The present invention is directed to a display device wherein the viewing side of the display device has a watermark area and a non-watermark area and the display cells in the watermark area are modulated to be distinguishable from the display cells in the non-watermark area. The display device comprising the watermark feature is useful for protecting against counterfeiting or decoration purposes.
U.S. Pat. Nos. 6,930,818 and 6,795,138 disclose image display devices based on the microcup technology. The patents describe the manufacture of microcups as display cells. The microcups are then filled with a display fluid. The top openings of the microcups may have the same size and shape and such microcups spread across the entire display surface.
The first aspect of the present invention is directed to a display device comprising display cells wherein the viewing side of the display device has a watermark area and a non-watermark area and the display cells in the watermark area are modulated to be distinguishable from the display cells in the non-watermark area.
In one embodiment, the walls of the display cells in the watermark area have a different width than the walls of the display cells in the non-watermark area.
In one embodiment, the walls of the display cells in the watermark area are thicker than the walls of the display cells in the non-watermark area.
In one embodiment, the walls of the display cells in the watermark area are thinner than the walls of the display cells in the non-watermark area.
In one embodiment, the walls of the display cells in the watermark area are at least about 5% thicker or thinner than those in the non-watermark area.
In one embodiment, the walls of the display cells in the watermark area have different thickness.
In one embodiment, the wall of at least one side of a display cell in the watermark area has varying thickness.
In one embodiment, the walls of the display cells in the watermark area have a different height than the walls of the display cells in the non-watermark area.
In one embodiment, the display cells in the watermark area have a different shape than the display cells in the non-watermark area.
In one embodiment, the display cells in the watermark area have more than one type of shape.
In one embodiment, the display cells in the watermarks area have a different size from the cells in the non-watermark area. For example, the cells in the watermark area may be at least twice as large (in both lateral dimensions) as the cells in the non-watermark area. Alternatively, the cells in the watermark area may be not more than one half the size of the cells in the non-watermark area.
In one embodiment, the display device is a reflective type of display device.
In one embodiment, the display device is a transmissive type of display device.
In one embodiment, the display device is a transreflective type of display device.
In one embodiment, the display device is an electrophoretic display.
In one embodiment, the display device is a liquid crystal display.
In one embodiment, the display device further comprises a color layer on the non-viewing side of the display device. The color layer may be a sealing layer, an adhesive layer or an electrode layer.
Another aspect of the present invention is directed to a display device comprising display cells separated by partition walls wherein at least one parameter of the display cells in the watermark area is modulated with at least two variations which are different from that parameter in the non-watermark area. In one embodiment, the parameter is the partition wall height. In another embodiment, the parameter is the partition wall width. In a further embodiment, the parameter is the shape of the display cells.
The present inventors have now found that a watermark feature may be added to a display device, which watermark is useful to protect against counterfeiting when a security measure is required for the display device. In addition, the watermark may also be used for ornamental design/decoration purposes.
The watermark feature may be achieved by modulating (i.e., altering) at least one parameter of the display cells, in the watermark area.
Each individual display cell usually has a cell width (cw) smaller than 300 μm. The cell width, in the context of this application, is defined as the distance between two opposing parallel sides of a display cell.
Because of their small size and uniform shape, the individual display cells are barely perceivable by naked eyes. Therefore such a display device can display images without the grid-like feel.
The wall width (ww) of the partition walls is usually in the range of about 5 to about 30 μm. When referring to partition walls in this application, “width” and “thickness” and “wider” and “thicker” are used interchangeably.
Therefore, display devices prepared by the microcup technology (as described in U.S. Pat. Nos. 6,930,818 and 6,795,138) are most suitable for the present invention because the microcup-based display cells are sufficiently small and they may be formed to have a uniform size and shape. However, the scope of the invention may also extend to any display device as long as it has display cells which are sufficiently small and have well-defined sizes and shapes that may be pre-determined before manufacture.
The microcup-based display cells may be manufactured by any of the processes (such as microembossing) described in the US patents identified above. Briefly the modulated parameter(s) may be built-in in the male mold to be used for forming the microcup-based display cells in an embossing process.
The display element filled in the display cells may be an electrophoretic fluid comprising charged pigment particles dispersed in a solvent or solvent mixture. An electrophoretic display typically comprises two plates with electrodes placed opposing each other. When a voltage difference is imposed between the two electrodes, the pigment particles in the display fluid migrate to one side or the other causing either the color of the pigment particles or the color of the solvent being seen from the viewing side.
