This application is related to an US patent application with Ser. No. 12/140,564 and entitled “DISPLAY DEVICE, DRIVING METHOD OF DISPLAY DEVICE AND DATA PROCESSING AND OUTPUTTING METHOD OF TIMING CONTROL CIRCUIT”, and claims a foreign priority on an application filed in Taiwan on Dec. 27, 2012, with Serial No. 101150639. These related applications are incorporated herein by reference.
1. Technical Field
The present disclosure relates to a display device, a driving method of the display device, and a data processing and outputting method of a timing control circuit.
2. Description of Related Art
Display devices usually include many integrate circuits with different functions, such as timing control circuits, data driving circuits, gate driving circuits and so on. Generally, these integrate circuits need transmit data between each other. However, due to high work frequencies of the integrate circuits, electromagnetic interference (EMI) during data transmission has become more serious.
What is needed is to provide a means that can overcome the above-described limitations.
The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of at least one embodiment. In the drawings, like reference numerals designate corresponding parts throughout the various views.
Reference will now be made to the drawings to describe certain exemplary embodiments of the present disclosure in detail.
The data processing circuit 110 receives display data from an external circuit (such as a scale controller) and decodes the display data to obtain a reference clock signal, a first data signal, and a second data signal. Furthermore, the data processing circuit 110 outputs the reference clock signal to the clock embedded control circuit 112 and outputs the first and the second data signals to the encode circuit 114. The first data signal includes first training data and first main image data, and the second data signal includes second training data and second main image data. It can be understood, the first data signal can be provided to the encode circuit 114 before the second data signal. In one embodiment, the data processing circuit 110 outputs the first data signal and the second data signal to the encode circuit 114 in series.
The clock embedded control circuit 112 receives the reference clock signal and generates a first clock signal and a second clock signal according to the reference clock signal. A frequency of the first clock signal is different from a frequency of the second clock signal. In one embodiment, a frequency of the reference clock signal is defined as “f”, and each of the frequencies of the first clock signal and the second clock signal is in the range from f*90% to f*110%. Furthermore, the clock embedded control circuit 112 also generates a first clock training control signal and a second clock training control signal and outputs the first clock signal, the second clock signal, the first clock training control signal, and the second clock training control signal to the encode circuit 114. It can be understood, the first clock signal can be provided to the encode circuit 114 before the second clock signal, and the first clock training control signal can be provided to the encode circuit 114 before the second clock training control signal. In one embodiment, the clock embedded control circuit 112 outputs the first clock signal and the second clock signal to the encode circuit 114 in series, and the clock embedded control circuit 112 outputs the first clock training control signal and the second clock training control signal to the encode circuit 114 in series.
The encode circuit 114 receives the first data signal, the second data signal, the first clock signal, the second clock signal, the first clock training control signal, and the second clock training control signal. Specially, the encode circuit 114 embeds the first clock signal into the first training data to obtain a first clock embedded training data and outputs the first clock embedded training data to the data driving circuit 12 under the controls of the first clock training control signal. The data driving circuit 12 receives the first clock embedded training data and performs a first clock training to adjust a work frequency of the data driving circuit 12 to be equal to the frequency of the first clock signal. When the work frequency of the data driving circuit 12 is equal to the frequency of the first clock signal by the first clock training, the data driving circuit outputs a first feedback signal to the clock embedded control circuit 112, and the clock embedded control circuit 112 stops to output the first clock training control signal. Then, the encode circuit 114 embeds the first clock signal into the first main image data to obtain a first clock embedded image data and outputs the first clock embedded image data to the data driving circuit 12, such that the data driving circuit 12 receives the first clock embedded image data in a frequency same as the frequency of the first clock signal. When the data driving circuit 12 receives the first clock embedded image data, the data driving circuit 12 decodes the first clock embedded image data to obtain the first clock signal and the first main image data. The data driving circuit 12 detects a timing of the first main image data according to the first clock signal and corrects the timing of the first main image data when the timing of the first main image data are wrong. Further, the data driving circuit 12 also converts the first main image data into first data voltages and outputs the first data voltages to the display panel 13, such that the display panel 13 displays image.
