This application claims priority from Japanese Application No. 2018-48494, filed on Mar. 15, 2018, the contents of which are incorporated by reference herein in its entirety.
The present disclosure relates to a display device.
A display device for displaying images includes a plurality of pixels. Japanese Patent Application Laid-open Publication No. 9-212140 (JP-A-9-212140) describes what is called a memory-in-pixel (MIP) display device in which a plurality of pixels each include memories. In the display device described in JP-A-9-212140, each of the pixels includes the memories and a switching circuit for switching between the memories.
Each of the pixels in the display device described in JP-A-9-212140 needs to be provided with memories the number of which corresponds to the number of frames of a moving image. Thus, in the display device that displays moving images, the pixel area increases with the number of memories. In other words, the display device that displays moving images is difficult to have a higher definition. However, a display device that displays still images is required to have pixels the number of which is sufficient for performing display at a higher definition. As a result, when conventional display devices are used to display both moving images and still images, the memories are insufficient in number to provide frames required for displaying a moving image, and/or the resolution of images is insufficient.
For the foregoing reasons, there is a need for a display device capable of displaying a moving image having frames the number of which exceeds the number of memories provided in each pixel and a still image having a higher definition than that of the moving image.
According to an aspect, a display device includes: a plurality of sub-pixels, each sub-pixel including at least one memory; a setting circuit configured to select either a first mode in which a still image is displayed or a second mode in which a moving image is displayed; and a switching circuit configured to switch coupling between the sub-pixels and the memories according to the selection made by the setting circuit. The first mode is a mode in which each of the sub-pixels is coupled to one of the at least one memory included in the sub-pixel, and the second mode is a mode including a time period in which at least one of the sub-pixels is coupled to the at least one memory included in another of the sub-pixels.
The following describes modes (embodiments) for carrying out the present invention in detail with reference to the drawings. The present invention is not limited to the description of the embodiments given below. Components described below include those easily conceivable by those skilled in the art or those substantially identical thereto. Furthermore, the components described below can be combined as appropriate. What is disclosed herein is merely an example, and the present invention naturally encompasses appropriate modifications easily conceivable by those skilled in the art while maintaining the gist of the invention. To further clarify the description, widths, thicknesses, shapes, and the like of various parts will be schematically illustrated in the drawings as compared with actual aspects thereof, in some cases. However, they are merely examples, and interpretation of the present invention is not limited thereto. The same element as that illustrated in a drawing that has already been discussed is denoted by the same reference numeral through the description and the drawings, and detailed description thereof will not be repeated in some cases where appropriate.
In this disclosure, when an element is described as being “on” another element, the element can be directly on the other element, or there can be one or more elements between the element and the other element.
In the first embodiment, the display device 1 is a liquid crystal display device using the liquid crystal layer 30. However, the present disclosure is not limited thereto. The display device 1 may be an organic electroluminescent (EL) display device using organic EL elements instead of the liquid crystal layer 30.
In the display area DA, a plurality of pixels Pix are arranged in a matrix (row-column configuration) of H columns (where H is a natural number) arranged in an X-direction and V rows (where V is a natural number) arranged in a Y-direction. The X-direction is parallel to principal surfaces of the first panel 2 and the second panel 3, and the Y-direction is parallel to the principal surfaces of the first panel 2 and the second panel 3 and intersects the X-direction. An interface circuit 4, a source line drive circuit 5, a common electrode drive circuit 6, an inversion drive circuit 7, a memory selection circuit 8, and a gate line drive circuit 9 are disposed in the frame area GD. A configuration can be employed in which, of these circuits, the interface circuit 4, the source line drive circuit 5, the common electrode drive circuit 6, the inversion drive circuit 7, and the memory selection circuit 8 are built into an integrated circuit (IC) chip, and the gate line drive circuit 9 is provided on the first panel. Alternatively, a configuration can be employed in which the group of the circuits built into the IC chip is provided in a processor outside the display device, and the circuits are coupled to the display device 1. Unless otherwise stated, the term “coupled” used below refers to “electrically coupled” through, for example, wiring and/or switches.
Each of the V×H pixels Pix includes a plurality of sub-pixels S. In the first embodiment, the sub-pixels S are three sub-pixels: red (R), green (G), and blue (B), but the present disclosure is not limited thereto. The sub-pixels S may be four sub-pixels: red (R), green (G), blue (B), and white (W). Alternatively, the sub-pixels S may be five or more sub-pixels of different colors.
In the first embodiment, each of the pixels Pix includes the three sub-pixels S. Accordingly, V×H×3 sub-pixels S are arranged in the display area DA. Each of the sub-pixels S includes a memory or memories. In the first embodiment, each of the sub-pixels S includes one memory. Accordingly, V×H×3×1 memories are arranged in the display area DA. The number of the memories included in each of the sub-pixels S is not limited to one, and may be two or more.
The interface circuit 4 includes a serial-parallel conversion circuit 4a and a timing controller 4b. The timing controller 4b includes a setting register 4c. The serial-parallel conversion circuit 4a is serially supplied with command data CMD and image data ID from an external circuit. Examples of the external circuit include a host central processing unit (CPU) and an application processor, but the present disclosure is not limited thereto.
The serial-parallel conversion circuit 4a converts the supplied command data CMD into parallel data, and outputs the parallel data to the setting register 4c. Values for controlling the source line drive circuit 5, the inversion drive circuit 7, the memory selection circuit 8, and the gate line drive circuit 9 are set in the setting register 4c based on the command data CMD.
The values that are set in the setting register 4c include a value indicating whether the display device 1 is to operate in a first mode or a second mode. The first mode is a mode for displaying a still image. The second mode is a mode for displaying a moving image. The setting register 4c of the first embodiment serves as a setting circuit capable of selecting either the first mode or the second mode.
The serial-parallel conversion circuit 4a converts the supplied image data ID into parallel data, and outputs the parallel data to the timing controller 4b. The timing controller 4b outputs the image data ID to the source line drive circuit 5 based on the values set in the setting register 4c. The timing controller 4b also controls the inversion drive circuit 7, the memory selection circuit 8, and the gate line drive circuit 9 based on the values set in the setting register 4c.
The common electrode drive circuit 6, the inversion drive circuit 7, and the memory selection circuit 8 are supplied with a reference clock signal CLK from an external circuit. Examples of the external circuit include a clock generator, but the present disclosure is not limited thereto.
