This application claims priority from Korean Patent Application No. 10-2021-0037763, filed on Mar. 24, 2021, in the Korean Intellectual Property Office (KIPO), the disclosure of which is incorporated by reference herein in its entirety.
embodiments relate to semiconductor integrated circuits, and more particularly, to a display device performing charge sharing.
As a display device, a liquid crystal display (LCD), an organic light emitting display (OLED), etc. are widely used. Recently, as a size and a resolution of a display panel included in the display device increases, power consumption in the display device increases.
Some embodiments may provide a display device, capable of reducing consumption current and hardware resources for performing the charge sharing.
According to embodiments, a display device includes a display panel, a plurality of switch circuits and a charge sharing controller. The display panel includes a plurality of pixels which are connected to a plurality of gate lines and a plurality of source lines and are arranged in a plurality of rows and a plurality of columns. The plurality of source lines are divided into a plurality of source line groups. The plurality of switch circuit electrically connect source lines included in each of the plurality of source line groups based on each of a plurality of group switch control signals to perform charge sharing. The charge sharing controller generates each of the plurality of group switch control signals based on first most significant bits (MSBs) of each of a plurality of (K−1)th digital data groups and second MSBs of each of a plurality of Kth digital data groups. The plurality of (K−1)th digital data groups correspond to pixel values of a (K−1)th row of the display panel, the plurality of Kth data digital groups correspond to pixel values of a Kth row of the display panel, where K is a natural number greater than one.
According to embodiments, a display device includes a display panel and a display driver integrated circuit. The display panel includes a plurality of pixels which are connected to a plurality of gate lines and a plurality of source lines and are arranged in a plurality of rows and a plurality of columns. The plurality of source lines are divided into a plurality of source line groups. The display driver integrated circuit drives the display panel. The display driver integrated circuit includes a plurality of switch circuits, a data latch circuit and a charge sharing controller. The plurality of switch circuits electrically connect source lines included in each of the plurality of source line groups based on each of a plurality of group switch control signals to perform charge sharing. The data latch circuit outputs a plurality of (K−1)th digital data groups corresponding to pixel values of a (K−1)th row of the display panel, and a plurality of Kth digital data groups corresponding to pixel values of a Kth row of the display panel, where K is a natural number greater than one. The charge sharing controller generates each of the plurality of group switch control signals based on MSBs of each of the plurality of (K−1)th digital data groups and second MSBs of each of the plurality of Kth digital data groups.
According to embodiments, a display device includes a display panel, a plurality of switch circuits and charge sharing controller. The display panel includes a plurality of pixels which are connected to a plurality of gate lines and a plurality of source lines and are arranged in a plurality of rows and a plurality of columns. The plurality of source lines are divided into a plurality of source line groups. The plurality of switch circuits electrically connect source lines included in each of the plurality of source line groups based on each of a plurality of group switch control signals to perform charge sharing. Each of the plurality of switch circuits includes a plurality of first switches performing the charge sharing. The charge sharing controller generates each of the plurality of group switch control signals based on first MSBs of each of a plurality of (K−1)th digital data groups, second MSBs of each of a plurality of Kth digital data groups, third MSBs which are the first MSBs corresponding to selected columns of the display panel, and fourth MSBs which are the second MSBs corresponding to the selected columns of the display panel, where K is a natural number greater than one.
The display device according to embodiments may electrically connect source lines included in each of the plurality of source line groups to perform the charge sharing based on the digital data corresponding to each of the plurality of source line groups, the plurality of group switch control signals and the plurality of switch circuits. The charge sharing may be performed based on parasitic capacitances formed in the source lines included in each of the plurality of source line groups. The display device may perform the charge sharing without additional data other than the input digital data for displaying an image on the display panel. The display device may perform the charge sharing using general components for performing an original function of the display device without additional components other than the charge sharing controller and the plurality of first switches.
Example embodiments of the present disclosure will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings.
Various embodiments will be described more fully hereinafter with reference to the accompanying drawings, in which some embodiments are shown. The embodiments described herein are all example embodiments, and thus, the inventive concept is not limited thereto and may be realized in various other forms. In the drawings, like numerals refer to like elements throughout. The repeated descriptions may be omitted.
Referring to
The display panel may include a plurality of pixels which are connected to a plurality of gate lines GL1, GL2, GL3, . . . , GLM−1, GLM and a plurality of source lines SL1, SL2, SL3, . . . , SLN−1, SLN. The display driver IC may include a data latch circuit 110, a digital-to-analog converter 120, a driving switch circuit 130 and a charge sharing controller 170. The driving switch circuit 130 may include a plurality of switch circuits 131 to 13Q. Here, M, N and Q are each a natural number greater than one.
The plurality of pixels may receive pixel data corresponding to pixel values of the plurality of pixels under a control of the display driver IC to display an image.
