The present application claims priority from Japanese application JP2009-101137 filed on Apr. 17, 2009, the content of which is hereby incorporated by reference into this application.
1. Field of the Invention
The present invention relates to a display device, and more particularly, to a display device suited to displaying a moving image.
2. Description of the Related Art
Heretofore, a backlight using a cold cathode fluorescent lamp (CCFL) has been mainly used for a backlight of a liquid crystal display device. However, in recent years, further research has been conducted on a backlight using a light emitting diode (LED) device. JP 2001-142409 A (hereinafter, referred to as Patent Document 1) discloses a representative example of such a backlight using an LED device.
Patent Document 1 discloses the following method. At least one LED, which serves as a light source for emitting illuminating light irradiating a liquid crystal panel, is arranged for each of a plurality of divided areas. The LED is controlled in the unit of divided areas so as to irradiate at least only an area requiring the illuminating light, in accordance with an image to be displayed. An area which does not require the illuminating light is not irradiated basically. In this manner, the power consumption required for illumination may be reduced.
According to the technology disclosed in Patent Document 1, the LED devices vary in light emission luminance for each divided display area, and the variation in light emission luminance results in flicker. One of the representative exemplary methods to solve the problem is disclosed in JP 2008-299145 A (hereinafter, referred to as Patent Document 2).
Patent Document 2 relates to a technology of controlling LEDs. According to the technology, it is determined whether an input video is a still image or a moving image, and in the case where the input video is a still image, the LED devices are constantly turned on, to thereby avoid flicker.
The technology disclosed in Patent Document 2 aims to avoid flicker in a still image, and hence there may be expected no effect therefrom of avoiding flicker in a moving image.
Under the circumstances, the inventors of the present invention have made a study on a method of controlling LEDs so as to avoid flicker even in displaying a moving image. In the course of the study, the inventors have discovered that flicker becomes more noticeable in a display where an object in the video moves at lower velocity (for example, a display in which the foreground scrolls at lower velocity), while luminance substantially reduces in a display in which an object in the video moves at higher velocity (for example, a display in which the foreground scrolls at higher velocity).
It is an object of the present invention to provide a display device capable of producing an image of excellent quality with reduced flicker and little reduction in luminance, the display device including a backlight having a plurality of light sources (for example, a plurality of LED devices) arranged two-dimensionally, each of which may be individually modulated in luminance.
The display device according to the present invention, which includes the backlight having the plurality of light sources (for example, the plurality of LED devices) arranged two-dimensionally, and is capable of modulating the luminance for each light source, further includes means for detecting a moving velocity of an object in a video (for example, moving velocity of a foreground), and means for automatically controlling luminance variations of the light sources for each light source, in accordance with the moving velocity of the object in the video.
The present invention may thus provide the display device, which includes the backlight having the plurality of light sources (for example, the plurality of LED devices) arranged two-dimensionally, each of which may be individually modulated in luminance, and which is capable of producing an image of excellent quality with reduced flicker and little reduction in luminance.
In the accompanying drawings:
Subsequently, examples of a configuration of a display device according to the present invention are described.
[First Embodiment]
A first embodiment of the present invention is described with reference to
In the display device according to the first embodiment, it is detected whether a display in which an object in a video corresponding to an input video moves at higher velocity (for example, a display in which the foreground moves at higher velocity) is provided or a display in which the object moves at lower velocity (for example, a display in which the foreground moves at lower velocity) is provided, and the luminance variations in one frame of the LED devices forming a backlight is automatically controlled for each LED device according to the detection result.
A display panel 100 includes, for example, a liquid crystal display panel in which display elements are arranged as pixels (display units) in a matrix of S columns and T rows (S and T each are an integer equal to or larger than 2). In the display panel 100, each of the pixels are applied with a gradation voltage so that the pixels are individually controlled in transmittance (modulation degree of light passing through the liquid crystal).
A backlight 101 serves a function of illuminating the display panel 100, and has a plurality of light sources. Each of the light sources may employ, for example, a cold cathode fluorescent lamp (CCFL), a hot cathode fluorescent lamp (HCFL), or a light emitting diode (LED) device. In the backlight 101, a plurality of illumination areas are arranged in P columns and Q rows, and the luminance and turn-on/turn-off timing of the light sources may be controlled for each of the illumination areas (P and Q each are an integer equal to or larger than 2.