Driving methods such as a common inversion driving method, a column inversion driving method, a line inversion driving method, a dot inversion driving method, and a frame inversion driving method are known as driving methods for restraining a screen of the liquid crystal display device from burning in.
The display device 1 can employ any one the above-mentioned driving methods. In the first embodiment, the display device 1 employs the common inversion driving method. Since the display device 1 employs the common inversion driving method, the common electrode drive circuit 6 inverts the potential (common potential VCOM) of a common electrode in synchronization with the reference clock signal CLK. The inversion drive circuit 7 inverts the potential of a sub-pixel electrode in synchronization with the reference clock signal CLK under the control of the timing controller 4b. Thus, the display device 1 can implement the common inversion driving method. In the first embodiment, the display device 1 is what is called a normally black liquid crystal display device that displays a black color when no voltage is applied to a liquid crystal LQ (refer to
To display the image on the display device 1, sub-pixel data needs to be stored in the memory of each of the sub-pixels S. To store the sub-pixel data in each of the memories, the gate line drive circuit 9 outputs a gate signal for selecting one row of the V×H pixels Pix under the control of the timing controller 4b.
The number of the gate lines (for example, a gate line GCL1, and so on) that couple the gate line drive circuit 9 to the pixels Pix corresponds to the number of memories included in each of the sub-pixels S. Under the control of the timing controller 4b, the gate line drive circuit 9 sequentially outputs the gate signal for selecting one of the V rows.
Under the control of the timing controller 4b, the source line drive circuit 5 outputs the sub-pixel data to each of the memories selected by the gate signal. Through this process, the sub-pixel data is sequentially stored in the memory of each of the sub-pixels.
Gradation control (for example, orientation control of liquid crystal molecules) of each of the sub-pixels S is performed based on the sub-pixel data stored in memories. Each of the sub-pixels S is configured to be coupled to memories other than the memory included in the sub-pixel S, in addition to this memory.
When a moving image is displayed, the memory selection circuit 8 sequentially switches the memory being coupled to the sub-pixel S according to the timing of switching between frame images. In the first embodiment, one sub-pixel S is configured to be coupled to four memories. In other words, in the first embodiment, the memory selection circuit 8 switches between the memories, so that the moving image display can be performed with four-frame images. Each sub-pixel is not limited to be configured to be coupled to four memories, and only needs to be configured to be coupled to two or more memories. The control operation of the coupling of the memories will be described later in detail.
Light incident from outside the display surface 1a is reflected by a reflective electrode 15 of the first panel 2 to exit from the display surface 1a. The display device 1 of the first embodiment is a reflective liquid crystal display device that uses this reflected light to display the image on the display surface 1a. In this specification, a direction parallel to the display surface 1a corresponds to the X-direction, and a direction intersecting the X-direction in a plane parallel to the display surface 1a corresponds to the Y-direction. A direction orthogonal to the display surface 1a corresponds to a Z-direction.
The first panel 2 includes a first substrate 11, an insulating layer 12, the reflective electrode 15, and an orientation film 18. Examples of the first substrate 11 include a glass substrate and a resin substrate. A surface of the first substrate 11 is provided with circuit elements and various types of wiring, such as the gate lines (for example, the gate line GCL1, and so on) and data lines, which are not illustrated. The circuit elements include switching elements, such as thin-film transistors (TFTs), and capacitive elements.
The insulating layer 12 is provided on the first substrate 11 and planarizes surfaces of, for example, the circuit elements and the various types of wiring as a whole. A plurality of reflective electrodes 15 are provided on the insulating layer 12. The orientation film 18 is provided between the reflective electrodes 15 and the liquid crystal layer 30. The reflective electrodes 15 are provided in rectangular shapes, one for each of the sub-pixels S. The reflective electrodes 15 are made of a metal, such as aluminum (Al) or silver (Ag). The reflective electrodes 15 may have a configuration stacked with these metal materials and a light-transmitting conductive material, such as indium tin oxide (ITO). The reflective electrodes 15 are made using a material having good reflectance, and serve as reflective plates that diffusely reflect the light incident from the outside.
The light reflected by the reflective electrode 15 travels in a uniform direction toward the display surface 1a side, although the light is scattered by the diffuse reflection. A change in level of a voltage applied to the reflective electrode 15 changes the transmission state of the light in the liquid crystal layer 30 on the upper side of the reflective electrodes, that is, the transmission state of the light of each of the sub-pixels. In other words, the reflective electrode 15 also has a function as the sub-pixel electrode.
The second panel 3 includes a second substrate 21, a color filter 22, a common electrode 23, an orientation film 28, a ¼ wavelength plate 24, a ½ wavelength plate 25, and a polarizing plate 26. One of the surfaces of the second substrate 21 that is opposed to the first panel 2 is provided with the color filter 22 and the common electrode 23 in this order. The orientation film 28 is provided between the common electrode 23 and the liquid crystal layer 30. The other surface of the second substrate 21 that is opposed to the display surface 1a is provided with the ¼ wavelength plate 24, the ½ wavelength plate 25, and the polarizing plate 26 stacked in this order.
Examples of the second substrate 21 include a glass substrate and a resin substrate. The common electrode 23 is made of a light-transmitting conductive material, such as ITO. The common electrode 23 is disposed so as to be opposed to the reflective electrodes 15, and supplies a common potential to each of the sub-pixels S. The color filter 22 includes filters having, for example, three colors of red (R), green (G), and blue (B), but the present disclosure is not limited to this example.
The liquid crystal layer 30 includes, for example, nematic liquid crystals. A change in level of a voltage between the common electrode 23 and the reflective electrode 15 changes the orientation state of liquid crystal molecules in the liquid crystal layer 30. Through this process, the light passing through the liquid crystal layer 30 is modulated on a per sub-pixel S basis.
For example, external light is incident from outside the display surface 1a of the display device 1, and the incident light reaches the reflective electrodes 15 through the second panel 3 and the liquid crystal layer 30. The incident light is reflected on the reflective electrodes 15 of the pixels S. The reflected light is modulated on a per sub-pixel S basis, and emitted from the display surface 1a. Through this process, the image is displayed.
With reference to
The pixel Pixa includes a red (R) sub-pixel SRa (first sub-pixel), a green (G) sub-pixel SGa, and a blue (B) sub-pixel SBa. The sub-pixels SRa, SGa, and SBa are arranged in the X-direction. Each of the sub-pixels SRa, SGa, and SBa is referred to as a sub-pixel Sa when these colors are not particularly distinguished, and is referred to as a sub-pixel S when no distinction is made as to which of the pixels Pixa, Pixb, Pixc, or Pixd includes the sub-pixel S.
