One embodiment of the present invention relates to a display device having an input function. One embodiment of the invention disclosed herein relates to a wiring structure of a display device having embedded a touch sensor.
Electronic devices that are operated by touching images such as icons displayed on the screen are becoming popular. The display panels used in such electronic devices are also referred to as touch panels (or touch screens). In the touch panel, the touch sensor of the capacitive type is adopted. The capacitance type touch sensor, there is one that detects a change in the capacitance between a pair of sensor electrodes called Tx electrode and Rx electrode as an input signal.
Conventional touch panel has a structure in which a touch sensor panel and a display panel are overlapped. However, the structure in which two panels are overlapped, it becomes a problem that the thickness of the display device increases. For example, in a display device that bends or folds, such as referred to as a flexible display, a structure in which the touch sensor panel and the display panel are overlapped becomes a factor that hinders flexibility.
Therefore, a structure in which an electrode functioning as a touch sensor is embedded the display panel is disclosed. For example, in a display panel using an organic electroluminescent element (hereinafter, also referred to as “organic EL element”), a first detection electrode and a second detection electrode are arranged across the inorganic insulating film provided as a sealing film, a display device called in-cell type provided with a touch sensor in the panel is disclosed (Japanese Laid-Open Patent Publication No. 2015-050245).
When the touch sensor is to be embedded in the display panel, the wirings to be connected to the detection electrode is required, the number of wirings formed in the display panel increases. Further, the display element provided on the display panel is protected by a sealing layer. Therefore, it is necessary to provide a detection electrode and the wiring without deteriorating the sealing performance of the sealing layer.
A display device in an embodiment according to the present invention includes a substrate having an insulating surface, a pixel part having a plurality of pixels on the insulating surface, a terminal part including a first terminal arranged in a region outside the pixel part on the insulating surface, and a second terminal arranged in a region inside the first terminal, a wiring part including a first wiring arranged between the pixel part and the terminal part, a sensing part overlapped on the pixel part, and a sealing part covering the pixel part and the wiring part. The sealing part includes a first inorganic insulating layer, an organic insulating layer, and a second inorganic insulating layer in this order from the substrate side, and the organic insulating layer is arranged in a region overlapping the pixel part, and the first inorganic insulating layer and the second inorganic insulating layer are arranged in a region overlapping the pixel part and the wiring part. The sensing part includes a first detection electrode arranged at an upper side of the first inorganic insulating layer and at a lower side of the second inorganic insulating layer; and a second detection electrode arranged at an upper side of the second inorganic insulating layer. The first wiring included in the wiring part is electrically connected to the first detection electrode at an opening provided in the second inorganic insulating layer, and the first wiring extends to an outer region of the second inorganic insulating layer and is electrically connected to the second terminal.
A manufacturing method for a display device in an embodiment according to the present invention, the method includes forming a pixel part arranged a plurality of pixels on a substrate having an insulating surface, forming a terminal part including a first terminal in a region outside the pixel part on the insulating surface, forming a second terminal between the pixel part and the terminal part on the insulating surface, forming a first inorganic insulating layer covering the pixel part, forming a first detection electrode layer extending in a first direction on the first inorganic insulating layer, forming an organic insulating layer covering the first detection electrode layer, forming a second inorganic insulating layer covering the organic insulating layer, removing the first inorganic insulating layer and the second inorganic insulating layer on the second terminal, and forming an opening exposing the first detection electrode layer in the second insulating layer, and forming a second detection electrode layer extending in a second direction intersecting with the first direction on the second inorganic insulating layer, and forming a first wiring connected to the first detection electrode and the second terminal in the opening provided in the second inorganic insulating layer.
Hereinafter, the embodiments of the present invention will be described while referencing the drawings. However, the present invention may be implemented in many different ways, therefore interpretation should not be limited to the content exemplified in the embodiments below. In order to provide a clearer description, some components of the drawings such as the width, thickness, shape, etc. of each part are represented schematically. These drawings are merely examples and do not limit the interpretation of the present invention. In this specification and each of the drawings, elements similar to previously described elements are marked with the same symbols (numbers followed by a, b, and the like) and detailed descriptions are omitted accordingly. Furthermore, characters labeled as “first” and “second” are symbols used to distinguish each element, and do not have any further meaning unless otherwise specified.
