The present invention relates generally to a display device, and more particularly, to a display device able to realize both display and sensing functions in the same sub-pixel circuit to provide an in-screen sensing function.
In general, a display device often only has a display function. Some display devices provides both display and touch functions. However, when sensing is required, for example, when an optical fingerprint sensor (OFPS) is used for sensing, the optical fingerprint sensor will need to be implemented as an independent device. In addition, when the optical sensing module is bonded under the display device, there will be additional cost, additional thickness, and additional yield risk during bonding.
Moreover, since the sensing area depends on the area of the sensor, the sensing area will be much smaller than the area of the entire panel. In addition, since the optical sensing module is attached to the bottom of the display device, components between the sensed object and the sensor may block the light.
Therefore, it is necessary to provide a display device that can integrate the sensing function and the display function in the same sub-pixel circuit to overcome the above problems.
In order to achieve the objective of effectively solving the above problems, the present invention provides a display device, including: a plurality of sub-pixel areas, each including a sub-pixel circuit, each sub-pixel circuit including: a diode, configured to a forward-biasing state in a display phase of the sub-pixel circuit for emitting light and configured to a reverse-biasing state for sensing the light of the sub-pixel circuit in a sensing phase; a driving transistor, for driving the diode in the display phase; first to sixth transistors, gates of the first to sixth transistors being applied with gate control signals, so that the first to sixth transistors switch between the display phase and the sensing phase; and a capacitor, for storing a data voltage to be written to the diode in the display phase; wherein the diode generates a photocurrent to an operational amplifier during the sensing phase so that the operational amplifier outputs a photocurrent output signal.
Preferably, the operational amplifier comprises: a first input terminal connected to a fifth node; a second input terminal applied with a reference voltage; and an output terminal to output the a photocurrent output signal, wherein a feedback capacitor is connected to the first input terminal and the output terminal, and wherein a switch is connected to the first input terminal and the output terminal.
Preferably, in each sub-pixel circuit: a first electrode of the first transistor is connected to a first node, and a second electrode of the first transistor is connected to a fifth node; an initialization voltage is applied to the fifth node; a first electrode of the second transistor is connected to the fifth node, and a second electrode of the second transistor is connected to a second node; a first electrode of the third transistor is connected to the fifth node, and a second electrode of the third transistor is connected to a third node; a first electrode of the fourth transistor is applied with a data voltage, and a second electrode of the fourth transistor is connected to a fourth node; a first electrode of the fifth transistor is connected to the third node, and a second electrode of the fifth transistor is connected to the second node; a first electrode of the sixth transistor is connected to a driving voltage, and a second electrode of the sixth transistor is connected to the fourth node, a gate of the driving transistor is connected to the first node, a first electrode is connected to the fourth node, and a second electrode of the driving transistor is connected to the third node; a first electrode of the capacitor is connected to a first node, and a second electrode of the capacitor is connected to the first electrode of the sixth transistor; and, a first electrode of the diode is connected to the second node, and a common voltage is applied to the second electrode of the diode.
Preferably, in the sensing phase, the first and second transistors are on, and the third to sixth transistors are off.
Preferably, the sensing phase comprises: a first sensing phase, the switch is short-circuit; and a second sensing phase, the switch is open-circuit, wherein, in the first sensing phase, the initialization voltage is equal to the reference voltage.
Preferably, the display device further comprises: a first circuit, for applying the gate control signals to each sub-pixel circuit to switch each sub-pixel circuit between the display phase and the sensing phase respectively; and a second circuit, for applying the initialization voltage, the data voltage, the driving voltage, and the common voltage, the second circuit comprising a readout part, and the readout part comprising the operational amplifier.
Preferably, the gate control signals comprise: a first gate control signal to control the first transistor and the second transistor; a second gate control signal to control the third transistor and the fourth transistor; and a third gate control signal to control the fifth transistor and the sixth transistor.
Preferably, the diode comprises one of a micro light-emitting diode (micro-LED), a sub-millimeter light-emitting diode (mini-LED), and an organic light-emitting diode (OLED).
Preferably, the driving transistor and the first to sixth transistors comprise one of or any combination of P-type metal oxide semiconductor field effect transistors (MOSFET), N-type MOSFETs, thin film transistors (TFT), low-temperature polycrystalline silicon TFTs, and low-temperature polycrystalline oxide TFTs.
The present invention will be apparent to those skilled in the art by reading the following detailed description of a preferred embodiment thereof, with reference to the attached drawings.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
The inventive concept will be explained more fully hereinafter with reference to the accompanying drawings in which exemplary embodiments of the inventive concept are shown. Advantages and features of the inventive concept and methods for achieving the same will be apparent from the following exemplary embodiments, which are set forth in more details with reference to the accompanying drawings. However, it should be noted that the present inventive concept is not limited to the following exemplary embodiments, but may be implemented in various forms. Accordingly, the exemplary embodiments are provided merely to disclose the inventive concept and to familiarize those skilled in the art with the type of the inventive concept. In the drawings, exemplary embodiments of the inventive concepts are not limited to the specific examples provided herein and are exaggerated for clarity.