In some embodiments, the plurality of pixels may be arranged in a plurality of rows and a plurality of columns. For example, a total of M×N pixels P11, P21, P31, P(M−1)N, PMN may be arranged in M rows and N columns. In this case, a plurality of M gate lines respectively corresponding to the plurality of rows and a plurality of N source lines respectively corresponding to the plurality of columns may be formed. The plurality of pixels may be connected to the plurality of gate lines GL1, GL2, GL3, . . . , GLM−1, GLM and selected in units of rows, and may be connected to the plurality of source lines SL1, SL2, SL3, . . . , SLN−1, SLN to receive the pixel data. In some embodiments, each of the plurality of pixels may represent one or more of a plurality of colors. For example, the plurality of colors may represent one of red, green and blue, however, embodiments are not limited thereto.
The display driver IC may receive input digital data IDAT from outside, generate the pixel data based on the input digital data IDAT, and provide the pixel data to the display panel.
In some embodiments, the data latch circuit 110 may latch the input digital data IDAT to provide digital data D1, D2, D3, . . . , DN corresponding to at least one of the plurality of rows to the digital-to-analog converter 120. The digital-to-analog converter 120 may convert the digital data D1, D2, D3, . . . , DN to analog data A1, A2, A3, . . . , AN and provide the analog data A1, A2, A3, . . . , AN to the driving switch circuit 130. The driving switch circuit 130 may provide the analog data A1, A2, A3, . . . , AN as the pixel data to the display panel through the data pads 140.
In some embodiments, the data latch circuit 110 may latch the input digital data DAT to provide digital data RDAT1 and RDAT2 to the charge sharing controller 170. The digital data RDAT1 may be data corresponding to pixel values of (K−1)th row among the plurality of rows, and the digital data RDAT2 may be data corresponding to pixel values of Kth row among the plurality of rows, where K is a natural number greater than one.
The charge sharing controller 170 may receive a charge sharing control signal CCS from a timing controller (not shown), and receive the digital data RDAT1 and RDAT2 from the data latch circuit 110. However, embodiments are not limited thereto. In some embodiments, the charge sharing controller 170 may receive the digital data RDAT1 and RDAT2 from the timing controller.
The charge sharing controller 170 may divide the digital data RDAT1 to generate a plurality of (K−1)th digital data groups, and divide the digital data RDAT2 to generate a plurality of Kth digital data groups. The charge sharing controller 170 may include a plurality of line memories temporarily storing the plurality of (K−1)th digital data groups and the plurality of Kth digital data groups. In this case, each of the plurality of (K−1)th digital data groups and the Kth digital data groups may correspond to a plurality of source line groups SLG_1, . . . , SLG_Q, which will be described later. For example, the number of the (K−1)th digital data groups may be substantially the same as the number of the plurality of source line groups SLG_1, . . . , SLG_Q.
The Kth digital data groups may also be generated by being divided from the digital data RDAT2 in the same manner as the (K−1)th digital data groups. Hereinafter, it is assumed that the number of the plurality of source line groups SGL_1, . . . , SLG_Q is ‘Q’, where Q is a natural number greater than one, however, embodiments are not limited thereto.
The charge sharing controller 170 may extract most significant bits (MSBs) from each of the plurality of (K−1)th digital data groups (herein referred to as “first MSBs”), and extract MSBs from each of the plurality of Kth digital data groups (herein referred to as “second MSBs”).
The charge sharing controller 170 may generate each of a plurality of group switch control signals CS11 to CS1Q and CS21 to CS2Q based on the first MSBs and the second MSBs.
The driving switch circuit 130 may include a plurality of switch circuits (e.g., a first switch circuit 131 to a Qth switch circuit 13Q). Each of the plurality of switch circuits 131 to 13Q may include a plurality of first switches and a plurality of second switches.
The plurality of source lines SL1, SL2, SL3, . . . , SLN−1, SLN may be divided into the plurality of source line groups SGL_1, . . . , SLG_Q, and the plurality of first switches may electrically connect source lines included in each of the plurality of source line groups SLG_1, . . . , SLG_Q to one another based on each of the plurality of group switch control signals CS11 to CS1Q to perform charge sharing.
The plurality of second switches may electrically connect source lines included in each of the plurality of source line groups SLG_1, . . . , SLG_Q to the digital-to-analog converter 120 based on each of the plurality of group switch control signals CS21 to CS2Q.
According to the above configuration, the display device 100 may electrically connect source lines included in each of the plurality of source line groups SLG_1, . . . , SLG_Q to one another to perform the charge sharing based on the digital data RDAT and RDAT2 corresponding to each of the plurality of source line groups SLG_1, . . . , SLG_Q, the plurality of group switch control signals CS11 to CS and the plurality of switch circuits 131 to 13Q. The charge sharing may be performed based on parasitic capacitances formed in the source lines included in each of the plurality of source line groups SLG_1, . . . , SLG_Q. The display device 100 may perform the charge sharing without additional data other than the input digital data DAT for displaying an image on the display panel. The display device 100 may perform the charge sharing using general components for performing an original function of the display device 100 without additional components other than the charge sharing controller 170 and the plurality of first switches included in each of the plurality of switch circuits 131 to 13Q.