In the display device, a display luminance to be finally obtained for each pixel may be determined by multiplying a transmittance of each pixel of the display panel 100 with a luminance of each area of the backlight 101 corresponding to the pixel.
The gradation voltage to be applied to the display panel 100 may be controlled by blocks 102 to 107 described below.
The display data selection unit 102 is a block for sequentially selecting input display data for each area of the display panel 100, and transferring the display data to a display data expansion unit 104, a maximum value selection unit 111, and display data use frame memory 108, which are described later.
An expansion coefficient calculation unit 103 is a block for calculating an expansion coefficient e (e is a value equal to or larger than 1) for use in expanding display data, in accordance with an LED light emission luminance data value transferred from a light emission luminance calculation unit 113 to be described later, and transferring the expansion coefficient e to the display data expansion unit 104 to be described later.
The display data expansion unit 104 is a block for multiplying the expansion coefficient e transferred from the expansion coefficient calculation unit 103 with display data transferred from the display data selection unit 102, and transferring the result to a source driver 106 to be described later.
With the use of the expansion coefficient calculation unit 103 and the data display expansion unit 104, the power consumption and flicker may be reduced.
For example, a case is assumed where a certain luminance B1 is displayed under a reference state where the backlight 101 has a luminance B11 and a display panel has a transmittance Tr1. In this case, a relation of B1=B11×Tr1 is established. Meanwhile, the expansion coefficient calculation unit 103 and the display data expansion unit 104 reduce a luminance of the backlight to 1/e of the reference state while expanding the display data so that the transmittance of the display panel is increased e times larger than usual. The luminance observed in this case is obtained as B2=(B11×1/e)×(Tr1×e). In other words, when the transmittance Tr1 is expanded, an observation luminance obtained with a smaller backlight luminance B12 becomes equal to the observation luminance obtained with a backlight luminance B11 in the reference state (that is, B1=B2 is attained).
Further, even if the luminance of the backlight varies, the observation luminance is maintained, which may alleviate flicker resulting from a variation in the backlight luminance.
A timing signal generation unit 105 is a block for generating a timing signal to be used by the source driver 106 and a gate driver 107, and transferring the timing signal to the source driver 106 and the gate driver 107.
The source driver 106 is a block for selecting, according to the timing signal transferred from the timing signal generation unit 105, a gradation voltage appropriate to display data which has been subjected to expansion calculation and transferred from the display data expansion unit 104, and applying the gradation voltage to the pixels of the display panel 100 in accordance with the timing signal transferred from the gate driver 107.
The gate driver 107 is a block for generating, in accordance with the timing signal transferred from the timing signal generation unit 105, a timing signal indicating a timing at which the source driver 106 applies the gradation voltage to the pixels of the display panel 100.
The LED devices of the backlight 101 may be controlled in light emission luminance by blocks 108 to 115 described below.
The display data use frame memory 108 is a block for holding display data for the past N frames transferred from the display data selection unit 102, and transferring the display data to a moving velocity detection unit VD1109 to be described later.
The moving velocity detection unit VD1109 is a block for detecting a moving velocity (for example, a velocity at which the foreground scrolls) by calculating a luminance histogram or a motion vector based on the display data transferred from the display data use frame memory 108, and transferring the moving velocity (Mv) to a light emission luminance variation LUT 110 to be described later. Specifically, the moving velocity detection unit VD1109 outputs the moving velocity (Mv)=1 for a display 200 illustrated in
It should be noted that, in the first embodiment, the method of detecting a moving velocity employs, for example, a luminance histogram or a motion vector. However, any other method may also be employed as long as the method is capable of detecting a moving velocity. Further, the moving velocity is detected at two stages of high velocity and low velocity, which may also be detected at H stages (H is equal to or larger than 3).
The light emission luminance variation LUT 110 is a block provided with a look-up table (LUT) storing a luminance variation per one frame when the light emission luminance of LED devices forming the backlight 101 increases or decreases, for selecting a luminance variation (A) from the look-up table (LUT) in accordance with the moving velocity (Mv) transferred from the moving velocity detection unit VD1109, and transferring the luminance variation (A) to a light emission luminance calculation unit 113 to be described later.