The display panel 13 includes display periods and dummy periods each located between two adjacent display periods, and the display panel 13 displays a corresponding frame of image in each display period. The first main image data correspond to the display periods, that is, the display panel 13 displays normal images according to the first data voltages in the display period. Furthermore, the data driving circuit 12 decodes the first clock embedded training data to obtain the first training data and converts the first training data into dummy data voltages. The first training data correspond to the dummy periods, that is, the data driving circuit 12 outputs the dummy data voltages into the display panel 13 in dummy periods, and the display panel 13 displays dummy images in dummy periods.
After the data driving circuit 12 receives the first clock embedded image data, that is, a transmission of the first clock embedded image data are finished, the encode circuit 114 embeds the second clock signal into the second training data to obtain a second clock embedded training data and outputs the second clock embedded training data to the data driving circuit 12 under the controls of the second clock training control signal. The data driving circuit 12 receives the second clock embedded training data and performs a second clock training to adjust a work frequency of the data driving circuit 12 to be equal to the frequency of the second clock signal. When the work frequency of the data driving circuit 12 is equal to the frequency of the second clock signal by the second clock training, the data driving circuit outputs a second feedback signal to the clock embedded control circuit 112, and the clock embedded control circuit 112 stops to output the second clock training control signal. Then, the encode circuit 114 embeds the second clock signal into the second main image data to obtain a second clock embedded image data and outputs the second clock embedded image data to the data driving circuit 12, such that the data driving circuit 12 receives the second clock embedded image data in a frequency same as the frequency of the second clock signal. The data driving circuit 12 detects a timing of the second main image data according to the second clock signal and corrects the timing of the second main image data when the timing of the second main image data are wrong. Further, the data driving circuit 12 also converts the second main image data into second data voltages and outputs the second data voltages to the display panel 13, such that the display panel 13 displays image.
In one embodiment, the second main image data also correspond to the display periods, that is, the display panel 13 displays normal images according to the second data voltages in the display periods. The second main image data correspond to the display periods, that is, the display panel 13 displays normal images according to the second data voltages in the display period. Furthermore, the data driving circuit 12 decodes the second clock embedded training data to obtain the second training data and converts the second training data into dummy data voltages. The second training data correspond to the dummy periods, that is, the data driving circuit 12 outputs the dummy data voltages into the display panel 13 in dummy periods, and the display panel 13 displays dummy images in dummy periods.
It can be understood, the encode circuit 114 outputs the first clock embedded training data, the first clock embedded image data, the second clock embedded training data, and the second clock embedded image data to the data driving circuit 12 in series. The data driving circuit 12 outputs the dummy data voltages corresponding to the first training data, the first data voltages corresponding to the first main image data, the dummy data voltages corresponding to the second training data, and the second data voltages corresponding to the first main image data to the display panels 13 in series. The display panels 13 displays the dummy image corresponding to the first training data, a first frame of image corresponding to the first main image data, the dummy image corresponding to the second training data, a second frame of image corresponding to the second main image data.
It also can be understood, in one embodiment, the clock embedded control circuit 112 may output the first clock training control signal and the second clock training control signal alternately. To define the first clock embedded training data and the first clock embedded image data as a first clock embedded data, and to define the second clock embedded training data and the second clock embedded image data as a second clock embedded data, the encode circuit 114 outputs the first clock embedded data and the second clock embedded data to the data driving circuit 12 alternately under the controls of the first clock training control signal and the second clock training control signal.
Furthermore, as
The data processing circuit 110 also decodes the display data to obtain a third data signal and a fourth data signal and outputs the third and the fourth data signals to the encode circuit 114. The third data signal includes third training data and third main image data, and the fourth data signal includes fourth training data and fourth main image data. In one embodiment, the data processing circuit 110 outputs the third data signal and the fourth data signal to the encode circuit 114 in series.
