The present invention relates to a display device for providing a display in accordance with a video signal including marking means for adding a mark signal into said video signal and a display screen for displaying a mark within a picture on the basis of said video signal including said mark signal, wherein said display screen includes a plurality of screen drivers. Furthermore, the display device includes sensor means for sensing said mark and for providing a corresponding sensing signal. Moreover, the present invention relates to a method for monitoring the presentation of a video signal on a display screen.
In a retail environment (big shop) or in public environment, flat displays are commonly used to provide several types of information: advertisement, global information (opening hours . . . ), crisis information like during a hurricane and so on. The concept described in this document will target several of such applications and is quite general. However, in order to simplify the exposition, the description and examples here are limited to retail environment.
In such a retail environment, it is more and more common to use several displays for advertising, but the information can be distributed and driven from a server located far away from the display. However, it is mandatory to be able to detect if each display is operational, if the picture is displayed correctly and which signal is displayed. Today's solutions are mostly based on a visual check of the display or using camera and checking specific watermarks inside the signal. Those solutions require more efforts in terms of manpower or electronic like cameras. The same is true for similar applications like public displays (airport, train stations . . . ).
In all situations, the provision of information is done in a similar way as described in connection with
In the present example each shop 3 has a local server 5 connected to a plurality of displays 6. The local server 5 redistributes the information obtained from central server 2 within the local display network. In addition, each local server 5 may generate information which has to be send back via a feedback stream to the central server 2.
The feedback stream 7 is represented in dotted lines since in practice it is not really done automatically yet. For the moment, there exists some manual or visual control of the display in each shop that can be conducted by the shop itself or by the company responsible for the advertising network but this can not be done all the time and does not cover all required information.
The U.S. Pat. No. 6,362,860 B1 discloses a display control method and a corresponding apparatus. In setting a plurality of types of image quality in a single screen, an arrangement is made to facilitate the setting of a range in which each image quality is set. Up on generating a video signal to be displayed on a predetermined display unit, the process is performed for inserting predetermined mark signals in the video signal at positions corresponding to at least two corners on the diagonal in a predetermined range of an image to be displayed. At the same time, the positions where the mark signals are inserted are moved in accordance with a predetermined operation input thereby to move the range set in the image to be displayed.
Furthermore, the document WO 2006/123089 A2 describes a video display system. Video display of a sequence of advertising is provided by display units in shopping centers in accordance with video signals supplied via a wide-area network. Each display unit includes a sub-unit for adding a mark signal into the network-supplied video signals, and a photo-sensor is used to verify display of the mark, and thus of the advertising, on the screen of the display unit. If display of the mark is interrupted, a signal identifying the respective display unit and its center is transmitted via the network to trigger remedial action and/or locking. The added mark signal is synchronized to the input video signal to appear in a fixed screen/location, and enhanced verification of integrity of the video display includes checking whether there is correspondence between encoding detected in the displayed mark and encoding of the mark signal added to the video signals.
It is the object of the present invention to provide a display system which can be supervised as to its proper functioning precisely and in a cost effective way.
According to the present invention this object is solved by a display device for providing a display in accordance with a video signal including marking means for adding a mark signal into said video signal, a display screen for displaying a mark within a picture on the basis of said video signal including said mark signal, said display screen including a plurality of screen drivers, sensor means for sensing said mark and for providing a corresponding sensing signal, wherein said marking means is designed for adding a specific mark signal for each screen driver into said video signal and said sensor means has a plurality of sensor units each provided for sensing one of a plurality of marks representing one of the plurality of specific mark signals, said sensing means providing a specific sensing signal for each of said plurality of marks.
Furthermore, there is provided a method for monitoring the presentation of a video signal on a display screen having a plurality of screen drivers, including the steps of adding a mark signal into said video signal, displaying a mark within a picture on the basis of said video signal including said mark signal, sensing said mark and providing a corresponding sensing signal. The method further includes the steps of adding a specific mark signal for each screen driver into said video signal and sensing each of a plurality of marks representing one of the plurality of specific mark signals as well as providing a specific sensing signal for each of said plurality of marks.
The advantage of the inventive solution is that each single driver of a display unit can be monitored precisely. Specifically, each column driver and each line driver of a display unit can be monitored by a corresponding mark.
Preferably the plurality of marks include a white mark for each driver in order to control the stability of the display. Additionally, the quality of controlling may be improved by using thin marks.