The pixel Pixb includes a red (R) sub-pixel SRb (second sub-pixel), a green (G) sub-pixel SGb, and a blue (B) sub-pixel SBb.
The red (R) sub-pixel SRa includes a memory MRa (first memory). The green (G) sub-pixel SGa includes a memory MGa. The blue (B) sub-pixel SBa includes a memory MBa. As illustrated, for example, in
In the same manner, the red (R) sub-pixel SRb includes the memory MRb (second memory). The green (G) sub-pixel SGb includes the memory MGb. The blue (B) sub-pixel SBb includes the memory MBb.
The memory M is, for example, a memory cell that stores therein one-bit data, but the present disclosure is not limited to this example. The memory M may be a memory cell that stores therein data of two or more bits.
As will be described later, each of the sub-pixels includes the sub-pixel electrode. Specifically, the red (R) sub-pixel SRa of the first pixel Pixa (first sub-pixel) includes the first sub-pixel electrode functioning as a reflective electrode 15. The red (R) sub-pixel SRb of the second pixel Pixb (second sub-pixel) includes the second sub-pixel electrode functioning as another reflective electrode 15. The same configuration applies to the other sub-pixels. In this regard, in
The switching unit Osw is coupled to the four sub-pixels S and the four memories M. The switching unit Osw switches between coupling and uncoupling of wiring between the four sub-pixels S. The switching unit Osw opens and closes paths for coupling the sub-pixels (for example, the four sub-pixels Sa, Sb, Sc, and Sd) to one of the memories M. Specifically, the switching unit Osw includes, for example, a switch Osw1, a switch Osw2, and a switch Osw3. The switch Osw1 opens and closes the wiring between the sub-pixels Sa and Sb. The switch Osw2 opens and closes the wiring between the sub-pixels Sb and Sc. The switch Osw3 opens and closes the wiring between the sub-pixels Sc and Sd. The switching unit Osw only needs to be capable of switching between a coupling state in which the sub-pixels (for example, the four sub-pixels Sa, Sb, Sc, and Sd) are coupled to one of the memories M, and a coupling state in which the sub-pixels are respectively coupled to the memories M different from one another. In other words, the specific configuration of the switching unit Osw may be that including, for example, the switches Osw1, Osw2, and Osw3, or may be another configuration (refer to
In the first mode, the switches Osw1, Osw2, and Osw3 are opened to be in an uncoupled state, and the switches Mswa, Mswb, Mswc, and Mswd are closed to be in a coupled state. As a result, the sub-pixel SRa, the sub-pixel SRb, the sub-pixel SRc, and the sub-pixel SRd are coupled to the memory MRa, the memory MRb, the memory MRc, and the memory MRd, respectively. In the first mode, each sub-pixel SR is subjected to gradation control according to the sub-pixel data being stored in a corresponding one of the memories MR individually coupled thereto.
In the second mode, the switches Osw1, Osw2, and Osw3 are closed to be in a coupled state. Any one of the switches Mswa, Mswb, Mswc, and Mswd (for example, the first switch) is closed to be in a coupled state, and the other three thereof (for example, the other switches including the second switch) are opened to be in an uncoupled state. As a result, the four sub-pixels SR: the sub-pixel SRa, the sub-pixel SRb, the sub-pixel SRc, and the sub-pixel SRd, are coupled to any one of the four memories MR: the memory MRa, the memory MRb, the memory MRc, and the memory MRd. For example, the four sub-pixels SR: the sub-pixel (first sub-pixel electrode) SRa, the sub-pixel (second sub-pixel electrode) SRb, the sub-pixel SRc, and the sub-pixel SRd, are coupled to the memory (first memory) MRa. In the second mode, the memory being coupled to the four sub-pixels SR is changed according to the timing of switching between the frame images of a moving image. In
In the second mode, a predetermined number (for example, four included in the 2×2 pixels Pix) of the sub-pixels SR are controlled in gradation using the sub-pixel data being stored in the same memory MR. Therefore, the predetermined number of the sub-pixels SR have the same gradation. In contrast, in the first mode, the predetermined number of the sub-pixels SR are controlled in gradation using the individual sub-pixel data. Accordingly, the first mode also serves as a mode capable of achieving a resolution the predetermined number of times higher than that of the second mode.
The predetermined number is not limited to four and only needs to be two or greater. In the second mode, the positional relation of the sub-pixels SR using the same sub-pixel data is not limited to that included in the 2×2 pixels Pix, and can be changed as appropriate.
The memory block MBRa includes a switch Gswa, the memory MRa, and the switch Mswa. The switch Gswa is interposed between a source line SGL1 and the memory MRa, and couples the source line SGL1 to the memory MRa in response to the gate signal. The sub-pixel data transmitted through the source line SGL1 is stored in the memory MRa, which has been coupled to the source line SGL1 in response to the gate signal.
Gate lines GCL1, GCL2, . . . corresponding to the V rows of the pixels Pix are arranged on the first panel 2. The gate lines GCL1, GCL2, . . . extend along the X-direction in the display area DA (refer to
The sub-pixels SR in the same row share the gate line in the same row. For example, the switches Gswa and Gswb operate in response to the gate signal transmitted through the gate line GCL1. The same description applies to the relation between the switches Gswc and Gswd and the gate line GCL2. The sub-pixels SR in the same column share the source line in the same column. For example, the switches Gswa and Gswc are coupled to the source line SGL1. The switches Gswb and Gswd are coupled to a source line SGL4. The mechanism of operation of each of the switches Gswb, Gswc, and Gswd is the same that of the switch Gswa. The source line SGL1 is coupled to components of the sub-pixels SRa and SRc. The source line SGL2 is coupled to components of the sub-pixels SGa and SGc. The source line SGL3 is coupled to components of the sub-pixels SBa and SBc. The source line SGL4 is coupled to components of the sub-pixels SRb and SRd. A source line SGL5 is coupled to components of the sub-pixels SGb and SGd. A source line SGL6 is coupled to components of the sub-pixels SBb and SBd. Although not illustrated, the same description applies to configurations not included in the 2×2 pixels Pix, but included in the other pixels Pix.