The terminology used herein is used to describe particular embodiments only, and is not intended to limit the present invention. As used herein, the singular terms “a” and “the” are intended to include the plural forms as well, unless the context clearly dictates otherwise. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. It will be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present.
Similarly, it will be understood that when an element (e.g., a layer, region, or substrate) is referred to as being “on” another element, it can be directly on the other element or intervening elements may be present. In contrast, the term “directly” means that no intervening elements are present. It should be further understood that when the terms “comprising” and “including” are used herein, it is intended to indicate the presence of stated features, steps, operations, elements, and/or components, but does not exclude one or more other features, steps, operations, elements, components, and/or the presence or addition of groups thereof.
Furthermore, exemplary embodiments in the detailed description are set forth in cross-section illustrations that are idealized exemplary illustrations of the present inventive concepts. Accordingly, the shapes of the exemplary figures may be modified according to manufacturing techniques and/or tolerable errors. Therefore, the exemplary embodiments of the present inventive concept are not limited to the specific shapes shown in the exemplary figures, but may include other shapes that may be produced according to the manufacturing process. The regions illustrated in the figures have general characteristics and are used to illustrate specific shapes of elements. Therefore, this should not be considered limited to the scope of this creative concept.
It will also be understood that, although the terms “first,” “second,” “third,” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish each element. Thus, a first element in some embodiments could be termed a second element in other embodiments without departing from the teachings of the present creation. Exemplary embodiments of aspects of the present inventive concept illustrated and described herein include their complementary counterparts. Throughout this specification, the same reference numbers or the same designators refer to the same elements.
Furthermore, example embodiments are described herein with reference to cross-sectional and/or planar views, which are illustrations of idealized example illustrations. Accordingly, deviations from the shapes shown, for example, caused by manufacturing techniques and/or tolerances, are expected. Accordingly, the exemplary embodiments should not be considered limited to the shapes of the regions shown herein, but are intended to include deviations in shapes resulting from, for example, manufacturing. Thus, the regions illustrated in the figures are schematic and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of example embodiments.
It should be noted that the sub-pixel circuit of the present invention can be implemented in any sub-pixel such as red sub-pixel, blue sub-pixel, green sub-pixel, white sub-pixel, etc., but the present invention is not limited thereto.
Refer to
It should be understood that when the circuit is actually operating, there will be switching time between each phase. For ease of understanding, in this specification, the duration of each phase includes the actual execution of the corresponding action and switching to the next phase. For example, the second display phase D2 includes the time of writing data and switching to the third display phase D3.
Refer to
It can be understood that, according to the user's settings, at the same point in time, the sub-pixel circuits in the display device may be in different phases. For example, the sub-pixel circuits in different rows may be in different phases. In addition, since the sensing phase S and the display phase D1-D3 of the present invention are achieved by controlling the gate control signal GCS to adjust the operating sequence, the sensor of the display device can be turned on or off the sensing phase S at any time according to the user's settings and needs.
Refer to
Refer to
Referring to
Referring to
Referring to
Referring also to
It should be noted that the display device of the present invention divides the sub-pixel circuit 10 into the sensing phase S and the display phases D1 to D3 by applying the gate control signals GCS. In the sensing phase S, the diode LED is under reverse bias to sense light as a photodiode and generate a photocurrent IPH. Then, the operational amplifier OP receives the photocurrent IPH and generates a photocurrent output signal op_out. In the display phases D1 to D3, the diode LED is under forward bias to emit light as a light-emitting diode to display data according to the data voltage Vdata. It can be understood that the diode LED of the present invention includes, but is not limited to, micro-light-emitting diodes (micro-LED), sub-millimeter light-emitting diodes (mini-LED), and organic light-emitting diodes (OLED).
The circuit operation of the sensing phase S of the sub-pixel circuit 10 according to the first embodiment of the present invention will be described below with reference to
Referring to
It should be understood that the first embodiment of the present invention uses a P-type metal oxide semiconductor field effect transistor (PMOS) as an exemplary transistor in the sub-pixel circuit 10, so a high voltage is applied to the gate will turn the transistor off, while applying a low voltage to the gate will turn it on. However, the present invention is not limited thereto. The transistor used in the sub-pixel circuit of the present invention can be arbitrarily implemented as PMOS, N-type metal oxide semiconductor field effect transistor (NMOS), thin film transistor (TFT), low-temperature polycrystalline silicon (LTPS) TFT, low-temperature polycrystalline Oxide (LTPO) TFT and so on. In addition, transistors can also be arbitrarily combined to form the sub-pixel circuit of the present invention. For example, some transistors are implemented as PMOS and other transistors are implemented as NMOS.
