective of the current amplification factor hFE of the parasitic bipolar transistor
4
(Japanese Patent Laid-Open Publication HEI 10-335726). In this method, however, control of the high-voltage CMOS output transistor controlled by the low-voltage CMOS control circuit becomes unreliable because the low potential side power supply of the low-voltage CMOS control circuit is also separated from the ground potential
12
when the switching element
71
is turned off. Therefore, this method cannot be employed in practice.
SUMMARY OF THE INVENTION
Accordingly, an object of the present invention is to provide a display device provided with a display panel having a capacitive load such as an ELDP or PDP and a semiconductor device for driving the capacitive load which can reliably operate, collect substantially all the power charged in the capacitive load irrespective of the current amplification factor of a parasitic bipolar transistor and be fabricated by a simple fabricating process.
In order to achieve the above object, the display device of the present invention provides a display device comprising:
a display panel having a capacitive load, and a semiconductor device having a high potential side power terminal to which a high potential is applied, a low potential side power terminal to which a low potential is applied, a power charge/discharge terminal to which a pulsed driving waveform changing between the high potential and the low potential is applied and an output terminal to which the capacitive load is connected, the semiconductor device functioning to generate an output responsive to the driving waveform to the output terminal to thereby drive the capacitive load, wherein
the semiconductor device comprises a first p-channel MOS transistor having a source connected to the power charge/discharge terminal, a drain connected to the output terminal, a backgate connected to the high potential side power terminal, and a gate to which a first control signal indicating that the first p-channel MOS transistor should be turned on during an output period in which the capacitive load is to be charged and discharged is applied.
In the display device of the present invention, the first control signal is set at a low (L) level during the output period when the capacitive load needs to be charged and discharged. Consequently, a first p-channel MOS transistor is turned on. Therefore, the charge current flows from the power charge/discharge terminal to the capacitive load through the first p-channel MOS transistor in the ON state and the output terminal during the rise process of the driving waveform. On the other hand, the discharge current flows from the capacitive load to the power charge/discharge terminal through the output terminal and the first p-channel MOS transistor in the ON state during the fall process of the driving waveform. In the semiconductor device, for example, when a first p-channel MOS transistor is provided on a semiconductor substrate with which a low potential side power terminal is in conduction, by a common CMOS circuit fabricating process, there is generated a parasitic bipolar transistor using the source and the backgate of the first p-channel MOS transistor and the semiconductor substrate as its emitter, base and collector, respectively. However, since the potential of the power charge/discharge terminal to which the source of the first p-channel MOS transistor is connected is lower than the potential of the high potential side power terminal to which the backgate of the first p-channel MOS transistor is connected during the fall process of the driving waveform, the emitter and the base of the parasitic bipolar transistor are reverse-biased. Therefore, the discharge current is not drawn even in part to the low potential side power terminal through such a parasitic bipolar transistor. Thus, substantially all the power charged in the capacitive load is collected through the power charge/discharge terminal irrespective of the current amplification factor of the parasitic bipolar transistor. Also, since a buried diffusion layer or the like for reducing the current amplification factor of the parasitic bipolar transistor is not required inside the chip as a result, the semiconductor device can be fabricated by a simple fabricating process. Also, since the low potential side power terminal can be connected to the ground potential at all times, operation of the control circuit never becomes unreliable even in the case where a control circuit for controlling the ON/OFF state of the first p-type MOS transistor is provided on the semiconductor substrate.
In one embodiment, the semiconductor device comprises a second n-type MOS transistor having a source connected to the power charge/discharge terminal, a drain connected to the output terminal, and a gate to which a second control signal opposite in phase to the first control signal is applied.
In the display device of this embodiment, the first control signal is set at a low (L) level while the second control signal is set at a high (H) level during the output period when the capacitive load needs to be charged and discharged. Consequently, not only the first p-channel MOS transistor is turned on but also the second n-type MOS transistor in parallel with the first p-channel MOS transistor is turned on. As a result, the on-resistance of the charge/discharge path is kept low even when the potential of the power charge/discharge terminal changes depending on the driving waveform. Therefore, the power collection efficiency is increased.