The display device 100 may divide the digital data RDAT1 and RDAT2 to correspond to each of the plurality of source line groups SLG_1, . . . , SLG_Q, generate each of the plurality of group switch control signals CS11 to CS1Q and CS21 to CS2Q, and electrically connect source lines included in each of the plurality of source line groups SLG_1, . . . , SLG_Q to one another. Therefore, each of the plurality of source line groups SLG_1, . . . , SLG_Q becomes a fundamental unit for the display device 100 to perform the charge sharing.
In some embodiments, the number of source lines included in each of the plurality of source line groups SLG_1, . . . , SLG_Q may be substantially the same. For example, among the plurality of source line groups SLG_1, . . . , SLG_Q, a first source line group SLG_1 may include first to eighth source lines SL1 to SL8, a second source line group SLG_2 may include ninth to sixteenth source lines SL9 to SL16, and a third source line group SLG_3 may include seventeenth to twenty-fourth source lines SL17 to SL24. In the same manner, remaining source line groups among the plurality of source line groups SLG_1, . . . , SLG_Q may include remaining source lines among the plurality of source lines SL1, . . . , SLN−1, SLN. A Qth source line group SLG_Q corresponding to the last source line group may include (N−7)th to Nth source lines SLN−7 to SLN. However, the number of the plurality of source line groups SLG_1, . . . , SLG_Q and the number of source lines included in each of the plurality of source line groups SLG_1, . . . , SLG_Q are exemplary, and may be variously changed.
In some embodiments, the plurality of first switches and the plurality of second switches may be periodically turned on for each row unit time interval for driving the display panel row by row. For example, the plurality of first switches may be periodically turned on after a time point at which the plurality of second switches are turned on in the row unit time interval. The plurality of first switches and the plurality of second switches will be described with reference to
In
Referring to
The first switch circuit 131a may include a plurality of first switches 131-1a and a plurality of second switches 131-2.
The plurality of first switches 131-1a may connect first to eight source lines SL1 to SL8 included in the first source line group SLG_1 to one another. In some embodiments, the plurality of first switches 131-1a may connect a reference source line (e.g., SL1), which is one source line of the source lines included in the first source line group SLG_1, respectively to the other source lines SL2 to SL8 included in the first source line group SLG_1. In
The first switch circuit 131a may receive group switch control signals CS11 and CS21 from the charge sharing controller 170 in
In some embodiments, the plurality of first switches 131-1a may be turned on or off based on the group switch control signal CS11, and the plurality of second switches 131-2 may be turned on or off based on the group switch control signal CS21.
In some embodiments, the group switch control signals CS11 and CS21 may be 1-bit signals, and in embodiments in
In
In some embodiments, the plurality of first switches included in each of the plurality of first switch circuits may connect a reference source line, which is one source line of the source lines included in each of the plurality of source line groups SLG_1, . . . , SLG_Q, respectively to the other source lines included in each of the plurality of source line groups SLG 1, . . . , SLG_Q. However, embodiments are not limited thereto. In some embodiments, as illustrated in
Referring to
The switching transistor ST may have a first terminal connected to a source line SL or a data line, a second terminal connected to the storage capacitor CST and a gate terminal connected to a gate line GL or a scan line. The switching transistor ST may transmit analog data provided through the source line SL to the storage capacitor CST in response to a gate driving signal applied through the gate line GL.
The storage capacitor CST may have a first electrode connected to a high power voltage ELVDD and a second electrode connected to the gate terminal of the drive transistor DT. The storage capacitor CST may store the analog data transmitted through the switching transistor ST.
The drive transistor DT may have a first terminal connected to the high power voltage ELVDD, a second terminal connected to the OLED and a gate electrode connected to the storage capacitor CST. The drive transistor DT may be turned on or off according to data stored in the storage capacitor CST.
The OLED may have an anode electrode connected to the drive transistor DT and a cathode electrode connected to a low power supply voltage ELVSS. The OLED may emit light based on a current flowing from the high power voltage ELVDD to the low power voltage ELVSS while the drive transistor DT is turned on. Such a simple structure of the pixel PA, e.g., a 2T1C structure of two transistors ST and DT and one capacitor CST, may be more suitable for an enlargement of the display device 100. The EL pixel Pa illustrated in
Referring to
Referring to
The data division circuit 171a may receive the digital data RDAT1 corresponding to pixel values of the (K−1)th row of the display panel, and the digital data RDAT2 corresponding to pixel values of the Kth row of the display panel from the data latch circuit 110. The data division circuit 171a may divide the digital data RDAT1 to generate a plurality of (K−1)th digital data groups GDAT11 to GDAT1Q, and divide the digital data RDAT2 to generate a plurality of Kth digital data groups.