Alternatively, an electrophoretic fluid may comprise two types of charged pigment particles of contrasting colors and carrying opposite charges, and the two types of the charged pigment particles are dispersed in a clear solvent or solvent mixture. In this case, when a voltage difference is imposed between the two electrode plates, the two types of the charged pigment particles would move to opposite ends (top or bottom) in a display cell. Thus one of the colors of the two types of the charged pigment particles would be seen at the viewing side of the display cell.
While electrophoretic display is specifically mentioned, it is understood that the present application is applicable to other types of display device as well, such as other types of reflective display device or transmissive and transreflective display devices, including liquid crystal display devices.
The watermark created according to the present invention is visible at certain viewing angles and/or under certain lighting conditions. The watermark would not interfere with the desired regular images displayed (based on movement of charged pigment particles in a solvent or solvent mixture in an electrophoretic display, for example).
In one embodiment of the present invention, the width of the partition walls of the display cells is modulated. As shown in
In another embodiment, the partition walls in the watermark area may be thinner than those in the non-watermark area.
In general, the width of the partition walls in the watermark area may be at least about 5% thicker or thinner than those in the non-watermark area. It is noted that the wall thickness in some of the drawings is exaggerated for clarity.
In another embodiment as shown in
In a further embodiment as shown in
In yet a further embodiment, the shape of the display cells may be a modulating parameter. In an example as shown in
In yet a further embodiment (not illustrated in the drawings), the size of the display cells may be a modulating parameter. For example, in a modification of the display shown in
The different shapes of the display cells in the watermark area may be achieved by a number of methods. Certain methods are described in U.S. patent application Ser. No. 13/765,588, the content of which is incorporated herein by reference in its entirety. Briefly, the design of the different shape of the display cells (e.g., microcups) in the watermark area may be achieved by removing partition walls of non-altered display cells and replacing the removed partition walls with new partition walls. Alternatively, the design of the different shape of the display cells (e.g., microcups) in the watermark area may be achieved by independently shifting apex points of non-altered display cells within a defined area, and reconnecting the shifted apex points. Utilizing these design methods, the display cells in the watermark area may have different shapes (i.e., randomized).
In yet a further embodiment, the height of the partition walls of the display cells may be a modulating parameter for the watermark area.
The watermark is not limited to characters, numbers or geometric shapes. It may also be complex images such as pictures with grey levels.
As stated above, the watermark may only be visible in a display device at certain angles or under strong lighting conditions; and it usually will not be seen in the normal display mode so that the quality of the regular images displayed is not affected.
In one embodiment of the present invention, a color layer may be added to enhance the viewing of the watermark. The color layer is on the side opposite of the viewing side. In other words, the color layer is on the non-viewing side.
When a color layer is present, the watermark can be better seen even when the image is at the full black or white color state.
The color layer may be achieved by making the sealing layer (73), the adhesive layer (74) or the electrode layer (71) colored. For example, a pigment or dye material may be added to a sealing composition or adhesive composition to cause the sealing or adhesive layer to be colored. The electrode layer may be colored (e.g., a metallic shade).
In another aspect, each modulating parameter, according to the present invention, may have one or more variations in the watermark area from the non-watermark area. For example, the wall widths of the display cells may be modulated and the display cells in the watermark area may have one or more wall widths which are different from that in the non-watermark area. In another example, the wall heights of the display cells may be modulated and the display cells in the watermark area may have one or more wall heights which are different from that in the non-watermark area. In another example, the shapes of the display cells may be modulated and in this case, the display cells in the watermark area may have one or more shapes which are different from that in the non-watermark area.
When there are two or more variations for a modulating parameter in the watermark area, the watermark may show different color intensities. As shown in
As discussed above with reference to
While the present invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation, materials, compositions, processes, process step or steps, to the objective and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.