For example, when a moving velocity (Mv) is 1, a large luminance variation is selected. In this case, the light emission luminance 300 of the LED devices forming the backlight 101 precipitously increases to reach a target luminance as illustrated in
It should be noted that in the first embodiment, the luminance variation is defined by two stages including cases of a sudden change and a gradual change. However, the luminance variation may be defined by L stages (L is equal to or larger than 3).
Further, values stored in the look-up table (LUT) may be changed by a register adjustable from outside. Further, the number of smaller values stored in the look-up table (LUT) may preferably be larger than the number of larger values stored therein. With this configuration, in the case of a low velocity movement display, a luminance variation (A) may be selected with higher accuracy, with the result that flicker in the low velocity movement display may be avoided with more ease.
The maximum value selection unit 111 is a block for selecting a maximum value from the display data transferred from the display data selection unit 102, and transferring the maximum value to a target light emission luminance LUT 112 to be described later.
The target light emission luminance LUT 112 is a block provided with a look-up table storing luminance values of light emitting devices, for selecting a target light emission luminance from the look-up table in accordance with the data transferred from the maximum value selection unit 111, and transferring the target light emission luminance to a light emission luminance calculation unit 113 to be described later.
The light emission luminance calculation unit 113 is a block for comparing the target light emission luminance transferred from the target light emission luminance LUT 112 with a previous frame light emission luminance transferred from a light emission luminance use frame memory 114 to be described later, calculating, based on the comparison result, a light emission luminance, and transferring the light emission luminance to the expansion coefficient e calculation unit 103, to the light emission luminance use frame memory 114 to be described later, and to a light emitting device selection unit 115 to be described later. A specific process of calculating the light emission luminance is as follows. When the target light emission luminance value is larger than the light emission luminance value of the previous frame, the luminance variation (A) transferred from the light emission luminance variation LUT 110 is added to the light emission luminance value of the previous frame. When the target light emission luminance value is smaller than the light emission luminance value of the previous frame, the luminance variation (A) is subtracted from the light emission luminance value of the previous frame. In the manner as described above, the light emission luminance calculation unit 113 controls the luminance variation for each light emitting device in accordance with the result detected by the moving velocity detection unit VD1109.
The light emission luminance use frame memory 114 is a block for transferring the luminance data value transferred from the light emission luminance calculation unit 113, to the light emission luminance calculation unit 113, after holding the luminance data value for one frame period.
The light emitting device selection unit 115 is a block for applying a voltage corresponding to the light emission luminance, to the light emitting devices forming the backlight 101, under the control of the light emission luminance calculation unit 113.
In the above, the first embodiment has been described in detail. The display device according to the first embodiment includes the backlight 101 having a plurality of light sources and is capable of controlling a luminance for each light source, and the display device may further include the moving velocity detection unit VD1109 for detecting a moving velocity of an object in a video and a luminance variation control unit (corresponding to the light emission luminance variation LUT 110 and the light emission luminance calculation unit 113 of
According to the first embodiment of the present invention, a moving velocity of an object in a video may be detected, and luminance variations of the LED devices may be adjusted in accordance with the moving velocity, to thereby obtain a display in excellent quality with reduced flicker and little reduction in luminance in displaying the video.
Specifically, in a case of a display in which an object in a video moves at lower velocity (for example, a display in which the foreground moves at lower velocity), the luminance variations in the LED devices may be controlled to be small so as to gradually increase or decrease the luminance, to thereby obtain a display in excellent quality with reduced flicker.
On the other hand, in a case of a display in which an object in a video moves at higher velocity (for example, a display in which the foreground moves at higher velocity), the luminance variations in the LED devices may be controlled to be large so as to precipitously increase or decrease the luminance, to thereby obtain a display in excellent quality with little reduction in luminance.
[Second Embodiment]
A second embodiment of the present invention is described with reference to
The object moving direction detection unit 500 is a block for detecting, based on data for a plurality of frames input from the display data use frame memory 108, a move destination direction, and transferring a signal indicating any one of upward, downward, rightward, leftward, and diagonal directions, to the move destination area irradiation computing unit 501. The moving direction may be detected by using an optical flow or the like which is generally employed in a video processing technology. However, any other method may be employed, without being limited to the method, as long as the method is capable of detecting or estimating the moving direction.
The move destination area irradiation computing unit 501 is a block for performing a computation on the data transferred from the maximum value selection unit 111, based on the signal from the object moving direction detection unit 500, so as to irradiate the moving direction of the moving object, and transferring the data obtained from the computation to the target light emission luminance LUT 112.