The gate line drive circuit 9 includes output terminals corresponding to the V rows of the pixels Pix. The output terminals are coupled to the respective gate lines GCL1, GCL2, . . . . The gate line drive circuit 9 sequentially outputs the gate signal for selecting one of the V rows based on a control signal Sig4 (a scan start signal or a clock pulse signal) supplied from the timing controller 4b. The gate signals are transmitted through the gate lines GCL1, GCL2, . . . , and causes the switches Gswa, Gswb, Gswc, Gswd, . . . to operate.
The source line drive circuit 5 outputs, through the source lines SGL1, SGL2, . . . , the sub-pixel data to the memories provided in the sub-pixels SR selected by the gate signal.
The memory selection circuit 8 includes a switch SW2, a latch 71, and a switch SW3. The switch SW2 is controlled by a control signal Sig2 supplied from the timing controller 4b. The timing controller 4b switches the control signal Sig2 between high and low levels based on which of a still image or a moving image is displayed. The control signal Sig2 is input to the switch SW2 and the switches included in the switching unit Osw. The control signal Sig2 is inverted and then input to a switch SW5. The switch SW5 opens and closes a path between selection signal lines SELa, SELb, SELc, and SELd and a power supply line VDD on a high-potential side.
When a still image is displayed in the first mode, the control signal Sig2 is set to the low level. As a result, as illustrated in
Each of the selection signal lines SELa, SELb, SELc, and SELd extends along the X-direction in the display area DA (refer to
The selection signal lines SELa, SELb, SELc, and SELd coupled to the power supply line VDD on the high-potential side are placed in the same state as that of transmitting the high-level signal. As a result, the switches Mswa, Mswb, Mswc, and Mswd are closed to be in a coupled state. Accordingly, the first mode is established in which the sub-pixel SRa, the sub-pixel SRb, the sub-pixel SRc, and the sub-pixel SRd are coupled to the memory MRa, the memory MRb, the memory MRc, and the memory MRd, respectively. In the first mode, the switch SW2 of the memory selection circuit 8 is placed in an uncoupled state because the control signal Sig2 is at the low level.
When a moving image is displayed in the second mode, the control signal Sig2 is set to the high level. As a result, as illustrated in
The switch SW2 is placed in a coupled state based on the high-level control signal Sig2. As a result, the reference clock signal CLK is supplied to the latch 71. The latch 71 keeps the supplied reference clock signal CLK at a high level for one period of the reference clock signal CLK.
The switch SW3 selects any one of the selection signal lines SELa, SELb, SELc, and SELd as a target (coupling target), the coupling target being coupled to an output terminal of the latch 71. The switch SW3 is controlled by a control signal Sig3 supplied from the timing controller 4b. The control signal Sig3 is a signal for controlling switching timing of the switch SW3. The switch SW3 sequentially switches the coupling target in response to the control signal Sig3. For example, the switch SW3 switches the coupling target in the order of the selection signal lines SELa, SELb, SELc, and SELd, and then returns the coupling target to the selection signal line SELa. The switch SW5 is opened in response to the low-level signal to uncouple the selection signal lines SELa, SELb, SELc, and SELd from the power supply line VDD on the high-potential side. Thus, the selection signal lines SELa, SELb, SELc, and SELd are set to the high or low level in response to the switching of the switch SW3. The coupling target is set to the high level, and the lines that are not the coupling target are set to the low level.
When any one of the selection signal lines SELa, SELb, SELc, and SELd selected as the coupling target of the switch SW3 is set to the high level, a corresponding one of the switches Mswa, Mswb, Mswc, and Mswd is closed, and the others thereof are opened. Consequently, the four sub-pixels SR (sub-pixels SRa, SRb, SRc, and SRd) coupled to one another, are coupled to any one of the four memories MR (the memory MRa, the memory MRb, the memory MRc, and the memory MRd). When the switch SW3 switches the coupling target in response to the control signal Sig3, the memory MR coupled to the four sub-pixels SR coupled to one another is switched. This operation switches the frame images constituting the moving image.
The common electrode drive circuit 6 inverts the common potential VCOM common to the sub-pixels SR in synchronization with the reference clock signal CLK, and outputs the common potential VCOM inverted in synchronization with the reference clock signal CLK to the common electrode 23 (refer to
Based on a display signal, the inversion switch 61 supplies the sub-pixel data as it is or in an inverted form to the sub-pixel electrode 15. The liquid crystal LQ is provided between the sub-pixel electrode 15 and the common electrode 23. As illustrated in
The following describes the inversion driving of the sub-pixel S. The inversion switch 61 is interposed between the memory M and the sub-pixel electrode (reflective electrode) 15 (refer to
The memory Ma has a static random access memory (SRAM) cell structure including an inverter circuit 81 and an inverter circuit 82 that are coupled in parallel in opposite directions. An input terminal of the inverter circuit 81 and an output terminal of the inverter circuit 82 constitute a node N1, and an output terminal of the inverter circuit 81 and an input terminal of the inverter circuit 82 constitute a node N2. The inverter circuit 81 and the inverter circuit 82 operate using power supplied from the power supply line VDD on the high-potential side and a power supply line VSS on a low-potential side.
The memory block MBa is coupled to the source line SGL1, a gate line GCLa, the selection signal line SELa, and the power supply line VDD on the high-potential side, and in addition, to a gate line xGCLa, a selection signal line xSELa, and the power supply line VSS on the low-potential side.
The node N1 is coupled to an output terminal of the switch Gswa.
An input terminal of the switch Gswa is coupled to the source line SGL1. An output terminal of the switch Gswa is coupled to the node N1. When the gate signal supplied to the gate line GCLa is set to a high level and the inverted gate signal supplied to the gate line xGCLa is set to a low level, the switch Gswa is placed in a coupled state to couple the source line SGL1 to the node N1. This operation stores the sub-pixel data supplied to the source line SGL1 into the memory Ma.
The node N2 is coupled to an input terminal of the switch Mswa.
The input terminal of the switch Mswa is coupled to the node N2. An output terminal of the switch Mswa is coupled to a node N3. The node N3 is an output node of the memory Ma, and is coupled to the inversion switch 61 (refer to
In the first embodiment, the exemplary case has been described where the memory M is an SRAM. However, the present disclosure is not limited thereto. The memory M may be a dynamic random access memory (DRAM), for example.