This application is a continuation of copending application Ser. No. 15/292,357, filed Oct. 13, 2016 (Publication No. 2017/0031204), which is itself a continuation-in-part of application Ser. No. 13/896,232, filed May 16, 2013 (Publication No. 2013/0321744, now U.S. Pat. No. 9,470,917 issued Oct. 18, 2016), which claims priority to U.S. Provisional Applications Nos. 61/660,372, filed Jun. 15, 2012; and 61/653,210, filed May 30, 2012. The entire contents of all U.S. patents and published and copending applications mentioned herein are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
6672921 | Liang | Jan 2004 | B1 |
6751007 | Liang | Jun 2004 | B2 |
6753067 | Chen | Jun 2004 | B2 |
6781745 | Chung | Aug 2004 | B2 |
6788452 | Liang | Sep 2004 | B2 |
6795138 | Liang | Sep 2004 | B2 |
6795229 | Liang | Sep 2004 | B2 |
6806995 | Chung | Oct 2004 | B2 |
6829078 | Liang | Dec 2004 | B2 |
6833177 | Chen | Dec 2004 | B2 |
6850355 | Liang | Feb 2005 | B2 |
6859302 | Liang | Feb 2005 | B2 |
6865012 | Liang | Mar 2005 | B2 |
6870662 | Tseng | Mar 2005 | B2 |
6885495 | Liang | Apr 2005 | B2 |
6906779 | Chan-Park | Jun 2005 | B2 |
6930818 | Liang | Aug 2005 | B1 |
6933098 | Chan-Park | Aug 2005 | B2 |
6947202 | Liang | Sep 2005 | B2 |
6987605 | Liang | Jan 2006 | B2 |
7046228 | Liang | May 2006 | B2 |
7072095 | Liang | Jul 2006 | B2 |
7079303 | Hou | Jul 2006 | B2 |
7141279 | Liang | Nov 2006 | B2 |
7156945 | Chaug | Jan 2007 | B2 |
7205355 | Liang | Apr 2007 | B2 |
7206119 | Honeyman et al. | Apr 2007 | B2 |
7233429 | Liang | Jun 2007 | B2 |
7261920 | Haubrich | Aug 2007 | B2 |
7271947 | Liang | Sep 2007 | B2 |
7304780 | Liu | Dec 2007 | B2 |
7307778 | Wang | Dec 2007 | B2 |
7327346 | Chung | Feb 2008 | B2 |
7347957 | Wu | Mar 2008 | B2 |
7470386 | Kang | Dec 2008 | B2 |
7504050 | Weng | Mar 2009 | B2 |
7572491 | Wang | Aug 2009 | B2 |
7580180 | Ho | Aug 2009 | B2 |
7679826 | Ezra | Mar 2010 | B2 |
7715087 | Hou | May 2010 | B2 |
7767126 | Kang | Aug 2010 | B2 |
7830592 | Sprague | Nov 2010 | B1 |
7880958 | Zang | Feb 2011 | B2 |
8002948 | Haubrich | Aug 2011 | B2 |
8154790 | Wang | Apr 2012 | B2 |
8169690 | Lin | May 2012 | B2 |
8237892 | Sprague | Aug 2012 | B1 |
8441432 | Zang | May 2013 | B2 |
8553400 | Moran | Oct 2013 | B2 |
8582197 | Liang | Nov 2013 | B2 |
8681414 | Shin | Mar 2014 | B2 |
8693086 | Verschueren | Apr 2014 | B2 |
8850689 | Chen | Oct 2014 | B2 |
8891156 | Yang | Nov 2014 | B2 |
9279906 | Kang | Mar 2016 | B2 |
9291872 | Lin | Mar 2016 | B1 |
9388307 | Li | Jul 2016 | B2 |
9436057 | Kang | Sep 2016 | B2 |
9436058 | Li | Sep 2016 | B2 |
9470917 | Lin | Oct 2016 | B2 |
9919553 | Kang et al. | Mar 2018 | B2 |
20030035199 | Liang | Feb 2003 | A1 |
20030175480 | Chen | Sep 2003 | A1 |
20030175481 | Chen | Sep 2003 | A1 |
20030179437 | Liang | Sep 2003 | A1 |
20030203101 | Haubrich | Oct 2003 | A1 |
20140050814 | Kang | Feb 2014 | A1 |
20160059442 | Kang et al. | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
2007309960 | Nov 2007 | JP |
2009098469 | May 2009 | JP |
20050087553 | Aug 2005 | KR |
20100042444 | Apr 2010 | KR |
2011077668 | Jun 2011 | WO |
Entry |
---|
Liang, R.C., “BreakThrough-Newly-Developed Color Electronic Paper Promises—Unbeatable Production Efficiency”, Nikkei Microdevices, p. 3 (Dec. 2002). (in Japanese, with English translation). Dec. 1, 2002. |
Liang, R.C. et al., “Microcup Electrophoretic Displays by Roll-to-Roll Manufacturing Processes”, IDW '02, Paper EP2-2, pp. 1337-1340, (Dec. 2002). Dec. 4, 2002. |