In some embodiments, the data division circuit 171a may divide the digital data RDAT1 to generate a plurality of (K−1)th digital data groups GDAT11 to GDAT1Q. In this case, the plurality of (K−1)th digital data groups GDAT11 to GDAT1Q may respectively correspond to a plurality of source line groups SLG_1, . . . , SLG_Q. The (K−1)th digital data group GDAT11 may include digital data corresponding to pixel values of a plurality of pixels (e.g., P(K−1)1, P(K−1)2, P(K−1)3, P(K−1)4, P(K−1)5, P(K−1)6, P(K−1)7 and P(K−8), the (K−1)th digital data group GDAT12 may include digital data corresponding to pixel values of a plurality of pixels (e.g., P(K−1)9, P(K−1)10, P(K−1)11, P(K−1)12, P(K−1)13, P(K−1)14, P(K−1)15 and P(K−1)16), and the (K−1)th digital data group GDAT1Q may include digital data corresponding to pixel values of a plurality of pixels (e.g., P(K−1)(N−7), P(K−1)(N−6), P(K−1)(N−5), P(K−1)(N−4), P(K−1)(N−3), P(K−1)(N−2), P(K−1)(N−1) and P(K−1)N).
In some embodiments, the data division circuit 171a may divide the digital data RDAT2 to generate a plurality of Kth digital data groups GDAT21 to GDAT2Q. In this case, the plurality of Kth digital data groups GDAT21 to GDAT2Q may respectively correspond to the plurality of source line groups SLG_1, . . . , SLG_Q. The Kth digital data group GDAT21 may include digital data corresponding to pixel values of a plurality of pixels (e.g., PK1, PK2, PK3, PK4, PK5, PK6, PK7 and PK8), the Kth digital data group GDAT22 may include digital data corresponding to pixel values of a plurality of pixels (e.g., PK9, PK10, PK11, PK12, PK13, PK14, PK15 and PK16), and the (K−1)th digital data group GDAT2Q may include digital data corresponding to pixel values of a plurality of pixels(e.g., PK(N−7), PK(N−6), PK(N−5), PK(N−4), PK(N−3), PK(N−2), PK(N−1) and PKN).
The data division circuit 171a may provide the plurality of (K−1)th digital data groups GDAT11 to GDAT1Q to the first determination circuit 173a, and may provide the plurality of (K−1)th digital data groups GDAT11 to GDAT1Q and the plurality of Kth digital data groups GDAT21 to GDAT2Q to the second determination circuit 175a.
The first determination circuit 173a may receive first reference values TH_MIN and TH_MAX from outside, and receive the plurality of (K−1)th digital data groups GDAT11 to GDAT1Q from the data division circuit 171a. The second determination circuit 175a may receive a second reference value TH_TOG from outside, and receive the plurality of (K−1)th digital data groups GDAT11 to GDAT1Q and the plurality of Kth digital data groups GDAT21 to GDAT2Q from the data division circuit 171a.
In some embodiments, the first determination circuit 173a and the second determination circuit 175a may receive the first reference values TH_MIN and TH_MAX and the second reference value TH_TOG from the timing controller (not shown) described above with reference to
The first determination circuit 173a may determine whether first most significant bits (MSBs) of each of the plurality of (K−1)th digital data groups GDAT11 to GDAT1Q satisfy a first condition, with respect to each of the plurality of source line groups SLG_1, . . . , SLG_Q.
The second determination circuit 175a may determine whether the first MSBs of each of the plurality of (K−1)th digital data groups GDAT11 to GDAT1Q and second MSBs of each of the plurality of Kth digital data groups GDAT21 to GDAT2Q satisfy a second condition, with respect to each of the plurality of source line groups SLG_1, . . . , SLG_Q.
The plurality of (K−1)th digital data groups GDAT11 to GDAT1Q and the plurality of Kth digital data groups GDAT21 to GDAT2Q are data corresponding to pixel values of the (K−1)th row and the Kth row of the display panel, and represent grayscales of the pixel values with a plurality of bits, MSBs may be extracted from each of the pixel values.
In some embodiments, the first determination circuit 173a may further determine whether the first MSBs of each of the plurality of (K−1)th digital data groups GDAT11 to GDAT1Q satisfy a third condition, with respect to each of the plurality of source line groups SLG 1, . . . , SLG_Q. The second determination circuit 175a may further determine whether the first MSBs of each of the plurality of (K−1)th digital data groups GDAT11 to GDAT1Q and second MSBs of each of the plurality of Kth digital data groups GDAT21 to GDAT2Q satisfy a fourth condition, with respect to each of the plurality of source line groups SLG_1, . . . , SLG_Q.
In some embodiments, the first determination circuit 173a and the second determination circuit 175a may determine whether the first condition and the second condition are satisfied for each row unit time interval for driving the display panel row by row.
In some embodiments, when each of the pixel values is represented by a plurality of bits, the first determination circuit 173a and the second determination circuit 175a may remove from a next-order bit of the MSB to least significant bit (LSB), in the pixel values, to extract the first MSBs and the second MSBs.
The first determination circuit 173a may determine that the first condition is satisfied in response to the number of the first MSBs having a first value being included in a first reference range, with respect to each of the plurality of source line groups SLG_1, . . . , SLG_Q, and generate first result data RES11 to RES1Q.
The second determination circuit 175a may determine that the second condition is satisfied in response to the number of bit pairs having different values from among bit pairs of the first MSBs and the second MSBs being included in a second reference range, with respect to each of the plurality of source line groups SLG_1, . . . , SLG_Q, and generate second result data RES21 to RES2Q.