An input terminal of the inverter circuit 91, a gate terminal of the p-channel transistor 94, and a gate terminal of the n-channel transistor 95 are coupled to a node N4. The node N4 is an input node of the inversion switch 61, and is coupled to the nodes N3 of the memory Ma. The node N4 is supplied with the sub-pixel data from the memory Ma. The inverter circuit 91 operates using power supplied from the power supply line VDD on the high-potential side and the power supply line VSS on the low-potential side.
One of the source and the drain of the n-channel transistor 92 is coupled to a signal line xFRP1. One of the source and the drain of the p-channel transistor 93 is coupled to the signal line FRP1. One of the source and the drain of the p-channel transistor 94 is coupled to the signal line xFRP1. One of the source and the drain of the n-channel transistor 95 is coupled to the signal line FRP1. The other of the source and the drain of each of the n-channel transistor 92, the p-channel transistor 93, the p-channel transistor 94, and the n-channel transistor 95 is coupled to a node N5.
The node N5 is an output node of the inversion switch 61, and is coupled to the reflective electrode (sub-pixel electrode) 15. If the sub-pixel data supplied from the memory Ma is at a high level, the output signal of the inverter circuit 91 is at a low level. If the output signal of the inverter circuit 91 is at the low level, the n-channel transistor 92 is placed in an uncoupled state, and the p-channel transistor 93 is placed in a coupled state.
If the sub-pixel data supplied from the memory Ma is at the high level, the p-channel transistor 94 is placed in an uncoupled state, and the n-channel transistor 95 is placed in a coupled state. Thus, if the sub-pixel data supplied from the memory Ma is at the high level, the display signal supplied to the signal line FRP1 is supplied to the sub-pixel electrode 15 through the p-channel transistor 93 and the n-channel transistor 95.
The display signal supplied to the signal line FRP1 and the common potential VCOM supplied to the common electrode 23 are inverted in synchronization with, for example, the reference clock signal CLK. When the display signal is in phase with the common potential VCOM, that is, for example, when these signals always keep the same potential as each other, no voltage is applied to the liquid crystal LQ, so that the orientation of the molecules does not change. As a result, the sub-pixel is placed in a black display state (a state of not transmitting the reflected light, that is, a state in which the reflected light does not pass through the color filter, and no color is displayed).
If the sub-pixel data supplied from the memory Ma is at a low level, the output signal of the inverter circuit 91 is at a high level. If the output signal of the inverter circuit 91 is at the high level, the n-channel transistor 92 is placed in a coupled state, and the p-channel transistor 93 is placed in a uncoupled state.
If the sub-pixel data supplied from the memory Ma is at the low level, the p-channel transistor 94 is placed in a coupled state, and the n-channel transistor 95 is placed in an uncoupled state. Thus, if the sub-pixel data supplied from the memory Ma is at the low level, the inverted display signal supplied to the signal line xFRP1 is supplied to the sub-pixel electrode 15 through the n-channel transistor 92 and the p-channel transistor 94.
The inverted display signal supplied to the signal line xFRP1 is inverted in synchronization with the reference clock signal CLK. When the inverted display signal is out of phase with the common potential VCOM, a voltage is applied to the liquid crystal LQ, so that the orientation of the molecules changes. As a result, the sub-pixel is placed in a white display state (a state of transmitting the reflected light, that is, a state in which the reflected light passes through the color filter, and colors are displayed).
The reference clock signal CLK is supplied from the inversion drive circuit 7. As illustrated in
In the present embodiment, the common potential supplied to the common electrode is an alternating current (AC) signal. The signal line FRP is supplied with an AC signal having the same phase as the common potential, and the signal line xFRP is supplied with an AC signal in the opposite phase to the common potential. However, another configuration can also be employed in which the common potential supplied to the common electrode is a direct current (DC) having a predetermined fixed potential, and the signal line FRP is supplied with a direct current having the predetermined fixed potential whereas the signal line xFRP is supplied with an AC signal inverted in polarity with respect to the fixed potential.
The switching unit Osw is provided between rows of the sub-pixels S. Although the switching unit Osw illustrated in
Before time t1, the display device 1 operates in the first mode. The memories Ma (MRa, MGa, and MBa; the same applies hereinafter), Mb (MRb, MGb, and MBb; the same applies hereinafter), Me (MRc, MGc, and MBc; the same applies hereinafter), and Md (MRd, MGd, and MBd; the same applies hereinafter) respectively store therein the still image sub-pixel data SA1 (SAR1, SAG1, and SAB1; the same applies hereinafter), SA2 (SAR2, SAG2, and SAB2; the same applies hereinafter), SA3 (SAR3, SAG3, and SAB3; the same applies hereinafter), and SA4 (SAR4, SAG4, and SAB4; the same applies hereinafter). Since the control signal Sig2 is at the low level, the coupling of the sub-pixels S is not established by the switching unit Osw. Since the selection signal lines SELa, SELb, SELc, and SELd are coupled to the power supply line VDD on the high-potential side, all the selection signal lines SELa, SELb, SELc, and SELd are at the high level. Thus, for example, the sub-pixel SRa, the sub-pixel SRb, the sub-pixel SRc, and the sub-pixel SRd are coupled to the memory MRa, the memory MRb, the memory MRc, and the memory MRd, respectively. The same description applies to the other sub-pixels (sub-pixels SG and SB). Thus, the gradations of the sub-pixels Sa, Sb, Sc, and Sd are maintained in states controlled according to the still image sub-pixel data SA1, SA2, SA3, and SA4.
In the example illustrated in
At time t1, the control signal Sig2 is changed from the state corresponding to the first mode (for example, the low level) to the state corresponding to the second mode (for example, the high level). Since the control signal Sig2 is at the high level, the coupling of the sub-pixels S is established by the switching unit Osw. The selection signal lines SELa, SELb, SELc, and SELd are not coupled to the power supply line VDD on the high-potential side. As a result, from time t1 onward, any one of the selection signal lines SELa, SELb, SELc, and SELd is selected by the latch 71, and the selected one is set to the high level, while the others being set to the low level. Thus, the four sub-pixels S: the sub-pixel Sa, the sub-pixel Sb, the sub-pixel Sc, and the sub-pixel Sd, are coupled to any one of the four memories M of the memory Ma, the memory Mb, the memory Me, and the memory Md. More specifically, the sub-pixels SRa, SRb, SRc, and SRd are coupled to any one of the four memories MR: the memory MRa, the memory MRb, the memory MRc, and the memory MRd. The same description applies to the other sub-pixels (sub-pixels SG and SB). The four sub-pixels S are controlled in gradation according to the sub-pixel data being stored in one of the memories M that is coupled thereto. For example, the selection signal line SELa is set to the high level at times t1 and t5. Accordingly, the four sub-pixels S are controlled in gradation according to the moving image sub-pixel data MA being stored in the memory Ma. More specifically, the four sub-pixels: the sub-pixels SRa, the sub-pixels SRb, the sub-pixels SRc, and the sub-pixels SRd, are controlled in gradation according to the moving image sub-pixel data MRA being stored in the memory MRa. The same description applies to the other sub-pixels (sub-pixels SG and SB).