Liang, R.C., “Microcup Electrophoretic and Liquid Crystal Displays by Roll-to-Roll Manufacturing Processes”, Presented at Flexible Microelectronics & Displays Conference of U.S. Display Consortium, Phoenix, Arizona, USA (Feb. 2003). Feb. 3, 2003. |
Liang, R.C. et al., “Microcup LCD, A New Type of Dispersed LCD by a Roll-to-Roll Manufacturing Process”, Presented at IDMC , Paper We-02-04, pp. 1-4, Taipei, Taiwan, (Feb. 2003). Feb. 18, 2003. |
Liang, R.C. et al., “Passive Matrix Microcup Electrophoretic Displays”, IDMC'03, Paper FR-17-5, p. 1-4, Taipei, Taiwan, (Feb. 2003). Feb. 18, 2003. |
Liang, R.C. et al., “Microcup Displays: Electronic Paper by Roll-to-Roll Manufacturing Processes” Journal of the SID, 11 (4), pp. 621-628, (Feb. 2003). Feb. 18, 2003. |
Chen, S.M., “Revolution electronic paper: The New Application and the Dynamics of Companies”, Topology Research Institute, pp. 1-10, (May 2003). (In Chinese, English abstract attached) May 1, 2003. |
Liang, R.C. et al., “Microcup Active and Passive Matrix Electrophoretic Displays by a Roll-to-Roll Manufacturing Processes”, SID 03 Digest, Paper 201, pp. 838-841 (May 2003). May 21, 2003. |
Lee, H. et al.' “SiPix Microcup Electronic Paper—An Introduction” Advanced Display, Issue 37, pp. 4-9, (Jun. 2003). (in Chinese, English abstract attached) Jun. 1, 2003. |
Chen, S.M., “The Applications for the Revolutionary Electronic Paper Technology”, OPTO News & Letters, Issue 102, pp. 37-41 (Jul. 2003). (in Chinese, English abstract attached) Jul. 1, 2003. |
Zang, H.M. et al., “Microcup Electronic Paper by Roll-to-Roll Manufacturing Processes”, The Spectrum, 16(2), pp. 16-21 (2003). Jul. 1, 2003. |
Allen, Kimberly, Ph.D., “Electrophoretics Fulfilled. Emerging Displays Review: Emerging Display Technologies, Monthly Report”, Stanford Resources Display Insight, pp. 9-14, (Oct. 2003). Oct. 1, 2003. |
Kleper, M. et al., “An Investigation of the Emerging and Developing Technologies Related to the Generation Beyond Print-on-Paper”, Advanced Display Technologies, Rochester Institute of Technology, pp. 13-15, (Oct. 2003). Oct. 1, 2003. |
Zang, H.M. “Microcup Electronic Paper by Roll-to-Roll Manufacturing Processes”, Presentation at the Advisory Board Meeting, Bowling Green State Univ., Ohio, USA (Oct. 2003). Oct. 23, 2003. |
Chung, J. et al., “Microcup Electrophoretic Displays, Grayscale and Color Rendition”, IDW, AMD2 & EP1-2, pp. 243-246 (Dec. 2003). Dec. 1, 2003. |
Ho, C. et al., “Microcup Electronic Paper by Roll-to-Roll Manufacturing Processes”, Presentation conducted at FEG, Nei-Li, Taiwan, (Dec. 2003). Dec. 23, 2003. |
Zang, H.M. et al., “Threshold and Grayscale Stability of Microcup Electronic Paper”, SPIE vol. 5289, pp. 102-108, (Jan. 2004). Jan. 19, 2004. |
Zang, H.M., “Microcup Electronic Paper”, Presentation at the Displays & Microelectronics Conference of U.S. Display consortium, Phoenix, Arizona, USA (Feb. 2004). Feb. 10, 2004. |
Wang, X. et al., “Microcup Electronic Paper and the Converting Processes”, ASID, 10.1.2-26, pp. 396-399, Nanjing, China, (Feb. 2004). Feb. 15, 2004. |
Chaug, Y.S. et al., “Roll-to-Roll Processes for the Manufacturing of Patterned Conductive Electrodes on Flexible Substrates”, Mat. Res. Soc. Symp. Proc., vol. 814, l9.6.1., (Apr. 2004). Apr. 12, 2004. |
Liang, R.C., “Microcup Electronic Paper by Roll-to-Roll Manufacturing Process”, Presented at the Flexible Displays & Electronics 2004 of Intertech, San Fransisco, California, USA, (Apr. 2004). Apr. 28, 2004. |
Hou, J. et al., “Reliability and Performance of Flexible Electrophoretic Displays by Roll-to-Roll Manufacturing Processes”, SID Digest, 32.3, pp. 1066-1069 (May 2004). May 27, 2004. |