The plurality of marks may also include a black area for each driver in order to control the noise level of the display. Very low noise levels can be detected on black background more reliably.
According to a further development two types of sensors are provided, a first type having a first sensitivity to luminance and a second type having a much higher second sensitivity to luminance. With such different sensitivities very small diviations from pregiven marks can be detected.
Moreover, at least one of the plurality of sensor units may be provided with a specifically shaped mask. Such a mask enables to exactly detect special diviations of a mark.
The sensor means of the display device may be integrated on or into the active matrix of the display screen. The advantage of such integration is that the display screen and the sensor means can be produced within one fabrication process.
According to another embodiment there is provided a display device for providing a display in accordance with a video signal including marking means for adding a mark signal into said video signal, a display screen for displaying a mark within a picture on the basis of said video signal including said mark signal, sensor means for sensing said mark and for providing a corresponding sensing signal, wherein said marking means is designed to add a mark signal specific to said video signal.
Similarly there is provided a method for monitoring the presentation of a video signal on a display screen, including the steps of adding a mark signal into said video signal, displaying a mark within a picture on the basis of said video signal including said mark signal, sensing said mark and providing a corresponding sensing signal, wherein said mark signal is a specific mark signal depending on the semantic content of said video signal.
Preferably the mark is spatially and/or temporally modulated thereby representing coding information. Modulated marks may indicate specific contents of the video signal.
Finally, for solving the above-mentioned problem, there is provided a display system including server means for providing a video signal, at least one of the above described display devices provided with the video signal and controlling means for controlling the server means and/or the at least one display device depending on the sensing signal of the at least one display device. With such a system it is possible to establish a display controlling based on the feedback of single display devices.
The controlling means may be capable of analyzing an image of the display device in a period of time pregiven by an anti-burning mechanism. This is necessary, when an anti-burning mechanism affects the temporal or spatial position of the mark.
The present invention is illustrated along with the attached drawings showing in:
Need of a Feedback Stream
The present invention is based on the necessity of a reliable feedback stream for controlling display units in an advertising network, for instance. It is the purpose of the present document to propose a new and more precise solution for that specific feedback stream.
An advertising network including flat panel displays may be set up by an independent company inside a shop. This company is also responsible for displaying the right information. Indeed, usually part of the material and network running costs are covered by the advertising fees coming from the brands. On the other side, it has to be ensured that advertising spots really show brands at the right time and place. Therefore, several key information is mandatory at the level of the networking control level (e.g. central server) like:
In case of trouble it is important to react rapidly to solve the problem thus avoiding any loss of money for one of the involved parts.
There are several types of solution for a feedback system but no one is really optimized as given below:
The same type of feedback is needed also for public display. Indeed, in an airport, important information like airplane delay or security instructions must be available to each traveler and cannot be hidden by non working flat panel displays or networks. The same is true for more critical information like hurricane, fire or flooding information. In this area, it must be mentioned that even advertising displays have been used to display such information and have been very helpful to save lifes.
Information Hidden in the Video Sent by the Central Server
The main idea of the present invention is based on a insertion in the displayed sequence of control marks around the image. The control marks may derive from the content signal or may be added by the central server 2 (compare
In the control area 8 control marks are defined either as white forms on a black background or as black forms. The white forms can be used for controlling the stability of the display whereas the black forms can be used for controlling the noise level of it.
Optionally, both areas will be used for controlling the well functioning of the drivers so that at least one black area and one white control mark is provided per driver. Last but not least, it will be possible by time switching of the white areas to send some coded information in order to precisely identify the information displayed on the screen.
In order to hide the displayed marks, the area 8 of the screen used for controlling will be covered by a black material as it was the case in the old CRT television.
Sensor Analyzing Control Information
The system of the present example will need to define at least one control mark per driver area (less can be used for cost reason but the result will be less performing) as illustrated in
A case of a display with single scanning and possible position for control marks 13 is illustrated. As already mentioned, the marks 13 are video information inserted inside the source signal at the central server level. In this concept, white control marks 13 are inserted at the top and bottom part of the screen with at least one mark 13 per column driver 14. Similarily control marks 13 are inserted at the left and right parts of the screen with at least one mark 13 per line driver 15. By this means, it is possible by controlling if the mark 13 is lighting to know exactly if the driver 14, 15 is running. Advantageously, this concept is fully independent from the flat panel manufacturer and can be added by any set integrator or by the company responsible for the installation of the display network.