Furthermore, it is assumed that the source lines included in each of the plurality of source line groups SLG_Q, . . . , SLG_Q are driven between a maximum driving voltage level and a minimum driving voltage level. In this case, the first determination circuit 173a may determine whether the first condition is satisfied, and determine source line groups in which voltage levels of the source lines may be adjusted to be near an intermediate voltage level that is a half of the maximum driving voltage level when the charge sharing is performed. The second determination circuit 175a may determine whether the second condition is satisfied, and determine source line groups in which voltage levels of the source lines may change from near the maximum driving voltage level to near the minimum driving voltage level or from near the minimum driving voltage level to near the maximum driving voltage level.
In some embodiments, the first determination circuit 173a may determine the first reference range based on the first reference values TH_MIN and TH_MAX, and the second determination circuit 175a may determine the second reference range based on the second reference value TH_TOG. The first determination circuit 173a may provide the first result data RES11 to RES to the switch control signal generation circuit 177a, and the second determination circuit 175a may provide the second result data RES21 to RES2Q to the switch control signal generation circuit 177a. Operations of the first determination circuit 173a and the second determination circuit 175a will be described later with reference to
The switch control signal generation circuit 177a may activate each of the plurality of group switch control signals CS11 to CS1Q to turn on the plurality of first switches described above with reference to
The switch control signal generation circuit 177a may deactivate each of the plurality of group switch control signals CS11 to CS1Q to turn off the plurality of first switches in response to the first MSBs not satisfying the first condition, or the first MSBs and the second MSBs not satisfying the second condition, with respect to each of the plurality of source line groups SLG_1, . . . , SLG_Q, based on the first result data RES11 to RES1Q and the second result data RES21 to RES2Q.
As described above with reference to
The switch control signal generation circuit 177a may generate the group switch control signals CS21 to CS2Q so that the charge sharing is performed in an appropriate interval in relation to an original function of the display device 100 for displaying an image on the display panel. A relationship between the plurality of group switch control signals CS11 to CS1Q and the plurality of group switch control signals CS21 to CS2Q will be described later with reference to
Referring to
Each of the decision circuits 173b1 to 173bQ may receive the first reference values TH_MIN and TH_MAX and the second reference value TH_TOG. The first determination circuit 173b1 may receive the (K−1)th digital data group GDAT11 and the Kth digital data group GDAT21 to generate the first result data RES11 and the second result data RES21, provide the first result data RES11 and the second result data RES21 to the switch control signal generation circuit 177b, and the Qth determination circuit 173bQ may receive the (K−1)th digital data group GDAT1Q and the Kth digital data group GDAT2Q to generate the first result data RES1Q and the second result data RES2Q, and provide the first result data RES1Q and the second result data RES2Q to the switch control signal generation circuit 177b.
The switch control signal generation circuit 177b may receive the first result data RES11 to RES and the second result data RES21 to RES2Q from the first to Qth determination circuits 173b1 to 173bQ to generate a plurality of group switch control signals CS11 to CS1Q and CS21 to CS2Q.
Referring to
In some embodiments, the plurality of gate lines GL1, GL2 and GL3 may extend in a first direction, and the plurality of source lines SL1, SL2, SL3, . . . , SL6 may extend in a second direction crossing the first direction.
In some embodiments, the red pixels R and the blue pixels B may be arranged in odd-numbered columns, and the green pixels G may be arranged in even-numbered columns. For example, in each of the plurality of rows, the plurality of pixels may have a structure in which the red pixels R, the green pixels G and the blue pixels B are alternately arranged one by one. Such an arrangement structure may be referred to as an RGB stripe structure.
Referring to
The charge sharing controller 170 may turn off the plurality of first switches in response to the first MSBs not satisfying the first condition (S100: NO) or the first MSBs and the second MSBs not satisfying the second condition (S150: NO) based on the first result data RES11 to RES1Q and the second result data RES21 to RES2Q, with respect to each of the plurality of source line groups SLG_1, . . . , SLG_Q.
In some embodiments, whether the first condition is satisfied may be determined by the first determination circuits 173a and the determination circuits 173b1 to 173bQ described above with reference to
In
In some embodiments, the first MSBs GDAT11_MSB may be extracted from digital data corresponding to pixel value of each of a plurality of pixels (e.g., P(K−1)1, P(K−1)2, P(K−1)3, P(K−1)4, P(K−1)5, P(K−1)6, P(K−1)7, and P(K−1)8), and the second MSBs GDAT21_MSB may be extracted from digital data corresponding to pixel value of each of a plurality of pixels (e.g., PK1, PK2, PK3, PK4, PK5, PK6, PK7, and PK8).
The charge sharing controller 170 may determine that the first condition is satisfied in response to the number of the first MSBs having a first value is included in a first reference range. In this case, the first value may be one of ‘1’ and ‘0’, and the first reference range may be determined based on a number corresponding to a half of the number of the first MSBs GDAT11_MSB (or source lines included in each source line group) and a predetermined margin. For example, the first value may be ‘1’, and the first reference range may be determined as a range (e.g., a range greater than or equal to ‘3’ and less than or equal to ‘5’) having a margin of ‘±1’ based on a number (e.g., ‘4’) corresponding to a half of the number of the first MSBs GDAT11_MSB.