In another embodiment, the semiconductor device comprises a third n-type MOS transistor having a source connected to the low potential side power terminal, a drain connected to the output terminal, and a gate to which a third control signal in the same phase with that of the first control signal is applied.
In the display device of this embodiment, the third control signal is set at a low (L) level during the output period when the capacitive load needs to be charged and discharged. Therefore, the third n-type MOS transistor is turned off and does not contribute to the charge/discharge operation through the output terminal. On the other hand, the third control signal is set at a high (H) level during the halt period when the capacitive load is not charged or discharged. Therefore, the third n-type MOS transistor is turned on and the potential of the output terminal is kept low and stable during the halt period.
In another embodiment, the first control signal and the third control signal are given by an identical signal.
In the display device of this embodiment, since the same signal is used as the first control signal and the third control signal, control becomes easy and the configuration of the control circuit is simplified.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
FIG. 1
is a view showing the configuration of an embodiment of the invention having an ELDP and a driving semiconductor device;
FIGS. 2A
,
2
B,
2
C,
2
D,
2
E,
2
F and
2
G are views showing waveforms of respective parts of the driving semiconductor device of
FIG. 1
;
FIG. 3
is a view showing a cross-sectional structure of a high voltage CMOS circuit constituting an output stage of the above driving semiconductor device;
FIGS. 4A and 4B
are views exemplifying waveforms of voltages which can be applied to a power charge/discharge terminal by a power supply voltage control circuit;
FIG. 5
is a view illustrating a modification of the driving semiconductor device of
FIG. 1
;
FIG. 6
is a view illustrating another modification of the driving semiconductor device of
FIG. 1
;
FIG. 7
is a view illustrating another modification of the driving semiconductor device of
FIG. 1
;
FIG. 8
is a view illustrating another modification of the driving semiconductor device of
FIG. 1
;
FIGS. 9A
,
9
B,
9
C,
9
D,
9
E,
9
F,
9
G and
9
H are views showing waveforms of respective parts of the driving semiconductor device of
FIG. 8
;
FIG. 10
is a view showing the configuration of a conventional display device having an ELDP and a driving semiconductor device;
FIG. 11
is a view showing a cross-sectional structure of a high voltage CMOS circuit constituting an output stage of the above driving semiconductor device;
FIGS. 12A
,
12
B,
12
C and
12
D are views showing waveforms of respective parts of the driving semiconductor device of
FIG. 10
; and
FIG. 13
is a view illustrating a known proposal for the display device of FIG.
10
.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The display device of the present invention will be described in detail below with reference to the embodiments shown in the drawings.
FIG. 1
shows a configuration of the display device of an embodiment having an ELDP
1
and a driving semiconductor device
62
A. The driven ELDP
1
and the power supply voltage control circuit
3
are the same as those shown in FIG.
10
. There is provided a known power collecting circuit for collecting power in the power supply voltage control circuit
3
although it is not shown in the figure. The specific explanation of the power collecting circuit is omitted because the power collecting circuit is not directly related to the present invention.
A few tens of high voltage CMOS circuits
63
constituting output stages are arranged in an array and a high potential side power terminal
6
, low potential side power terminal
11
, power charge/discharge terminal
66
and output terminals
64
,
65
, . . . each corresponding to each of the high voltage CMOS circuits
63
are provided on a semiconductor chip constituting a driving semiconductor device
62
A. Each high voltage CMOS circuit
63
has a first PMOS transistor
101
and a third NMOS transistor
103
for a high voltage specification, which are connected in series. There is provided a second NMOS transistor
102
in parallel with the first PMOS transistor
101
. Specifically, in the first PMOS transistor
101
, the source is connected to the power charge/discharge terminal
66
, the drain is connected to the output terminal
64
and the backgate is connected to the high potential side power terminal
6
. In the second NMOS transistor
102
, the source is connected to the power charge/discharge terminal
66
, the drain is connected to the output terminal
64
and the backgate is connected to the low potential side power terminal
11
. In the third NMOS transistor
103
, the source is connected to the low potential side power terminal
11
, the drain is connected to the output terminal
64
and the backgate is connected to the low potential side power terminal
11
. A first control signal C
1
is commonly applied to the gate of the first PMOS transistor
101
and the gate of the third NMOS transistor
103
while a second control signal C
2
is applied to the gate of the second NMOS transistor
102
. These first control signal C
1
and second control signal C
2
are outputted by a low-voltage CMOS control circuit, which is not shown in the figure, such as a shift-register circuit or latch circuit mounted on the same chip. It is noted that since the ON/OFF state of the first PMOS transistor
101
and that of the third NMOS transistor
103
are controlled by the same control signal C
1
, control becomes easy and the configuration of the low-voltage CMOS control circuit is simplified.