In the case where the LEDs of the adjacent areas are all increased in luminance beforehand as illustrated
In the above, the second embodiment has been described in detail. The display device according to the second embodiment may include, in addition to the configuration of the first embodiment, an adjacent area irradiation computing unit (corresponding to the move destination area irradiation computing unit 501 of
According to the second embodiment of the present invention, the negative side of the first embodiment may be alleviated. Specifically, in the first embodiment, it takes time for the LED backlight to reach a target luminance because the luminance variation of the LED backlight is controlled to be small, with the result that the display luminance reduces until the target luminance is reached. According to the second embodiment, however, the move destination of a display object is estimated and the LED luminance in the area of the move destination is increased in advance to around the target value, to thereby suppress the above-mentioned reduction in luminance.
[Third Embodiment]
A third embodiment of the present invention is described with reference to
An operating principle of the third embodiment is described with reference to
In
In other words, the difference between the LED luminance of the previous frame and the LED luminance of the current frame is calculated, and when the difference is large, it is determined that the moving velocity of an object in a video is high in the display (for example, the foreground moves at higher velocity in the display). On the other hand, when the difference is small, it is determined that the moving velocity is low in the display (for example, the foreground moves at lower velocity in the display).
The moving velocity detection unit VD2700 is a block for comparing an LED light emission luminance value of the previous frame transferred from the light emission luminance use frame memory 114 with an LED target luminance value of the current frame transferred from the target light emission luminance LUT 112, determining a moving velocity (Mv) based on the difference therebetween, and transferring the moving velocity (Mv) thus determined to the light emission luminance variation LUT 110.
The internal operation of the moving velocity detection unit VD2700 is described with reference to
An operation of the LUT 800 is described with reference to
In the third embodiment, the difference (Sub) between the LED light emission luminance value of the previous frame and the LED target luminance value of the current frame is employed. It should be noted that, however, a mean squared error (MSE) between the LED light emission luminance value of the previous frame and the LED target luminance value of the current frame may be calculated as illustrated in
The adjacent area irradiation computing unit 701 is a block for performing a computation on data transferred from the maximum value selection unit 111 so as to turn on LEDs for irradiating the surrounding area, and transferring the data obtained from the computation to the target light emission luminance LUT 112. The adjacent area irradiation computing unit 701 may include an external register capable of changing a range of adjacent areas to be irradiated, so that the range of adjacent areas to be irradiated may be adjusted. Alternatively, the adjacent area irradiation computing unit 701 may include an external register capable of changing a lighting luminance of a light source corresponding to the adjacent area to be irradiated, so that the lighting luminance (value of X) of the light source corresponding to the adjacent area may be adjusted.
In the above, the third embodiment has been described in detail. The display device of the third embodiment includes the backlight 101 having a plurality of light sources and is capable of controlling a luminance for each light source, and the display device may further include the adjacent area irradiation computing unit 701 for computing luminances of the light sources in at least one or all areas adjacent in upward, downward, rightward, leftward, and diagonal directions to the display area of an object in a video, so that the at least one or all adjacent areas may be irradiated in advance, a comparing unit (corresponding to the moving velocity detection unit VD2700 of
According to third embodiment of the present invention, the moving velocity of an object in a video may be detected similarly to the first embodiment and the second embodiment, without the need for a complicated circuit for a motion vector analysis or a histogram analysis on display data, and hence the detection may be performed at low cost.
While there have been described what are at present considered to be certain embodiments of the invention, it will be understood that various modifications may be made thereto, and it is intended that the appended claims cover all such modifications as fall within the true spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2009-101137 | Apr 2009 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20070063961 | Kuroki | Mar 2007 | A1 |
20080123987 | Shen et al. | May 2008 | A1 |
20080143757 | Furihata et al. | Jun 2008 | A1 |
20080284719 | Yoshida | Nov 2008 | A1 |
20080297464 | Ito | Dec 2008 | A1 |
20100002009 | Takata | Jan 2010 | A1 |
20110298839 | Nakanishi | Dec 2011 | A1 |
20120256818 | Kuroki | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
2001-142409 | May 2001 | JP |
2008-299145 | Dec 2008 | JP |
WO 2007072598 | Jun 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20100265405 A1 | Oct 2010 | US |