In this specification, when certain components or regions are described as being “above” or “below” other components or regions, as long as there are no limitations, it does not necessarily mean they are directly above or below. This description includes cases in which a component or region is located higher or lower than another component or region. In other words, other components or regions are located between the component or region being described and the component or region above or below. Further, in the description below, unless otherwise noted, in a sectional view, the side on which the second substrate is located with respect to the substrate will be described as “above” and the other side will be described as “below”.
The display device 100 has a first terminal part 112a in which a video signal or the like is input, a second terminal part 112b in which a signal of the touch sensor 108 is input and output. The first terminal part 112a and the second terminal part 112b is disposed at one end in one main surface of the substrate 102 having an insulating surface. The first terminal part 112a and the second terminal part 112b and a plurality of terminal electrodes are arranged along the end of the substrate 102 having an insulating surface. A plurality of terminal electrodes of the first terminal part 112a and the second terminal part 112b is connected to the flexible printed wiring substrate 114. A drive circuit 110 outputs a video signal to the pixel 106. The drive circuit 110 is attached to the first surface of the substrate 102 or to a flexible printed wiring substrate 114.
The substrate 102 having an insulating surface is formed of a member such as glass, plastics (polycarbonate, polyethylene terephthalate, polyimide, polyacrylate, etc.). When the substrate 102 is made of plastic, it is possible to fabricate the display device 100 having flexibility by thinning the substrate. That is, by using a plastic substrate as the substrate 102, it is possible to realize a flexible display.
Above the pixel part 104 and the touch sensor 108, a polarizing plate 116 including a polarizer may be provided. For example, the polarizer 116 is composed of a polarizer that exhibits circularly polarized light. The polarizer 116 is formed of a film substrate including a polarizer. By providing the polarizing plate 116 overlapped on the pixel part 104, it is possible to prevent reflection (mirroring) of the display screen.
Although omitted in
The circuit element layer 122 includes an interlayer insulating layer. The interlayer insulating layer insulates the wirings provided in the different layers. The interlayer insulating layer includes at least one layer of inorganic interlayer insulating layer and at least one layer of organic interlayer insulating layer. The inorganic interlayer insulating layer is formed of inorganic insulating materials such as silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide and the like. The organic interlayer insulating layer is formed by organic insulating materials such as acrylic, polyimide, and the like. The circuit element layer 122 includes a transistor as an active element and a capacitor and a resistor as a passive element, and further includes wirings connecting these elements. The circuit element layer 122 has a structure in which these elements and wirings are embedded in the interlayer insulating layer.
The display element layer 124, as the display element, a light emitting element, or an electro-optical element for expressing an electro-optical effect by the applying a voltage is used. When an organic EL element is used as a light emitting element, the display element layer 124 includes a pair of electrodes distinguished as an anode and a cathode, an organic layer including an organic EL material, and an insulating partition layer separating between adjacent organic EL elements. The organic EL element is electrically connected to the transistor of the circuit element layer 122.
The sealing layer 126 has a structure in which a plurality of insulating films is laminated.