A high potential (DC 70 V) is applied to the high potential side power terminal
6
from a high-voltage constant voltage power supply
5
. Also, the low potential side power terminal
11
is connected to the ground potential
12
, which has a low potential, and is in conduction with a semiconductor substrate. A pulsed driving waveform, which changes between a high potential (DC 70 V) and the ground potential
12
, is applied to the power charge/discharge terminal
66
from the output part
100
of the power supply voltage control circuit
3
. Each of the output terminal
64
,
65
, . . . is connected to each electrode
8
in the vertical direction having a capacitive load
7
in the ELDP
1
.
As shown in
FIG. 3
, the high voltage CMOS circuit
63
in the output stage is fabricated by the most simple fabricating process that is generally known. That is, an n-type well diffusion layer
124
is formed on the surface of a p-type semiconductor substrate
120
and a first PMOS transistor
101
is formed in this n-type well diffusion layer
124
. On the other hand, the second and third NMOS transistors
102
,
103
have the same structure and are formed directly on the surface of the p-type semiconductor substrate
120
. As a result, the first PMOS transistor
101
is electrically isolated from the second and third NMOS transistors
102
,
103
by the n-type well diffusion layer
124
. It is noted that a low-voltage control circuit is also formed in the same semiconductor substrate
120
in a state that it is electrically isolated by an n-type well diffusion layer similar to the n-type well diffusion layer
124
. The first PMOS transistor
101
has a horizontal-type structure having a p-type drain diffusion layer
134
and a p-type source diffusion layer
136
for a high voltage specification and comprises a source electrode
126
, drain electrode
127
, gate electrode
131
and backgate electrode
141
. The second and third NMOS transistors
102
,
103
have a horizontal-type structure having an n-type drain diffusion layer
128
and an n-type source diffusion layer
137
for a high voltage specification and comprise a source electrode
130
, drain electrode
129
, gate electrode
132
and backgate electrode
142
.
133
denotes an oxide film and
138
denotes a surface insulating film. In this structure, there is generated a parasitic bipolar transistor
104
using the source
134
of the first PMOS transistor
101
, n-type well diffusion layer (backgate)
124
and semiconductor substrate
120
as its emitter, base and collector (also shown in FIG.
1
). The current amplification factor hFE of this parasitic bipolar transistor
104
is usually about 10-100.
FIGS. 2A
,
2
B,
2
C,
2
D,
2
E,
2
F and
2
G show waveforms of respective parts in the driving semiconductor device
2
. In this example, a periodic rectangular wave
50
(see
FIG. 2B
) is applied to the power charge/discharge terminal
66
by the power supply voltage control circuit
3
. The voltage of the i-th output terminal (exemplified by the one with reference numeral
64
for convenience) out of the output terminals
64
,
65
, . . . is controlled by the periodic rectangular wave
50
applied to the power charge/discharge terminal
66
and the logic state
51
(see
FIG. 2E
) of the i-th output CMOS circuit
63
determined by image information (an H level represents an output; an L level represents a halt) and has a waveform
52
showing integrated rises and falls due to the capacitive load. In
FIG. 2F
,
55
represents charge process to the load and
56
represents discharge process from the load. In
FIG. 2G
,
53
is a current waveform in the i-th output terminal
64
. The positive direction represents output from the output terminal
64
.
57
represents charge current to an electrode
8
in the vertical direction corresponding to the i-th output terminal
64
.
58
represents discharge current from the electrode
8
in the vertical direction corresponding to the i-th output terminal
64
.