The encode circuit 114 receives the third data signal, the fourth data signal, the third clock signal, the fourth clock signal, the third clock training control signal, and the fourth clock training control signal, and the encode circuit 114 embeds the third clock signal into the third training data to obtain a third clock embedded training data and outputs the third clock embedded training data to the data driving circuit 12 under the controls of the third clock training control signal. The data driving circuit 12 receives the third clock embedded training data and performs a third clock training to adjust a work frequency of the data driving circuit 12 to be equal to the frequency of the third clock signal. When the work frequency of the data driving circuit 12 is equal to the frequency of the third clock signal by the third clock training, the data driving circuit outputs a third feedback signal to the clock embedded control circuit 112, and the clock embedded control circuit 112 stops to output the third clock training control signal. Then, the encode circuit 114 embeds the third clock signal into the third main image data to obtain a third clock embedded image data and outputs the third clock embedded image data to the data driving circuit 12, such that the data driving circuit 12 receives the third clock embedded image data in a frequency same as the frequency of the third clock signal. When the data driving circuit 12 receives the third clock embedded image data, the data driving circuit 12 decodes the third clock embedded image data to obtain the third clock signal and the third main image data. The data driving circuit 12 detects a timing of the third main image data according to the third clock signal and corrects the timing of the third main image data when the timing of the third main image data are wrong. Further, the data driving circuit 12 also converts the third main image data into third data voltages and outputs the third data voltages to the display panel 13, such that the display panel 13 displays image.
The third main image data correspond to the display periods, that is, the display panel 13 displays normal images according to the third data voltages in the display period. The third main image data correspond to the display periods, that is, the display panel 13 displays normal images according to the third data voltages in the display periods. Furthermore, the data driving circuit 12 decodes the third clock embedded training data to obtain the third training data and converts the third training data into dummy data voltages. The first training data correspond to the dummy periods, that is, the data driving circuit 12 outputs the dummy data voltages into the display panel 13 in dummy periods, and the display panel 13 displays dummy images in dummy periods.
After the data driving circuit 12 receives the third clock embedded image data, that is, a transmission of the third clock embedded image data are finished, the encode circuit 114 embeds the fourth clock signal into the fourth training data to obtain a fourth clock embedded training data and outputs the fourth clock embedded training data to the data driving circuit 12 under the controls of the fourth clock training control signal. The data driving circuit 12 receives the fourth clock embedded training data and performs a fourth clock training to adjust a work frequency of the data driving circuit 12 to be equal to the frequency of the fourth clock signal. When the work frequency of the data driving circuit 12 is equal to the frequency of the fourth clock signal by the fourth clock training, the data driving circuit 12 outputs a fourth feedback signal to the clock embedded control circuit 112, and the clock embedded control circuit 112 stops to output the fourth clock training control signal. Then, the encode circuit 114 embeds the fourth clock signal into the fourth main image data to obtain a fourth clock embedded image data and outputs the fourth clock embedded image data to the data driving circuit 12, such that the data driving circuit 12 receives the fourth clock embedded image data in the work frequency which is the same as the frequency of the fourth clock signal. The data driving circuit 12 detects a timing of the fourth main image data according to the fourth clock signal and corrects the timing of the fourth main image data when the timing of the fourth main image data are wrong. Further, the data driving circuit 12 also converts the fourth main image data into fourth data voltages and outputs the fourth data voltages to the display panel 13, such that the display panel 13 displays image.
In one embodiment, the fourth main image data also correspond to the display periods, that is, the display panel 13 displays normal images according to the fourth data voltages in the display periods. The fourth main image data correspond to the display periods, that is, the display panel 13 displays normal images according to the fourth data voltages in the display period. Furthermore, the data driving circuit 12 decodes the fourth clock embedded training data to obtain the fourth training data and converts the fourth training data into dummy data voltages. The fourth training data correspond to the dummy periods, that is, the data driving circuit 12 outputs the dummy data voltages into the display panel 13 in dummy periods, and the display panel 13 displays dummy images in dummy periods.