In the first detection electrode 134 and second detection electrode 140 that make up the sensing part of the touch sensor 108, the first detection electrode 134 is embedded in the sealing layer 126 and the second detection electrode 140 is positioned above the sealing layer 126. Although not shown in
The first detection electrode 134 is arranged within the sealing layer 126 so as to extend in a first direction, and the second detection electrode 140 is arranged over the sealing layer 126 so as to extend in a second direction intersecting the first direction. The first direction can be any direction. For example, the first direction can be a direction along the column direction corresponding to the arrangement of the pixels. In this case, the second direction can be a direction along the array of pixel row directions. A plurality of first detection electrodes 134 and a plurality of second detection electrodes 140 are arranged in the sensing part. In this embodiment, a group by the plurality of first detection electrodes 134 is also referred to as a first detection electrode pattern, a group by the plurality of second detection electrodes 140 is also referred to as a second detection electrode pattern. In
The first detection electrode 134 and the second detection electrode 140 are arranged across the second inorganic insulating layer 132 that constitutes at least the sealing layer 126. The first detection electrode 134 and the second detection electrode 140 are insulated by at least the second inorganic insulating layer 132. That is, the first detection electrode 134 is arranged at least on the lower layer than the second inorganic insulating layer 132, and the second detection electrode 140 is arranged on the upper layer than the at least the second inorganic insulating layer 132. The first detection electrode 134 and the second detection electrode 140 are insulated by being arranged across at least the second inorganic insulating layer 132, and electrostatic capacitance is caused between the both detection electrodes. The sensing part of the touch sensor 108 detects a change in electrostatic capacitance that occurs between the first detection electrode 134 and the second detection electrode 140 to determine the presence or absence of a touch.
Shapes of the first detection electrode 134 and the second detection electrode 140 are optional. The first detection electrode 134 and the second detection electrode 140 may be rectangular (stripe) shaped or may have a shape articulated with diamond-shaped electrodes as shown in
The first detection electrode pattern 138 and the second detection electrode pattern 144 are arranged in an area overlapping the pixel part 104. In other words, the first detection electrode 134 and the second detection electrode 140 are arranged so as to overlap at least a portion of the pixel 106 (a portion of the light emitting elements provided in the pixel). By thus arranging the first detection electrode pattern 138 and the second detection electrode pattern 144, while displaying an image such as an icon on the pixel part 104, it is possible to sense the presence or absence of touch by the touch sensor 108.
The second detection electrode 140 is electrically connected to a first wiring 136b provided on the exterior of the pixel part 104. The first wiring 136b is electrically connected to the second terminal 115b of the second terminal part 112b. The configurations of first wiring 136b, the first terminal 113b and the second terminal 115b are the same as the configurations of the first wiring 136a, the first terminal 113a and the second terminal 115a, respectively.
In
The substrate 102 is provided with an opening region 120 surrounding the pixel part 104. In this opening region 120, organic materials between the substrate 102 and the second inorganic insulating layer is removed. In other words, the interlayer insulating layer on the substrate 102 includes at least one layer of inorganic interlayer insulating layer and organic interlayer insulating layer, having a stacked region in which the inorganic interlayer insulating layer and the organic interlayer insulating layer are stacked, and the opening region in which organic interlayer insulating layer is removed and the inorganic interlayer insulating layer remains. Details of the opening region 120 are described by the cross-sectional structures of the pixel part 104, which will be described later. The first wiring 136a, 136b may be drawn from the pixel part 104 through the top of the opening region 120 to the peripheral edge of the substrate 102.
As shown in
As shown in
The display device 100 according to an embodiment of the present invention, the first detection electrode pattern 138 and the second detection electrode pattern 144 constituting the sensing part of the touch sensor 108 is provided on the substrate 102. With such a configuration, since it is not necessary to externally attach the touch sensor provided as a separate part, it is possible to reduce the thickness of the display device 100. As shown in
As shown in
As shown in
As shown in
The transistor 146 includes a structure in which a semiconductor layer 158, a gate insulating layer 160, a gate electrode 162 are stacked. The semiconductor layer 158 is formed of amorphous or polycrystalline silicon, or an oxide semiconductor or the like. At least one source drain wiring 164 is provided over the gate electrode 162 via a first insulating layer 166. A second insulating layer 168 as a planarization layer is provided over the upper layer of the at least one source drain wiring 164.
The first insulating layer 166, the second insulating layer 168 is interlayer insulating layer. The first insulating layer 166 is a kind of inorganic interlayer insulating layer and is formed of an inorganic insulating material such as silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, or the like. The second insulating layer 168 is a kind of organic interlayer insulating layer and is formed of an organic insulating material such as polyimide, acrylic, or the like. The interlayer insulating layer is stacked in the order of the first insulating layer 166, the second insulating layer 168 from the substrate 102 sides. By providing the second insulating layer 168 formed of an organic insulating material on the upper layer of the first insulating layer 166, uneven caused by the transistor 146 or the like is embedded, and the surface is planarized.