Specifically, referring to
Specifically, referring to
The circuit operation of the display phases D1-D3 of the sub-pixel circuit 10 according to the first embodiment of the present invention will be described below with reference to
Referring to
Specifically, referring to
Specifically, with reference to
Specifically, with reference to
Referring to
Therefore, it should be understood that the first to sixth transistors T1 to T6, the driving transistor T7, and the switch SW of the sub-pixel circuit 10a are also driven in the same manner as the sub-pixel circuit 10. That is, in the first sensing phase S1, the first transistor T1 and the second transistor T2 are on, the third transistor T3, the fourth transistor T4, the fifth transistor T5, and the sixth transistor are T6 are off, and the switch SW is short-circuited. In the second sensing phase S2, the first transistor T1 and the second transistor T2 remain on, and the third transistor T3, the fourth transistor T4, the fifth transistor T5, and the sixth transistor T6 remain off, and the switch SW is switched to open-circuited. In the first display phase D1, the first transistor T1 and the second transistor T2 are on, the third transistor T3, the fourth transistor T4, the fifth transistor T5, and the sixth transistor T6 are off, and the switch SW is short-circuited. In the second display phase D2, the third transistor T3 and the fourth transistor T4 are on, the first transistor T1, the second transistor T2, the fifth transistor T5, and the sixth transistor T6 are off, and the switch SW is switched to open-circuited. In the third display phase D3, the fifth transistor T5 and the sixth transistor T6 are on, the first transistor T1, the second transistor T2, the third transistor T3, and the fourth transistor T4 are off, and the switch SW remains open-circuited.
As such, the sub-pixel circuit 10a can also realize: in the sensing phase S, the diode LED is placed in a reverse-biasing state to sense light as a photodiode to generate a photocurrent IPH. Then, the operational amplifier OP receives the photocurrent IPH and generates the photocurrent output signal op_out. In the display phases D1 to D3, the diode LED is under forward bias to emit light as a light-emitting diode to display data according to the data voltage Vdata to determine the luminous intensity.
Therefore, those skilled in the art can easily understand that the inventive concept of the present invention can be applied to sub-pixel circuits using various types of transistors without being limited by the characteristics of the transistors.
Finally, the technical features of the present invention and its achievable technical effects are summarized as follows:
First, the display device of the present invention can realize both display and sensing functions in the same sub-pixel circuit to have an in-screen sensing function.
Second, since the display device of the present invention uses the same sub-pixel circuit to realize both display and sensing functions at the same time, there is no element between the sensed object and the sensor that will block or reduce the light. Therefore, the present invention can achieve more accurate sensing.
Third, since the display device of the present invention uses the same sub-pixel circuit to achieve both display and sensing functions, the total thickness of the screen is thinner, redundant manufacturing processes are not required, and the yield risk caused by additional bonding is reduced.
Fourth, three gate control signals are used to control six transistors, and thereby reducing the circuit complexity as well as cost so as to improve the manufacturing yield rate.
Although the present invention has been described with reference to the preferred embodiments thereof, it is apparent to those skilled in the art that a variety of modifications and changes may be made without departing from the scope of the present invention which is intended to be defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
6067062 | Takasu | May 2000 | A |
6593562 | Parrish | Jul 2003 | B1 |
8441226 | Ju | May 2013 | B2 |
10564718 | Na | Feb 2020 | B2 |
10969877 | Na | Apr 2021 | B2 |
20070097358 | Oon | May 2007 | A1 |
20070190681 | Lee | Aug 2007 | A1 |
20100141623 | Nakanishi | Jun 2010 | A1 |
20100177075 | Fish | Jul 2010 | A1 |
20110012879 | Uehata | Jan 2011 | A1 |
20110109605 | Omori | May 2011 | A1 |
20110122098 | Kurokawa | May 2011 | A1 |
20110148835 | Yamazaki | Jun 2011 | A1 |
20110273413 | Woestenborghs | Nov 2011 | A1 |
20110315859 | Tanaka | Dec 2011 | A1 |
20120091321 | Tanaka | Apr 2012 | A1 |
20120112047 | Brown | May 2012 | A1 |
20130003269 | Kimura | Jan 2013 | A1 |
20140253539 | Kline | Sep 2014 | A1 |
20170169796 | Tai | Jun 2017 | A1 |
20170287392 | Lynch | Oct 2017 | A1 |
20170323481 | Tran | Nov 2017 | A1 |
20180101035 | Marotta | Apr 2018 | A1 |
20180184031 | Morita | Jun 2018 | A1 |
20180204516 | Hwang | Jul 2018 | A1 |
20200258448 | Hargreaves | Aug 2020 | A1 |
20210064090 | Wen | Mar 2021 | A1 |
20210104574 | Behringer | Apr 2021 | A1 |
20210134855 | Ghasemi | May 2021 | A1 |
20220102583 | Baumheinrich | Mar 2022 | A1 |
20220155144 | Malinge | May 2022 | A1 |
20220229501 | Suo | Jul 2022 | A1 |
20230168768 | Sugawara | Jun 2023 | A1 |
20230316988 | Hofrichter | Oct 2023 | A1 |
Number | Date | Country | |
---|---|---|---|
20240153447 A1 | May 2024 | US |
Number | Date | Country | |
---|---|---|---|
63422456 | Nov 2022 | US |