It can be understood, in the alternating embodiment, the encode circuit 114 outputs the first clock embedded training data, the first clock embedded image data, the second clock embedded training data, the second clock embedded image data, the third clock embedded training data, the third clock embedded image data, the fourth clock embedded training data, and the fourth clock embedded image data to the data driving circuit 12 in series. The data driving circuit 12 outputs the dummy data voltages corresponding to the first training data, the first data voltages corresponding to the first main image data, the dummy data voltages corresponding to the second training data, the second data voltages corresponding to the first main image data, the dummy data voltages corresponding to the third training data, the first data voltages corresponding to the first main image data, the dummy data voltages corresponding to the second training data, and the second data voltages corresponding to the first main image data to the display panels 13 in series. The display panels 13 displays the dummy image corresponding to the first training data, a first frame of image corresponding to the first main image data, the dummy image corresponding to the second training data, a second frame of image corresponding to the second main image data, the dummy image corresponding to the third training data, a third frame of image corresponding to the third main image data, the dummy image corresponding to the fourth training data, and a fourth frame of image corresponding to the fourth main image data.
In summary, the timing control circuit 11 transmits clock embedded data to the data driving circuit 12 in two or four different frequencies, EMI during data transmission can be reduced.
Step S1, display data are received and decoded to obtain a reference clock signal, a first data signal, and a second data signal by the data processing circuit 110, the first data signal includes first training data and first main image data, the second data signal includes second training data and second main image data.
Step S2, a first clock signal and a second clock signal according to the reference clock signal is generated by the clock embedded control circuit 112, and a frequency of the first clock signal is different from a frequency of the second clock signal. In one embodiment, a frequency of the reference clock signal is defined as “f”, and each of the frequencies of the first clock signal and the second clock signal is in the range from f*90% to f*110%.
Step S3, the first clock signal is embedded into the first training data to obtain a first clock embedded training data, the first clock signal is embedded into the first main image data to obtain a first clock embedded image data, the second clock signal is embedded into the second training data to obtain a second clock embedded training data, and the second clock signal is embedded into the second main image data to obtain a second clock embedded image data, by the encode circuit 114.
Step S4, the first clock embedded training data are received, a first clock training is performed according to the first clock embedded training data, and the first clock embedded image data are received in the frequency of the first clock signal, by the data driving circuit 12. Furthermore, in the Step S4, a timing of the first main image data is detected according to the first clock signal and corrected when the timing of the first main image data are wrong.
Step S5, the second clock embedded training data are received, a second clock training is performed according to the second clock embedded training data, and the second clock embedded image data are received in the frequency of the second clock signal, by the data driving circuit 12. Furthermore, in the Step S5, a timing of the second main image data is detected according to the second clock signal and corrected when the timing of the second main image data are wrong.
Step S6, the first clock embedded image data are decoded to obtain the first main image data, and the first main image data are converted into first data voltages, by the data driving circuit 12.
Step S7, the second clock embedded image data are decoded to obtain the second main image data, and the second main image data are converted into second data voltages, by the data driving circuit 12.
Step S8, images are displayed according to the first data voltages and the second data voltages, by the display panel 13.
Step S9, the display data are decoded to obtain a third data signal and a fourth data signal by the data processing circuit 110, the third data signal includes third training data and third main image data, the fourth data signal includes fourth training data and fourth main image data.
Step S10, a third clock signal and a fourth clock signal according to the reference clock signal are generated by the clock embedded control circuit 112, the first clock signal, the second clock signal, the third clock signal, and the fourth clock signal have four different frequencies.
Step S11, the third clock signal is embedded into the third training data to obtain a third clock embedded training data, the third clock signal is embedded into the third main image data to obtain a third clock embedded image data, the fourth clock signal are embedded into the fourth training data to obtain a fourth clock embedded training data, and the fourth clock signal is embedded into the fourth main image data to obtain a fourth clock embedded image data, by the encode circuit 114.
Step S12, the third clock embedded training data are received, a third clock training is performed according to the third clock embedded training data, and the third clock embedded image data are received in the frequency of the third clock signal, by the data driving circuit 12.