Wang, X. et al., “Microcup Electronic Paper and the Converting Processes”, Advanced Display, Issue 43, pp. 48-51 (Jun. 2004). (in Chinese, with English abstract) Jun. 1, 2004. |
Liang, R.C. et al., “Format Flexible Microcup Electronic Paper by Roll-to-Roll Manufacturing Process”, Presented at 14th FPD Manufacturing Technology EXPO & Conference, Tokyo, Japan, (Jun. 30-Jul. 2, 2004). Jul. 2, 2004. |
Liang R.C. “Flexible and Rollable Displays/Electronic Paper—A Technology Overview”, Presented at the METS Conference, Taipei, Taiwan, (Oct. 2004). Oct. 22, 2004. |
Bardsley, J.N. et al., “Microcup Electrophoretic Displays”, USDC Flexible Display Report, 3.1.2., pp. 3-12 to 3-16, (Nov. 2004). Nov. 1, 2004. |
Hi, Candice, “Microcup Electronic Paper Device and Application”, Presentation conducted at USDC 4th Annual Flexible Display and Microelectronics Conference, Phoenix, Arizona, USA, (Feb. 1, 2005). Feb. 1, 2005. |
Zang, H.M. et al., “Flexible Microcup EPD by RTR Process”, Presentation conducted at 2nd Annual Paper-Like Displays Conference, St. Pete Beach, Florida, USA, (Feb. 9-11, 2005). Feb. 10, 2005. |
Liang, R.C. “Flexible and Roll-able Displays/Electronic Paper—A Brief Technology Overview”, Presentation at Flexible Display Forum, Taiwan (Feb. 2005). Feb. 17, 2005. |
Wang, X. et al., “Inkjet Fabrication of Multi-Color Microcup Electrophorectic Display”, 5th Flexible Microelectronics & Displays Conference of U.S. Display Consortium, Phoenix, AZ, USA, (Feb. 2006). Feb. 9, 2006. |
Zang, H.M., et al., “Monochrome and Area Color Microcup EPDs by Roll-to-Roll Manufacturing Processes”, ICIS 06 International Congress of Imaging Science Final Program and Proceedings, pp. 362-365, Rochester, New York, USA (May 2006). May 9, 2006. |
Wang, X. et al., “Roll-to-Roll Manufacturing Process for Full Color Electrophoretic Film”, SID 06 Digest, vol. 37, Issue 1, pp. 1587-1589, (Jun. 2006). Jun. 8, 2006. |
Zang, H.M., “Monochrome and Area Color Microcup EPDs by Roll-to-Roll Manufacturing Process”, Presentation conducted at the Fourth Organic Electronics Conference and Exhibition (OEC-06), Frankfurt, Germany, (Sep. 25-27, 2006). Sep. 26, 2006. |
Ho, Andrew, “Embedding e-Paper in Smart Cards, Pricing Labels & Indicators”, Presentation conducted at Smart Paper Conference, Atlanta, GA, USA (Nov. 15-16, 2006). Nov. 15, 2006. |
Zang, H.M. “Developments in Microcup Flexible Displays”, Presentation conducted at the 6th Annual Flexible Display and Microelectronics Conference, Phoenix, AZ, Feb. 6-8, 2007. Feb. 7, 2007. |
Zang H.M. et al. “Microcup e-Paper for Embedded and Flexible Designs”, IDMC'07, Taipei International Convention Center, Taiwan, (Jul. 2007). Jul. 6, 2007. |
Sprague, R.A., “SiPix Microcup Electrophoretic Epaper for Ebooks”, NIP 25, 2009, pp. 460-462; (Sep. 23, 2009). (Presentation conducted on Sep. 23, 2009 at the 25th Int'l Conference on Digital Printing Technologies, Louisville, Kentucky, USA.) Sep. 23, 2009. |
International Search Report for the corresponding International Application WO 2013/180971, dated Aug. 27, 2013. |
European Patent Office, EP Appl. No. 13797753.4, Extended European Search Report, dated Nov. 25, 2015. Nov. 25, 2015. |
Number | Date | Country | |
---|---|---|---|
20190339563 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
61660372 | Jun 2012 | US | |
61653210 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15292357 | Oct 2016 | US |
Child | 16518024 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13896232 | May 2013 | US |
Child | 15292357 | US |