The charge sharing controller 170 may determine that the second condition is satisfied in response to the number of bit pairs having different values from among bit pairs of the first MSBs GDAT11_MSB and the second MSBs GDAT21_MSB is included in a second reference range. In this case, the bit pairs may be generated based on bits positioned at the same digit in each of the first MSBs GDAT11_MSB and the second MSBs GDAT21_MSB. For example, in the in
Accordingly, in the in
In
Referring to
After displaying the image on the display panel, the voltage level of the group switch control signal CS21 may be changed from the logic high level to a logic low level. When the plurality of first switches are turned on as described above with reference to
In the in
For example, the source lines SL4, SL6 and SL8 may be adjusted from near the minimum driving voltage level VL before the charge sharing is performed to near the intermediated voltage level VM while the charge sharing is performed, and may be adjusted to near the maximum driving voltage level VH after the charge sharing is performed. The source lines SL3 and SL7 may be adjusted from near the maximum driving voltage level VH before the charge sharing is performed to near the intermediated voltage level VM while the charge sharing is performed, and may be adjusted to near the minimum driving voltage level VL after the charge sharing is performed.
Referring to
Referring to
In some embodiments, the plurality of gate lines GL1, GL2 and GL3 may extend in a first direction, and the plurality of source lines SL1, SL2, SL3, . . . , SL6 may extend in a second direction crossing the first direction.
In some embodiments, the red pixels R and the blue pixels B may be arranged in odd-numbered columns, and the green pixels G may be arranged in even-numbered columns. For example, in each of the plurality of rows, the plurality of pixels may have a structure in which the read-green pixel pairs and blue-green pixel pairs are alternately arranged. Such an arrangement structure may be referred to as a pentile structure.
In the pentile structure of
In
Referring to
The charge sharing controller 170 may turn on the plurality of first switches corresponding to the odd-numbered columns (S700) in response to the first MSBs not satisfying the first condition (S100: NO) or the first MSBs and the second MSBs not satisfying the second condition (S150: NO) and in response to third MSBs satisfying the third condition (S300: YES) and the third MSBs and fourth MSBs satisfying fourth condition (S350: YES) based on the first result data RES11 to RES1Q and the second result data RES21 to RES2Q, with respect to each of the plurality of source line groups SLG_1, . . . , SLG_Q.
In some embodiments, the third MSBs may be bits correspond to selected columns, such as odd-numbered columns, of the display panel among the first MSBs, and the fourth MSBs may be bits correspond to the selected columns, such as the odd-numbered columns, of the display panel among the second MSBs. In the embodiments herein, the selected columns are the odd-numbered columns of the display panel. However, the selected columns may not be limited to the odd-numbered columns, according to embodiments.
The charge sharing controller 170 may turn off the plurality of first switches in response to the third MSBs not satisfying the third condition (S300: NO) or the third MSBs and the fourth MSBs not satisfying the fourth condition (S350: NO) based on the first result data RES11 to RES1Q and the second result data RES21 to RES2Q, with respect to each of the plurality of source line groups SLG_1, . . . , SLG_Q.
In some embodiments, whether the first condition is satisfied or the third condition is satisfied may be determined by the first determination circuit 173a and the determination circuits 173b1 to 173bQ described above with reference to
In
Referring to
The first switch circuit 131′a may include a plurality of first switches 131′-1a and a plurality of second switches 131′-2.
The plurality of first switches 131′-1a may connect first to eight source lines SL1 to SL8 included in the first source line group SLG_1 to one another. In some embodiments, the plurality of first switches 131′-1a may connect a reference source line (e.g., SL1), which is one source line of the source lines included in the first source line group SLG_1, respectively to the other source lines SL2 to SL8 included in the first source line group SLG_1. In
The first switch 131′a may receive group switch control signals CS11 and CS21 from the charge sharing controller 170 in
In some embodiments, the plurality of first switches 131′-1a may be turned on or off based on the group switch control signal CS11, and the plurality of second switches 131′-2 may be turned on or off based on the group switch control signal CS21.