At time t2, the gate signals are transmitted through the gate lines GCL1 and GCL2 (or gate lines xGCL1 and xGCL2). Moving image sub-pixel data MC and moving image sub-pixel data MD are transmitted through the source lines SGL1 to SGL3 and SGL4 to SGL6. This operation changes the data being stored in the memories Mc and Md from the still image sub-pixel data SA3 and SA4 to the moving image sub-pixel data MC and MD. For example, the pieces of data being stored in the memories MRe and MRd are changed from the still image sub-pixel data SAR3 and SAR4 to moving image sub-pixel data MCR and MDR. The same description applies to the other sub-pixels (sub-pixels SG and SB). The sub-pixel data MA, the sub-pixel data MB, the sub-pixel data MC, and the sub-pixel data MD are pieces of moving image sub-pixel data corresponding to different one-frame images. In other words, in the case of the second mode, the four memories: the memory Ma, the memory Mb, the memory Me, and the memory Md, retain data corresponding to a predetermined number of the frame images constituting the moving image.
As described above, in the second mode, the four sub-pixels S are controlled in gradation according to the sub-pixel data of the memory M corresponding to one of the selection signal lines SELa, SELb, SELc, and SELd set to a high level. At times t2 and t6, the selection signal line SELb is set to the high level. Accordingly, the four sub-pixels S are controlled in gradation according to the moving image sub-pixel data MA being stored in the memory Mb. For example, the four sub-pixels: the sub-pixels SRa, the sub-pixels SRb, the sub-pixels SRc, and the sub-pixels SRd, are controlled in gradation according to the sub-pixel data MRB for the moving data being stored in the memory MRb. At times t3 and t7, the selection signal line SELc is set to the high level, and the four sub-pixels S are controlled in gradation according to the sub-pixel data MA for the moving data being stored in the memory Mc. For example, the four sub-pixels: the sub-pixels SRa, the sub-pixels SRb, the sub-pixels SRc, and the sub-pixels SRd, are controlled in gradation according to the sub-pixel data MRC for the moving data being stored in the memory MRc. At times t4 and t8, the selection signal line SELd is set to the high level, and the four sub-pixels S are controlled in gradation according to the sub-pixel data MA for the moving data being stored in the memory Md. For example, the four sub-pixels: the sub-pixels SRa, the sub-pixels SRb, the sub-pixels SRc, and the sub-pixels SRd, are controlled in gradation according to the sub-pixel data MRD for the moving data being stored in the memory MRd. While the gradation control performed during a time period from time t2 to time t4 and a time period from time t6 to time t8 has been described above by exemplifying the sub-pixels SR, the same description applies to the other sub-pixels (sub-pixels SG and SB).
In the example illustrated in
At time t9, the control signal Sig2 is changed from the state corresponding to the second mode (for example, the high level) to the state corresponding to the first mode (for example, the low level). As a result, the coupling of the sub-pixels S established by the switching unit Osw and the coupling between the selection signal lines SELa, SELb, SELc, and SELd and the power supply line VDD on the high-potential side become the same state as those before time t1. After time t9, the gradations of the sub-pixels Sa and Sb are maintained in the states controlled according to the still image sub-pixel data SA1 and SA2.
At time t10, the gate signals are transmitted through the gate lines GCL1 and GCL2 (or the gate lines xGCL1 and xGCL2). The still image sub-pixel data SA3 and still image sub-pixel data SA4 are transmitted through the source lines SGL1 and SGL4. This operation changes the data being stored in the memories Mc and Md from the moving image sub-pixel data MC and MD to the still image sub-pixel data SA3 and SA4. For example, the pieces of data being stored in the memories MRc and MRd are changed from the moving image sub-pixel data MCR and MDR to the still image sub-pixel data SAR3 and SAR4. The same description applies to the other sub-pixels (sub-pixels SG and SB). After time t10, the gradations of the sub-pixels Sc and Sd are maintained in the states controlled according to the still image sub-pixel data SA3 and SA4.
According to the first embodiment described above, the display device 1 is capable of selecting either the first mode for displaying a still image or the second mode for displaying a moving image. The first mode is a mode in which each of the sub-pixels S is coupled to the memory M provided in the sub-pixel S. The second mode is a mode including the time periods in each of which some of the sub-pixels S are coupled to the memory provided in another of the sub-pixels S. In other words, each of the sub-pixels S is capable of being coupled to a memory provided in another of the sub-pixels S. As a result, the display device 1 can display a moving image without providing, in each of the sub-pixels S, memories the number of which corresponds to the number of frames of the moving image. Accordingly, the display device 1 can display a moving image having frames the number of which exceeds the number of memories provided in each of the pixels Pix and a still image having a higher definition than that of the moving image.
The second mode can be a mode in which a predetermined number of the sub-pixels S are coupled to one of the memories M provided in the predetermined number of the sub-pixels S, and the memory being coupled to the predetermined number of the sub-pixels S is changed at predetermined intervals of time. The predetermined number is two or greater. When the display device 1 operates in the second mode, the predetermined number of the memories M provided in the predetermined number of the sub-pixels S can store therein the pieces of data corresponding to the predetermined number of the frame images constituting a moving image. As a result, the display device 1 can display the moving image including the predetermined number of the frame images without providing, in each of the sub-pixels S, memories the number of which corresponds to the number of frames of the moving image. When the predetermined number of the sub-pixels S are the sub-pixels S having the same color included in the predetermined number of the pixels Pix, the sub-pixel data corresponding to the sub-pixels S having the same color can more easily be shared.
The following describes a display device according to a second embodiment. In the description of the second embodiment, the same items as those in the first embodiment are denoted by the same reference numerals, and will not be described in some cases.
The switch Sswa selects either the memory SMa or memory MMa as the memory M that is coupled to the switch Mswa. The switch Sswa is disposed between the sub-pixel Sa and the memory Ma. The same description applies to the switches Sswb, Sswc, and Sswd (by replacing the subscripts).