Today, there are still some flat panel displays, mainly PDPs, that are still using dual scanning. In that case, the top and bottom half part of the screen are scanned in parallel and twice more column drivers 15 are used. This means that more control marks 13 will be needed as illustrated in
Now, in order to control the right functioning of the display, simple light sensors will be mounted onto the front glass and hidden later by a black cover sheet. This concept is illustrated in
Each sensor 16, 17 is connected to a feedback unit 18 which provides feedback signals to the central server.
Regarding the white marks 13, additional filters can be adjusted between the display and the sensor in order to check exactly the position of the mark 13. This will enable to detect problems like vertical or horizontal jitter in the displayed signal up to a very precise level. This concept is illustrated on
A shadow mask 19 is cut precisely at the pixel size level and adjusted to the screen i. e. the front glass panel 20 thus allowing a corresponding light sensor 21 to detect precisely if the light is coming correctly from the screen specifically the area 8 for control marks. In this case it is even preferable to use separately a horizontal and a vertical mark instead of the cross mark illustrated.
Each sensor 21 located in front of such a mask 19 will be then able to detect if the light is coming through the opening and how stable this will occur. If it is only randomly or only occurring from time to time, this will mean that the displayed image is not stable at all. A feedback signal from the sensor 21 is transmitted via a feedback connection 22 to feedback unit 18 (not shown in
Optionally the sensors are integrated by the technology itself like in OLED displays directly on the active matrix.
Today's flat panel displays are usually suffering from burn-in, burning or ageing. Even LCD displays are faced with such issues. This means that if the same picture is displayed a long time on the screen, the more luminous elements of this picture will introduce locally a stronger decrease of the pixel luminance thus making a kind of negative shadow of this image on all other images shown later on. This is mainly critical for logos or text.
For instance, a certain brand image is shown a long time on a display and is replaced later on by a competitor using the same screen in the shop. It would not be very nice for the proprietor of a new brand to see the name of the previous competitor as a kind of shadow on his spot.
In order to limit this problem, panel manufacturers are implementing several counter methods. The most popular for public and advertising display is a kind of image translation. In this case, the image is translated periodically and very slowly so that the critical information is never at the same location. This makes the border of a burned text quite unsharp and thus less visible.
In the case of the proposed concept if using control marks, the regular translation of an image could become critical since the control marks will be moved as well.
In order to avoid that, the feedback control system should be capable (depending on settings) to analyze the image on a given period of time. Indeed, any anti-burning system will move in a kind of elliptical movement the mark back to its original position. This means that the sensor will periodically see the control mark. Thus, it is easy to make a difference between a synchronization problem where the mark will appear and disappear totally randomly, and the expected case with a periodical and controlled appearing of the signal.
As already mentioned, there is not only a need to know if the display is running but one also needs to know if the display is showing the right information.
This means, for instance, that the display located in the food department should not show sport advertisement in place of food or related material.
In order to control this, it is possible to use the marks for adding information to the several streams sent by the central server. For instance, information can be coded like in a bar code either by using spatial modulation (needs more sensors) or by using temporal modulation. In other words, in the spatial domain and for a certain type of sequences, some white marks will be white and others will be black and the same is true for black areas. On the other side, in the temporal domain, some white marks will be switched ON and OFF differently from each other. The same is true for black areas. Moreover, a combination of both spatial and temporal modulation can be used.
With such coding, it is simple to control that the display located at the food department will display food relevant information and from the right networking supplier.
Feedback Decision System
The system can analyze the error events (block 31) and e. g. wait after a certain amount of error events before sending any feedback information to the central server for stability reason (block 32).
On the other hand, if the keyword has been recognized after a certain time Tcode (loop of blocks 26 to 29), this time Tdelay (N)=Tcode (block 33) will be analyzed and compared with previous waiting time Tdelay (N−1) to determine periodicity and stability of the decision (block 34). Here a minimum threshold is needed in the comparison to avoid the impact of hardware delays that could vary.
If the stability is OK (right side of the block 34), the next keyword to be recognized is selected (block 35). If not (left side of block 34) again the error block 30 will be entered.
Block 31 will first analyze how often an error is appearing and will try to determine which type of error:
Several other information can be extracted as needed by the network administrator.
Generally any type of display or display system used in a predetermined environment can benefit from the present invention.
Number | Date | Country | Kind |
---|---|---|---|
08305966.7 | Dec 2008 | EP | regional |