In some embodiments, the group switch control signals CS11[0:6] may be 7-bit signals and CS21 may be 1-bit signals, and in embodiments in
In
In some embodiments, the plurality of first switches included in each of the plurality of first switch circuits may connect a reference source line, which is one source line of the source lines included in each of the plurality of source line groups SLG_1, . . . , SLG_Q, respectively to the other source lines included in each of the plurality of source line groups SLG 1, . . . , SLG_Q. However, embodiments are not limited thereto. In some embodiments, as illustrated in
Referring to
In some embodiments, the charge sharing controller 170 may determine the first to fourth conditions using components similar to those illustrated in
The charge sharing controller 170 may determine that the second condition is satisfied in response to the number of bit pairs having different values from among bit pairs of the first MSBs GDAT11_MSB and the second MSBs GDAT21_MSB is included in a second reference range. In this case, the bit pairs may be generated based on bits positioned at the same digit in each of the first MSBs GDAT11_MSB and the second MSBs GDAT21_MSB. For example, in the in
Accordingly, in the in
The charge sharing controller 170 may determine that the fourth condition is satisfied in response to the number of bit pairs having different values from among bit pairs of the third MSBs GDAT11_MSB_ODD and the fourth MSBs GDAT21_MSB_ODD is included in a fourth reference range. In this case, the bit pairs may be generated based on bits positioned at the same digit in each of the third MSBs GDAT11_MSB_ODD and the fourth MSBs GDAT21_MSB_ODD. For example, in the in
Accordingly, in the in
In
Referring to
The driving switch circuit 130a may include a plurality of switch circuits (e.g., a first switch circuit 131a to a Qth switch circuit 13Qa). Each of the plurality of switch circuits 131a to 13Qa may include a plurality of first switches, a plurality of second switches and a plurality of third switches.
A plurality of source lines SL1, SL2, SL3, . . . , SLN−1, SLN may be divided into a plurality of source line groups SGL_1, . . . , SLG_Q, and the plurality of first switches may electrically connect source lines included in each of the plurality of source line groups SLG 1, . . . , SLG_Q to one another based on each of a plurality of group switch control signals CS11 to CS1Q to perform charge sharing.
The plurality of second switches may electrically connect odd-numbered source lines included in each of the plurality of source line groups SLG_1, . . . , SLG_Q to the digital-to-analog converter 120 based on each of the plurality of group switch control signals CS21 to CS2Q.
The plurality of third switches may electrically connect even-numbered source lines included in each of the plurality of source line groups SLG_1, . . . , SLG_Q to the digital-to-analog converter 120 based on each of the plurality of group switch control signals CS31 to CS3Q.
According to the above configuration, the display device 100a may electrically connect source lines included in each of the plurality of source line groups SLG_1, . . . , SLG_Q to one another to perform the charge sharing based on the digital data RDAT1 and RDAT2 corresponding to each of the plurality of source line groups SLG_1, . . . , SLG_Q, the plurality of group switch control signals CS11 to CS and the plurality of switch circuits 131a to 13Qa. The charge sharing may be performed based on parasitic capacitances formed in the source lines included in each of the plurality of source line groups SLG_1, . . . , SLG_Q.
In
Referring to
The first switch circuit 131c may include a plurality of first switches 131a-1, a plurality of second switches 131a-2, and a plurality of third switches 131a-3.
The plurality of first switches 131a-1 may connect first to eight source lines SL1 to SL8 included in the first source line group SLG_1. The plurality of second switches 131a-2 and the plurality of third switches 131a-3 may connect the first to eighth source lines SL1 to SL8 to the digital-to-analog converter 120a, respectively.
The first switch circuit 131c may receive group switch control signals CS11, CS21 and CS31 from the charge sharing controller 170a.
In some embodiments, the plurality of first switches 131a-1 may be turned on or off based on the group switch control signal CS11, the plurality of second switches 131a-2 may be turned on or off based on the group switch control signal CS21 and the plurality of third switches 131a-3 may be turned on or off based on the group switch control signal CS31.
In some embodiments, each of the groups switch control signals CS11, CS21 and CS31 may be 1-bit signal, the plurality of first switches 131a-1, the plurality of second switches 131a-2, and the plurality of third switches 131a-3 may be turned on or off at once. However, time points at which the plurality of first switches 131a-1, the plurality of second switches 131a-2 and the plurality of third switches 131a-3 are turned on may be different from one another.
In
In
Referring to
After displaying the image on the display panel, the voltage level of the group switch control signals CS21 and CS31 changes from the logic high level to a logic low level. When the plurality of first switches 131a-1 are turned on as described above with reference to
In the in
For example, the source lines SL3 and SL7 may be adjusted from near the minimum driving voltage level VL before the charge sharing is performed to near the intermediated voltage level VM while the charge sharing is performed, and may be adjusted to near the maximum driving voltage level VH after the charge sharing is performed. The source lines SL1 and SL5 may be adjusted from near the maximum driving voltage level VH before the charge sharing is performed to near the intermediated voltage level VM while the charge sharing is performed, and may be adjusted to near the minimum driving voltage level VL after the charge sharing is performed.
A display system 500 in
Referring to
The host device 520 may control overall operations of the display system 500. The host device 500 may be an application processor (AP), a baseband processor (BBP), a micro-processing unit (MPU), and so on. The host device 500 may provide image data IMG, a clock signal CLK and control signals CTRL to the display device 530. For example, the image data IMG may include RGB pixel values and have a resolution of w×h, where w is a number of pixels in a horizontal direction and h is a number of pixels in a vertical direction.