Step S13, the fourth clock embedded training data are received, a fourth clock training is performed according to the fourth clock embedded training data, and the fourth clock embedded image data are received in the frequency of the fourth clock signal, by the data driving circuit 12.
Step S14, the third clock embedded image data are decoded to obtain the third main image data, and the first main image data are converted into third data voltages, by the data driving circuit 12.
Step S15, the fourth clock embedded image data are decoded to obtain the fourth main image data, and the fourth main image data are converted into fourth data voltages, by the data driving circuit 12.
Step S16, images are displayed according to the third data voltages and the fourth data voltages, by the display panel 13.
Step S21, display data are received and decoded to obtain a reference clock signal, a first data signal, and a second data signal by the data processing circuit 110, the first data signal includes first training data and first main image data, the second data signal includes second training data and second main image data.
Step S22, a first clock signal and a second clock signal according to the reference clock signal is generated by the clock embedded control circuit 112, and a frequency of the first clock signal is different from a frequency of the second clock signal. In one embodiment, a frequency of the reference clock signal is defined as “f”, and each of the frequencies of the first clock signal and the second clock signal is in the range from f*90% to f*110%.
Step S23, the first clock signal is embedded into the first training data to obtain a first clock embedded training data, the first clock signal is embedded into the first main image data to obtain a first clock embedded image data, the second clock signal is embedded into the second training data to obtain a second clock embedded training data, and the second clock signal is embedded into the second main image data to obtain a second clock embedded image data, by the encode circuit 114.
Step S24, the first clock embedded training data, the first clock embedded image data, the second clock embedded training data, and the second clock embedded image data are output by encode circuit 114 the in series.
In alternating embodiment, referring to
Step S25, the display data are decoded to obtain a third data signal and a fourth data signal by the data processing circuit 110, the third data signal includes third training data and third main image data, and the fourth data signal includes fourth training data and fourth main image data.
Step S26, a third clock signal and a fourth clock signal according to the reference clock signal are generated by the clock embedded control circuit 112, and the first clock signal, the second clock signal, the third clock signal, and the fourth clock signal have four different frequencies.
Step S27, the third clock signal is embedded into the third training data to obtain a third clock embedded training data, the third clock signal is embedded into the third main image data to obtain a third clock embedded image data, the fourth clock signal are embedded into the fourth training data to obtain a fourth clock embedded training data, and the fourth clock signal is embedded into the fourth main image data to obtain a fourth clock embedded image data, by the encode circuit 114.
Step S28, the third clock embedded training data, the third clock embedded image data, the fourth clock embedded training data, and the fourth clock embedded image data are output in series.
It is to be further understood that even though numerous characteristics and advantages of preferred and exemplary embodiments have been set out in the foregoing description, together with details of the structures and functions of the embodiments, the disclosure is illustrative only; and that changes may be made in detail, especially in matters of shape, size and arrangement of parts within the principles of the present disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
101150633 A | Dec 2012 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
8884934 | Jeon | Nov 2014 | B2 |
8947412 | Jeon | Feb 2015 | B2 |
20010015712 | Hashimoto | Aug 2001 | A1 |
20040227716 | Lin | Nov 2004 | A1 |
20070216630 | Liao | Sep 2007 | A1 |
20080246755 | Lee | Oct 2008 | A1 |
20090051675 | Huang | Feb 2009 | A1 |
20110242066 | Jeon | Oct 2011 | A1 |
20140184582 | Shie | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
10-149136 | Jun 1998 | JP |
2001-282165 | Oct 2002 | JP |
P2004-333809 | Nov 2004 | JP |
P2005-316050 | Nov 2005 | JP |
2010-204667 | Sep 2010 | JP |
2011-513790 | Apr 2011 | JP |
2011-514560 | May 2011 | JP |
2011-221487 | Nov 2011 | JP |
2012-142941 | Jul 2012 | JP |
Number | Date | Country | |
---|---|---|---|
20140184574 A1 | Jul 2014 | US |