The first control signal C
1
is set at the L level and the second control signal C
2
is set at the H level during the output period when the capacitive load
7
needs to be charged and discharged. Consequently, the first PMOS transistor
101
is turned on while the second NMOS transistor
102
in parallel with the first PMOS transistor
101
is also turned on. On the other hand, the third NMOS transistor
103
is turned off. Therefore, the charge current
57
flows through a path shown as
67
in
FIG. 1
during the rise process of the driving waveform, that is, from the power charge/discharge terminal
66
to the electrode
8
in the vertical direction through the first PMOS transistor
101
and the second NMOS transistor
102
, which are in the ON state, and then the output terminal
64
. Thus, the capacitive load
7
is charged. On the other hand, the discharge current
58
flows through the path in the direction reverse to that of the charge during the fall process of the driving waveform, that is, from the capacitive load
7
to the power charge/discharge terminal
66
through the output terminal
64
and then the first PMOS transistor
101
and second NMOS transistor
102
, which are in the ON state. The aforementioned parasitic bipolar transistor
104
exists below the first PMOS transistor
101
, but the emitter and the base of the parasitic bipolar transistor
104
are reverse-biased because the potential of the power charge/discharge terminal
66
to which the source
126
of the first PMOS transistor
101
is connected is lower than the potential of the high potential side power terminal
6
to which the p-type well diffusion layer
124
i.e., backgate
124
is connected via the backgate electrode
141
during the fall process of the driving waveform. Therefore, the discharge current
58
does not flow even in part to the low potential side power terminal
11
through such a parasitic bipolar transistor
104
. Thus, substantially all the power charged to the capacitive load
7
is collected through the power charge/discharge terminal
66
irrespective of the current amplification hFE of the parasitic bipolar transistor
104
.
Also, since not only the first PMOS transistor
101
is in the ON state, but also the second NMOS transistor
102
in parallel with the first PMOS transistor
101
is in the ON state during the output period, the on-resistance of the charge/discharge path
67
is kept low even if the potential of the power charge/discharge terminal
66
changes depending on the driving waveform. Therefore, the power collection efficiency can be increased.
It is noted that the collected power is temporarily stored and used for the charge during the next rise of the driving waveform.
During the halt period when the capacitive load
7
is not charged or discharged, the first control signal C
1
is set at the H level and the second control signal C
2
is set at the L level. Consequently, the first PMOS transistor
101
and the second NMOS transistor
102
are turned off while the third NMOS transistor
103
is turned on. Therefore, the charge/discharge path
67
is disconnected and the potential of the output terminal
64
is kept low and stable.
As a driving semiconductor device
62
B shown in
FIG. 5
, however, the third NMOS transistor
103
can be omitted to simplify the configuration of the output stage. This is because the third n-type MOS transistor
103
is in the OFF state during the output period and does not contribute to the ON/OFF operation described above. Also, as a driving semiconductor device
62
C shown in
FIG. 6
, the second NMOS transistor
102
may be omitted to simplify the configuration of the output stage. Also, as a driving semiconductor device
62
D shown in
FIG. 7
, the second NMOS transistor
102
and the third NMOS transistor
103
may be omitted to further simplify the configuration of the output stage.
Also, as a driving semiconductor device
62
E shown in
FIG. 8
, the gate of the first PMOS transistor
101
and the gate of the third NMOS transistor
103
may be separated and the first control signal C
1
and the third control signal C
3
may be applied to the gate of the first PMOS transistor
101
and the gate of the third NMOS transistor
103
, respectively. In this case, the third control signal C
3
to be applied is in the same phase with that of the first control signal Cl as shown in
FIGS. 9C and 9D
.
FIGS. 9A
,
9
B,
9
C,
9
D,
9
E,
9
F,
9
G and
9
H show waveforms of respective parts of the driving semiconductor device
62
E.
It is noted that since the low potential side power terminal
11
is connected to the ground potential
12
at all times, operation of the low-voltage CMOS control circuit (not shown) provided on the semiconductor substrate
120
never becomes unreliable.
In the example described above, a rectangular wave
50
as shown in
FIG. 2
is applied to the power charge/discharge terminal
66
by the power supply voltage control circuit
3
, but waveforms to be applied are not limited to this. A periodic step waveform shown in
FIG. 4A
or a periodic sawtooth waveform shown in
FIG. 4B
may be applied.