The control signals CTRL may include a command signal, a horizontal synchronization signal, a vertical synchronization signal, a data enable signal, and so on. For example, the image data IMG and the control signals CTRL may be provided, as a form of a packet, to the DDI 540 in the display device 530. The command signal may include control information, image information and/or display setting information. The image information may include, for example, a resolution of the input image data IMG. The display setting information may include, for example, panel information, a luminance setting value, and so on. For example, the host device 520 may provide, as the display setting information, information according to a user input or according to predetermined setting values, and provide the first reference values TH_MIN and TH_MAX and the second reference value TH_TOG described above with reference to
The DDI 540 may drive the display panel 550 based on the image data IMG and the control signals CTRL. The DDI 540 may convert the digital image signal IMG to analog signals, and drive the display panel 550 based on the analog signals. The image data IMG may be the input digital data DAT described above with reference to
The DDI 540 may include a charge sharing controller CSC, and the charge sharing controller CSC may be the charge sharing controller 170 and 170a described above with reference to
The display device 530 may perform charge sharing with respect to source lines included in a first source line group among a plurality of source line groups, and then, perform the charge sharing with respect to source lines included in a second source line group different from the first source line group among the plurality of source line groups.
Referring to
The display panel 550 may be connected to the source driver 600 of the DDI 540 through a plurality of source lines, and may be connected to the scan driver 544 of the DDI 540 through a plurality of scan lines. The display panel 550 may include the pixel rows 511. That is, the display panel 550 may include a plurality of pixels PX arranged in a matrix having a plurality of rows and a plurality of columns. One row of pixels PX connected to the same scan line may be referred to as one pixel row 511. In some embodiments, the display panel 550 may be a self-emitting display panel that emits light without the use of a back light unit. For example, the display panel 550 may be an organic light-emitting diode (OLED) display panel.
Each pixel PX included in the display panel 550 may have various configurations according to a driving scheme of the display device 530. For example, the electroluminescent display device 530 may be driven with an analog or a digital driving method. While the analog driving method produces grayscale using variable voltage levels corresponding to input data, the digital driving method produces grayscale using variable time duration in which the LED emits light. The analog driving method is difficult to implement because the analog driving method uses a DDI that is complicated to manufacture if the display is large and has high resolution. The digital driving method, on the other hand, may readily accomplish high resolution through a simpler circuit structure. As the size of the display panel becomes larger and the resolution increases, the digital driving method may have more favorable characteristics over the analog driving method. The display device according to embodiments may be applied to both of the analog driving method and the digital driving method.
The source driver 600 may apply a data signal to the display panel 550 through the source lines based on display data DDT. The scan driver 544 may apply a scan signal to the display panel 550 through the scan lines.
The timing controller 545 may control the operation of the display device 530. The timing controller 545 may provide predetermined control signals to the source driver 600 and the scan driver 544 to control the operations of the display device 543. In some embodiments, the source driver 600, the scan driver 544 and the timing controller 545 may be implemented as one integrated circuit (IC). In other embodiments, the source driver 600, the scan driver 544 and the timing controller 545 may be implemented as two or more integrated circuits. A driving module including at least the timing controller 545 and the source driver 600 may be referred to as a timing controller embedded data driver (TED).
The timing controller 545 may receive the image data IMG and the input control signals from the host device 520 in
The power supply unit 546 may supply the display panel 550 with a high power supply voltage ELVDD and a low power supply voltage ELVSS. In addition, the power supply unit 546 may supply a regulator voltage VREG to the gamma circuit 547. The gamma circuit 547 may generate gamma reference voltages GRV based on the regulator voltage VREG. For example, the regulator voltage VREG may be the high power supply voltage ELVDD or another voltage that is generated based on the high power supply voltage ELVDD.
As described above, a display device according to embodiments may electrically connect source lines included in each of a plurality of source line groups to perform charge sharing based on a digital data corresponding to each of the plurality of source line groups, a plurality of group switch control signals and a plurality of switch circuits. The charge sharing may be performed based on parasitic capacitances formed in source lines included in each of the plurality of source line groups. The display device may perform the charge sharing without additional data other than the input digital data for displaying an image on the display panel. The display device may perform the charge sharing using general components for performing an original function of the display device without additional components other than a charge sharing controller and a plurality of first switches.
embodiments may be usefully used in a display device and a system including the display device. For example, embodiments may be more usefully applied to a computer, a laptop, a cellular phone, a smart phone, a personal digital assistant (PDA), a portable multimedia player (PMP), a digital TV, digital camera, portable game console, a navigation device, a wearable device, an IoT (internet of things) device, an IoE (internet of everything) device, an e-book, a virtual reality (VR) devices, an augmented reality (AR) devices, an in-vehicle navigation systems, a video phones, a surveillance systems, an automatic focus systems, a tracking systems, a motion detection systems and the like.
The foregoing is illustrative of embodiments and is not to be construed as limiting thereof. Although some embodiments have been described, those skilled in the art will readily appreciate that many modifications are possible in the embodiments without materially departing from the novel teachings and advantages of the embodiments. Accordingly, all such modifications are intended to be included within the scope of the embodiments as defined in the claims. Therefore, it is to be understood that the foregoing is illustrative of various embodiments and is not to be construed as limited to the specific embodiments disclosed, and that modifications to the disclosed embodiments, as well as other embodiments, are intended to be included within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2021-0037763 | Mar 2021 | KR | national |