In the second mode, the switch Sswa couples the switch Mswa to the memory MMRa. The same description applies to the switches Sswb, Sswc, and Sswd (by replacing the subscripts). As a result, the four sub-pixels SR: the sub-pixel SRa, the sub-pixel SRb, the sub-pixel SRc, and the sub-pixel SRd, are coupled to any one of the four memories M: the memory MMRa, the memory MMRb, the memory MMRc, and the memory MMRd.
In the configuration included in the sub-pixel SRa, a portion constituted by the switch Gswa and the memory Ma in the first embodiment is replaced with a switch SGswa, a switch MGswa, the memory SMRa, the memory MMRa, and the switch Sswa in the second embodiment. The memory SMRa is the still image memory M. The memory MMRa is the moving image memory M. The same description applies to configurations included in the sub-pixels SRb, SRc, and SRd (by replacing the subscripts).
The gate line GCL1 in the first embodiment is replaced with a gate line GS1 for a still image and a gate line GM1 for a moving image. In the same manner, the gate line GCL2 in the first embodiment is replaced with a gate line GS2 for a still image and a gate line GM2 for a moving image.
The switch SGswa opens and closes a path between the source line SGL1 and the memory SMRa. The switch SGswa opens or closes depending on whether the gate signal is supplied from the gate line GS1. The switch MGswa opens and closes a path between the source line SGL1 and the memory MMRa. The switch MGswa opens or closes depending on whether the gate signal is supplied from the gate line GM1.
A switch SGswb opens and closes a path between the source line SGL4 and the memory SMRb. The switch SGswb opens or closes depending on whether the gate signal is supplied from the gate line GS1. A switch MGswb opens and closes a path between the source line SGL4 and the memory MMRb. The switch MGswb opens or closes depending on whether the gate signal is supplied from the gate line GM1.
A switch SGswc opens and closes a path between the source line SGL1 and the memory SMRc. The switch SGswc opens or closes depending on whether the gate signal is supplied from the gate line GS2. A switch MGswc opens and closes a path between the source line SGL1 and the memory MMRc. The switch MGswc opens or closes depending on whether the gate signal is supplied from the gate line GM2.
A switch SGswd opens and closes a path between the source line SGL4 and the memory SMRd. The switch SGswd opens or closes depending on whether the gate signal is supplied from the gate line GS2. A switch MGswd opens and closes a path between the source line SGL4 and the memory MMRd. The switch MGswd opens or closes depending on whether the gate signal is supplied from the gate line GM2.
The difference between the configuration constituted by the memory Ma of the first embodiment and the configuration constituted by the memory SMRa, the memory MMRa, and the switch Sswa of the second embodiment is as described above with reference to
At the time when the sub-pixel data is written to the memory SMRa and the memory SMRb, the gate signal is output to the gate line GS1. At the time when the sub-pixel data is written to the memory MMRa and the memory MMRb, the gate signal is output to the gate line GM1. At the time when the sub-pixel data is written to the memory SMRc and the memory SMRd, the gate signal is output to the gate line GS2. At the time when the sub-pixel data is written to the memory MMRc and the memory MMRd, the gate signal is output to the gate line GM2.
At the time when the sub-pixel data is written to the memory SMRa, the memory MMRa, the memory SMRc, or the memory MMRc, the sub-pixel data is output to the source line SGL1. At the time when the sub-pixel data is written to the memory SMRb, the memory MMRb, the memory SMRd, or the memory MMRd, the sub-pixel data is output to the source line SGL4.
According to the second embodiment described above, the memories SM for the first mode allow the sub-pixel data corresponding to a still image to continue to be retained in the memories SM. The memories MM for the second mode allow the sub-pixel data corresponding to a moving image to continue to be retained in the memories MM. In other words, the rewriting of the sub-pixel data associated with the mode change can be omitted.
The memories SM may be used in the second mode in the same circuit as that of the second embodiment. This case allows the number of frames of a moving image to be increased to twice that of the sub-pixels S coupled by the switching unit Osw. The number of the memories M included in each of the sub-pixels S may be three or greater. In that case, the switch Ssw serves as a switch that establishes coupling to any one of the memories M included in the sub-pixel S.
The following describes a display device according to a third embodiment. In the description of the third embodiment, the same items as those in the first or second embodiment are denoted by the same reference numerals, and will not be described in some cases.
The sub-pixels S included in each of the pixels Pix have areas different from one another. For example, the pixel Pixa includes the sub-pixel S1a, the sub-pixel S2a, and the sub-pixel S3a. The sub-pixel S2a is larger in area than the sub-pixel S1a. The sub-pixel S3a is larger in area than the sub-pixel S2a. The same configuration applies to the sub-pixels S included in the pixels Pixb, Pixc, and Pixd (by replacing the subscripts).
Each of the pixels Pix includes the memories M the number of which corresponds to the number of the sub-pixels S included on the pixel Pix. For example, the pixel Pixa includes three memories M: a memory M1a, a memory M2a, and a memory M3a. The same configuration applies to the pixels Pixb, Pixc, and Pixd (by replacing the subscripts). The memory M1a, the memory M2a, and the memory M3a are referred to as a memory M1, a memory M2, and a memory M3 when no distinction is made as to which of the pixels Pixa, Pixb, Pixc, or Pixd includes the memories M1, M2, and M3.
The switching unit OswA is coupled to the three sub-pixels S and the three memories M.
The switching unit OswA switches between coupling and uncoupling of wiring between the three sub-pixels S. Specifically, the switching unit OswA includes a switch Osw4 and a switch Osw5. The switch Osw4 opens and closes the wiring between the sub-pixels S1 and S2. The switch Osw5 opens and closes the wiring between the sub-pixels S2 and S3. The switching unit OswA is configured to be coupled to the three memories M through their respective switches. Specifically, the switching unit OswA is configured to be coupled to the memories M1, M2, and M3 through switches Msw1, Msw2, and Msw3, respectively. The switch Msw1 opens and closes wiring between the sub-pixel S1 and the memory M1. The switch Msw2 opens and closes wiring between the sub-pixel S2 and the memory M2. The switch Msw3 opens and closes wiring between the sub-pixel S3 and the memory M3.