An organic EL element 150 is provided on the upper surface of the second insulating layer 168. The organic EL element 150 has a structure in which the pixel electrode 170 electrically connected to the transistor 146 and an organic layer 172 and a counter electrode 174 are stacked. The organic EL element 150 is a two-terminal element, light emission is controlled by controlling the voltage between the pixel electrode 170 and the counter electrode 174. A partition wall layer 176 is provided on the second insulating layer 168 so as to cover the peripheral portion and expose the inner region of the pixel electrodes 170. The counter electrode 174 is provided on the top surface of the organic layer 172. The organic layer 172 is provided from a region overlapping the pixel electrodes 170 to an upper surface portion of the partition wall layer 176. The partition wall layer 176 covers the peripheral portion of the pixel electrode 170, to form a smooth step at the end of the pixel electrode 170 is formed of an organic resin material. As organic resin materials, acrylic and polyimide, etc. are used.
The organic layer 172 is formed of a single layer or multi layers comprising an organic EL material. The organic layer 172 is formed from an organic material of a low molecule system or a polymer system. When using an organic material of the low molecule system, the organic layer 172 is composed of a light emitting layer including an organic EL material, a hole injection layer so as to sandwich the light emitting layer, an electron injection layer, further including a hole transport layer and an electron transport layer. For example, the organic layer 172 can have a structure in which the light emitting layer is sandwiched between the hole injection layer and the electron injection layer. Further, the organic layer 172, in addition to the hole injection layer and the electron injection layer, a hole transport layer, an electron transport layer, a hole block layer, such as an electron block layer may be appropriately added.
In the present embodiment, the organic EL element 150 has a so-called top emission type structure that emits light emitted by the organic layer 172 to the opposing electrode 174 side. Therefore, it is preferable that the pixel electrodes 170 have light reflectivity. The pixel electrodes 170 can be formed of a light reflective metallic material such as aluminum (Al) or silver (Ag), and can be formed of a structure in which a transparent conductive layer made of ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) which having excellent hole injection properties and a light reflective metal layer are laminated.
The counter electrode 174 is formed of a transparent conductive film, such as ITO or IZO, which is transparent and conductive so as to transmit light emitted from the organic layer 172. At the interface between the counter electrode 174 and the organic layer 172, a layer comprising an alkaline metal such as lithium or an alkaline earth metal such as magnesium may be provided to enhance the carrier implantability.
The first capacitor element 152 uses the gate insulating layer 160 as a dielectric film, is formed in a region where the semiconductor layer 158 and the first capacitor electrode 178 is overlapped. The second capacitor element 154, the third insulating layer 182 provided between the pixel electrode 170 and the second capacitor electrode 180 is used as a dielectric film, is formed by a second capacitor electrode 180 provided overlapped on the pixel electrode 170 and the pixel electrode. The third insulating layer 182 is formed of an inorganic insulating material such as silicon nitride.
The sealing layer 126 is provided on the upper layer of the organic EL element 150. The sealing layer 126 is provided to prevent moisture or the like from entering the organic EL element 150. The sealing layer 126, from the side of the organic EL element 150 has a structure in which the first inorganic insulating layer 128, the organic insulating layer 130 and the second inorganic insulating layer 132 are laminated. The first inorganic insulating layer 128 and the second inorganic insulating layer 132 are formed of inorganic insulating materials such as silicon nitride, silicon nitride, aluminum oxide, and the like. The first inorganic insulating layer 128 and the second inorganic insulating layer 132, a coating of these inorganic insulating materials, sputtering method, is formed by a plasma-CVD method or the like. The first inorganic insulating layer 128 and the second inorganic insulating layer 132 are formed from 0.1 μm to 10 μm, and preferably from 0.5 μm to 5 μm thick.
