The invention relates to a display device having a display plane, in which one or more planar display regions are arranged, said display regions being covered by transparent coverings.
In display devices of this type, an observer can see the display regions in one plane.
It is an object of the invention to provide a display device of the type mentioned in the introductory part having a simple construction, in which, to an observer, the display regions appear to lie in different planes.
This object is achieved according to the invention by way of a single transparent covering covering all planar display regions of the display device and being three-dimensionally configured, on its observer side, having regions of various thicknesses, and being connected, by its side which faces away from the observer side, to the planar display regions using optical bonding, with the refractive index of the material of the covering corresponding to the refractive index of the optical bonding material.
Due to this configuration, an air gap between the planar display regions and the transparent covering is avoided, with the result that light is not diffracted between these components. The result of this is that the image plane of the planar display regions is optically perceived by the observer as being elevated toward the observer in the regions of greater thickness with respect to the regions of lower thickness, with the result that the various image planes give a three-dimensional impression to the observer. Optical elevation is by approximately a third of the respective thickness of the covering.
However, the observer can also perceive the optically differently elevated regions haptically by the surface structure of the covering.
Since the transparent covering completely covers the display plane, a seamless surface of the covering over the display plane is achieved and optical disturbances due to separating gaps are avoided.
The planar display regions can be formed by digits and/or characters and/or symbols, which are provided on a carrier plate, wherein the planar display regions can be one or more dials which can have scales.
Such display devices are advantageously usable in instrument clusters in vehicles.
The transparent covering and the carrier plate can here have through-openings which are associated with the scales and through which pointer spindles, which are drivable such that they can rotate and which have pointers on the observer side, are guided.
The planar display regions can also be formed by one or more optoelectronic displays.
Suitable optical displays are, for example, a wide variety of liquid-crystal displays.
For this purpose, the carrier plate can have, in a simple mountable fashion, a cutout which is covered by the planar display region of the electro-optical display.
The planar display regions are preferably arranged in a plane on the observer side.
Consequently, the side of the transparent covering facing away from the observer can also extend in a plane, which is easily producible and also results in a reliably air-gapless connection of the optical bonding material to the display regions.
An embodiment for the transparent covering which is easily producible is one in which the transparent covering is an injection-molded part.
Polymethyl methacrylate is a suitable material herefor.
Another embodiment of the transparent covering which is likewise easily producible is one in which the transparent covering has a thermoformed transparent film, with the depressions thereof being filled, on the side facing away from an observer, with optical bonding material.
The film can consist of a polycarbonate or can also be thermoformed glass.
In this embodiment, it is also possible to produce regions of particularly low thickness.
The optical bonding material here assumes a double function, in that it not only serves for connecting the transparent covering, but also constitutes the material of the transparent covering.
In order to create what is known as a “black-panel effect,” it is possible for the transparent covering to be a tinted covering, with the result that an observer always only sees the respectively backlit display regions.
If the transparent covering is an injection-molded part, the tinted covering can be a corresponding coating of the injection-molded part.
Such an additional working step can be omitted if the transparent covering consists of a thermoformed transparent film made of tinted material, the depressions of which on the side facing away from an observer are filled with optical bonding material.
An exemplary embodiment of the invention is illustrated in the drawing and will be described in more detail below. In the figures:
The illustrated display device has a thin carrier plate 1, onto which two scales 2 for pointer instruments, which in the negative illustration form first display regions 10, are applied at a distance from one another, and further display symbols and bar graphs are applied within the scales 2.
The carrier plate can be configured in the form of a film.
Arranged on the observer side in front of the carrier plate 1 is a transparent covering 3, and on the side facing away from an observer 4, an optoelectronic display 5, such as for example a TFT display, is arranged.
The second display region 11 of the display 5 overlays a rectangular cutout 6 in the carrier plate 1.
The transparent covering 3 consists of a transparent plastics film 12, which was configured in three-dimensional form in a thermoforming process. Subsequently, the thermoformed plastics film 12 was positioned horizontally such that its side facing away from the observer 4 points up, and the depressions 7 of the plastics film 12 were filled with an optical bonding material 8, which is illustrated in a hatched manner in
Next, the carrier plate 1 and the display 5 were placed onto the side of the transparent covering 3 facing away from the observer 4 such that the display regions 10 and 11 thereof point to the observer side and such that the carrier plate 1 and the display 5 are connected to the transparent covering 3 without air inclusions.
Since the refractive index of the material of the covering 3 at least substantially corresponds to the refractive index of the optical bonding material 8, light is not diffracted between these parts.
As a result, the image planes of the planar display regions 10, 11 of the carrier plate 1 and the display are optically perceived by the observer 4 as being elevated toward the observer 4 in the regions of greater thickness of the transparent covering 3 with respect to the regions of lower thickness, with the result that the different image planes 9, 13 give the observer 4 a three-dimensional impression. The optical elevation is by approximately a third of the respective thickness of the transparent covering 3.
As illustrated in
Centrically with respect to the scales 2, through-openings (not illustrated) are formed in the carrier plate 1 and the transparent covering 3, through which pointer spindles can be guided onto which pointers may be placed in front of the transparent covering 3 on the observer side. The pointer spindles of swivel drives (likewise not illustrated), which may be arranged behind the carrier plate 1, are drivable such that they may swivel.
The plastics film 12 is a tinted plastics film, with the result that the covering 3 is a tinted covering and brings about a “black-panel effect.” The display device has, on the side facing away from the observer 4, one or more light sources (not illustrated). Only the display regions 10, 11, which are backlit by the light sources, are visible for the observer 4.
Number | Date | Country | Kind |
---|---|---|---|
102014220348.1 | Oct 2014 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/072956 | 10/5/2015 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/055420 | 4/14/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
8302553 | Fournier | Nov 2012 | B2 |
9955602 | Wildner et al. | Apr 2018 | B2 |
20080278803 | Kraus | Nov 2008 | A1 |
20090078190 | Fournier | Mar 2009 | A1 |
20110128470 | Yorita et al. | Jun 2011 | A1 |
20120250280 | Sano | Oct 2012 | A1 |
20120287664 | Coser et al. | Nov 2012 | A1 |
20130242230 | Watanabe | Sep 2013 | A1 |
20140071653 | Thompson et al. | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
102007434 | Apr 2011 | CN |
19623881 | Dec 1997 | DE |
19910241 | Sep 2000 | DE |
102005036009 | Feb 2007 | DE |
102008001508 | Nov 2008 | DE |
102009048284 | Apr 2011 | DE |
102009058141 | Jun 2011 | DE |
102012004635 | Sep 2013 | DE |
102012224352 | Jun 2014 | DE |
2456634 | Mar 2014 | EP |
2284699 | Jun 1995 | GB |
2010197236 | Sep 2010 | JP |
Entry |
---|
International Search Report and Written Opinion dated Mar. 2, 2016 from corresponding International Patent Application No. PCT/EP2015/072956. |
Search Report dated Jun. 17, 2015 in corresponding DE App. No. 102014220348.1. |
Office Action dated Jul. 19, 2022 from corresponding German patent application No. 10 2014 220 348.1. |
Number | Date | Country | |
---|---|---|---|
20170307909 A1 | Oct 2017 | US |