It is needless to say that the display device of the present invention can be applied to those provided with various display panels having a capacitive load other than an ELDP.
As is evident from the above, since, in the display device of the present invention, the semiconductor device for driving the display panel has a first p-channel MOS transistor in which the source is connected to the power charge/discharge terminal, the drain is connected to the output terminal and the backgate is connected to the high potential side power terminal and a first control signal indicating that the transistor should be turned on during the output period when the capacitive load needs to be charged and discharged is applied to the gate, the discharge current is not drawn even in part to the low potential side power terminal through the parasitic bipolar transistor. Therefore, substantially all the power charged to the capacitive load can be collected through the power charge/discharge terminal irrespective of the current amplification factor of the parasitic bipolar transistor. Also, as a result, a buried diffusion layer or the like for reducing the current amplification factor of the parasitic bipolar transistor is not required in the chip. Thus, this semiconductor device can be fabricated by a simple fabricating process. Also, since the low potential side power terminal can be connected to the ground potential at all times, operation of the control circuit never becomes unreliable even in the case where a control circuit for controlling the ON/OFF state of the first p-channel MOS transistor is integrally formed on the semiconductor substrate.
In one embodiment, the semiconductor device has a second n-type MOS transistor in which the source is connected to the power charge/discharge terminal, the drain is connected to the output terminal and a second control signal in opposite phase to the first control signal is applied to the gate. In this case, the on-resistance of the charge/discharge path can be kept low even if the potential of the power charge/discharge terminal changes depending on the driving waveform. Therefore, the power collection efficiency can be increased.
In one embodiment, the semiconductor device has a third n-type MOS transistor in which the source is connected to the low potential side power terminal and the drain is connected to the output terminal and the third control signal in the same phase with that of the first control signal is applied to the gate. In this case, the potential of the output terminal can be low and stable during the halt period when the capacitive load is not charged or discharged.
Since the first control signal and third control signal are the same signals in the display device of another embodiment, the control becomes easy. Also, the configuration of the control circuit can be simplified.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Claims
- 1. A display device comprising:a display panel having a capacitive load, and a semiconductor device having a high potential side power terminal to which a high potential is applied, a low potential side power terminal to which a low potential is applied, a power charge/discharge terminal to which a pulsed driving waveform changing between the high potential and the low potential is applied and an output terminal to which the capacitive load is connected, the semiconductor device functioning to generate an output responsive to the driving waveform to the output terminal to thereby drive the capacitive load, wherein the semiconductor device comprises a first p-channel MOS transistor having a source connected to the power charge/discharge terminal, a drain connected to the output terminal, a backgate connected to the high potential side power terminal, and a gate to which a first control signal indicating that the first p-channel MOS transistor should be turned on during an output period in which the capacitive load is to be charged and discharged is applied.
- 2. The display device according to claim 1, whereinthe semiconductor device comprises a second n-type MOS transistor having a source connected to the power charge/discharge terminal, a drain connected to the output terminal, and a gate to which a second control signal opposite in phase to the first control signal is applied.
- 3. The display device according to claim 2, whereinthe semiconductor device comprises a third n-type MOS transistor having a source connected to the low potential side power terminal, a drain connected to the output terminal, and a gate to which a third control signal in the same phase with that of the first control signal is applied.
- 4. The display device according to claim 3, whereinthe first control signal and the third control signal are given by an identical signal.
- 5. The display device according to claim 1, whereinthe semiconductor device comprises a third n-type MOS transistor having a source connected to the low potential side power terminal, a drain connected to the output terminal, and a gate to which a third control signal in the same phase with that of the first control signal is applied.
- 6. The display device according to claim 5, whereinthe first control signal and the third control signal are given by an identical signal.
Priority Claims (1)
Number |
Date |
Country |
Kind |
11-337791 |
Nov 1999 |
JP |
|
US Referenced Citations (7)
Foreign Referenced Citations (5)
Number |
Date |
Country |
829846 |
Mar 1998 |
EP |
2235092 |
Sep 1990 |
JP |
10026952 |
Jan 1998 |
JP |
A10335726 |
Dec 1998 |
JP |
11085099 |
Mar 1999 |
JP |