In the second mode, the switches Osw4 and Osw5 are closed to be in a coupled state. Any one of the switches Msw1, Msw2, and Msw3 is closed to be in a coupled state, and the other two thereof are opened to be in an uncoupled state. As a result, the three sub-pixels S: the sub-pixel S1a, the sub-pixel S2a, and the sub-pixel S3a, are coupled to any one of the three memories M: the memory M1a, the memory M2a, and the memory M3a. In the second mode, the memory being coupled to the three sub-pixels Sa is switched according to the timing of switching between the frame images of a moving image. In
The third embodiment exemplifies a case where the numbers of the sub-pixels S and the memories M included in each of the pixels Pix are three. This is, however, merely an example, and the numbers are not limited thereto. The numbers of the sub-pixels S and the memories M included in each of the pixels Pix for the area coverage modulation may be two, or four or more.
The still image memory M and the moving image memory M may be individually provided in the display device of the third embodiment in the same manner as the second embodiment. In that case, only one memory M is required for the still image. In other words, the third embodiment may be provided with memories M, in the sub-pixel, the number of which is obtained by adding one, which is the number of memories for the still image, to the number corresponding to the predetermined number of moving image frames.
According to the third embodiment described above, the sub-pixels having areas different from one another enable the gradation expression based on the area coverage modulation in the first mode.
The following describes a modification of any one of the embodiments. In the description of the modification, the same items as those in the first, second, or third embodiment are denoted by the same reference numerals, and will not be described in some cases. The modification is applicable to any one of the embodiments (first, second, and third embodiments).
Under the control of the timing controller 4b, the selection circuit 32A selects one of a first frequency-divided clock signal CLK-X0 to a fifth frequency-divided clock signal CLK-X4 as a first selected clock signal CLK-SEL1. The selection circuit 32A outputs the first selected clock signal CLK-SEL1 to the memory selection circuit 8. Under the control of the timing controller 4b, the selection circuit 32A selects one of the first to fifth frequency-divided clock signals CLK-X0 to CLK-X4 as a second selected clock signal CLK-SEL2. The selection circuit 32A outputs the second selected clock signal CLK-SEL2 to the common electrode drive circuit 6 and the inversion drive circuit 7. The frequency of the first selected clock signal CLK-SEL1 and the frequency of the second selected clock signal CLK-SEL2 may be equal to or different from each other.
The first selector 341 is supplied with the first to fifth frequency-divided clock signals CLK-X0 to CLK-X4. The first selector 341 selects one frequency-divided clock signal, as the first selected clock signal CLK-SEL1, out of the first to fifth frequency-divided clock signals CLK-X0 to CLK-X4 based on a control signal Sig6 supplied from the timing controller 4b. The first selector 341 outputs the first selected clock signal CLK-SEL1 to the memory selection circuit 8.
The second selector 342 is supplied with the first to fifth frequency-divided clock signals CLK-X0 to CLK-X4. The second selector 342 selects one frequency-divided clock signal, as the second selected clock signal CLK-SEL2, out of the first to fifth frequency-divided clock signals CLK-X0 to CLK-X4 based on a control signal Sig7 supplied from the timing controller 4b. The second selector 342 outputs the second selected clock signal CLK-SEL2 to the common electrode drive circuit 6 and the inversion drive circuit 7.
The frequency dividing circuit 31 outputs, to the selection circuit 32A, the first to fifth frequency-divided clock signals CLK-X0 to CLK-X4 obtained by dividing the frequency of the reference clock signal CLK. The selection circuit 32A selects one frequency-divided clock signal, as the first selected clock signal CLK-SEL1, out of the first to fifth frequency-divided clock signals CLK-X0 to CLK-X4. The selection circuit 32A outputs the first selected clock signal CLK-SEL1 to the memory selection circuit 8. The selection circuit 32A selects one of the first to fifth frequency-divided clock signals CLK-X0 to CLK-X4 as the second selected clock signal CLK-SEL2. The selection circuit 32A outputs the second selected clock signal CLK-SEL2 to the common electrode drive circuit 6 and the inversion drive circuit 7.
The frequency dividing circuit 31 and the selection circuit 32A may be mounted on the first panel 2 as a chip-on-glass (COG) module. The frequency dividing circuit 31 and the selection circuit 32A may alternatively be mounted on the flexible substrate F as the chip-on-film (COF) module.
The timing controller 4b outputs, to the second selector 342, the control signal Sig7 for selecting the fourth frequency-divided clock signal CLK-X3 based on the value of the setting register 4c. This operation causes the second selector 342 to select the fourth frequency-divided clock signal CLK-X3 as the second selected clock signal CLK-SEL2. Thus, the frequency of the second selected clock signal CLK-SEL2 is ⅛ times the frequency of the reference clock signal CLK. The second selector 342 outputs the second selected clock signal CLK-SEL2 to the common electrode drive circuit 6 and the inversion drive circuit 7. The common electrode drive circuit 6 supplies, to the common electrode 23, the common potential VCOM that is inverted in synchronization with the first selected clock signal CLK-SEL1.
From time t50 to time t54, four frame images corresponding to the moving image sub-pixel data MA, MB, MC, and MD are sequentially switched. Also at later times, the frame images are sequentially switched at intervals of the same period.
At time t55, the second selected clock signal CLK-SEL2 changes from a low level to a high level. This signal change causes the common electrode drive circuit 6 to invert the common potential VCOM of the common electrode 23 at time t55. The operation of the common electrode drive circuit 6 after time t55 is the same as the operation thereof from time t52 to time t55, and therefore, will not be described. In this manner, the frequency dividing circuit 31 and the selection circuit 32A can individually control the switching period of the frame images and the switching period of the inversion driving of the sub-pixel potential.
The individual timing control by use of the frequency dividing circuit 31 and the selection circuit 32A is not limited to the switching period of the frame images and the switching period of the inversion driving of the sub-pixel potential. For example, the period of the replacement of the sub-pixel data being stored in the memory M and the switching period of the frame images may be individually controlled.
As illustrated in
The preferred embodiments of the present invention have been described above. The present invention is, however, not limited to the embodiments described above. The content disclosed in the embodiments is merely an example, and can be variously modified within the scope not departing from the gist of the present invention. Any modifications appropriately made within the scope not departing from the gist of the present invention also naturally belong to the technical scope of the present invention. At least one of various omissions, replacements, and modifications of the components can be made without departing from the gist of the embodiments and the modification described above.
Number | Date | Country | Kind |
---|---|---|---|
2018-048494 | Mar 2018 | JP | national |