The organic insulating layer 130 is preferably formed of acrylic resin, polyimide resin, epoxy resin or the like. The organic insulating layer 130 is provided with a thickness of 20 μm from 1 μm, preferably 10 μm from 2 μm. The organic insulating layer 130 is provided by a coating method such as a spin-coating, or by a vapor deposition method using an organic material source. The organic insulating layer 130 is preferably formed within a predetermined area including the pixel part 104 such that the ends are sealed with the first inorganic insulating layer 128 and the second inorganic insulating layer 132 while covering the pixel part 104. For example, as shown in
Although omitted in
In the touch sensor 108, the first detection electrode 134 is provided between the first inorganic insulating layer 128 and the organic insulating layer 130, and the second detection electrode 140 is provided on top of the second inorganic insulating layer 132. The first detection electrode 134 and the second detection electrode 140 may be transparent electrodes formed of a transparent conductive film to transmit light emitted from the organic EL element 150. ITO or IZO film which are a kind of transparent conductive film are prepared by sputtering method.
The first detection electrode 134 and the second detection electrode 140 may be fabricated as transparent electrodes by a printing method using metal nanowires, in addition to oxide conductive materials such as ITOs, IZOs, and the like, or may be fabricated by mesh metal wiring using metal films. The mesh metal wiring has a structure in which the conductive layer portions constituting the first detection electrode 134 and the second detection electrode 140 are provided only in regions that do not overlap the organic EL element 150. For example, at least one of the electrodes of the first detection electrode 134 and the second detection electrode 140 may be formed of mesh wiring having a laminated structure including a titanium (Ti) layer, an aluminum (Al) layer, and a titanium (Ti) layer.
The first detection electrode 134 may be a mesh wiring formed of metal having a laminated structure including a titanium layer, an aluminum layer and a titanium layer, and the second detection electrode 140 may be a diamond shaped electrode formed of a transparent conductive film such as ITO or IZO. The opening 133 is formed in the second inorganic insulating layer 132 to electrically connect the first detection electrode 134 and the first wiring 136a (or the first wiring 136b) on the second inorganic insulating layer 132. When forming the opening 133, a process of removing the inorganic insulating layer on the first terminal part 112a and the second terminal part 112b at the same time is performed. The size of the opening 133 and the area to remove the inorganic insulating layers on the first terminal part 112a and the second terminal part 112b are different. Therefore, there is a risk that the first detection electrode 134 underneath the opening 133 may be over-etched. However, the first detection electrode 134 can prevent over-etching because titanium is provided on the outermost surface.
When the first detection electrode 134 and the second detection electrode 140 are mesh-metal wirings, the titanium layer, the aluminum layer, and the titanium layer preferably have a stacked structure. Again, the opening 133 is formed in the second inorganic insulating layer 132 to electrically connect the first detection electrode 134 to the first wiring 136a (or the first wiring 136b) on the second inorganic insulating layer 132. When forming the opening 133, a process of removing the inorganic insulating layer on the first terminal part 112a and the second terminal part 112b at the same time is performed. The size of the opening 133, the area for removing the inorganic insulating layer on the first terminal part 112a and the second terminal part 112b is different. Therefore, there is a risk that the first detection electrode 134 underneath the opening 133 may be over etched. However, since titanium is provided on the outermost surface of the first detection electrode 134, it is possible to prevent over etching. Furthermore, even if the wiring for extending from the pixel part 104 to the peripheral region 118 is formed using either one of the first detection electrode 134 and the second detection electrode 140, unlike when forming the wiring with a transparent conductive film such as ITO or IZO, there is no need to consider the film thickness reduction due to etching, thereby eliminating the need for a thick film and realizing a low resistance.
In the present embodiment, since the organic insulating layer 130 is formed on the upper layer of the first detection electrode 134, even if a foreign material is attached after forming a transparent conductive film or the like forming the first detection electrode 134, the foreign material can be coated with the organic insulating layer 130. This prevents shorting of the second detection electrode 140 formed on the organic insulating layer 130 and the first detection electrode 134. Further, since the upper layer of the organic insulating layer 130 is provided with a second inorganic insulating layer 132, it is possible to maintain its function as a sealing layer 126.
As shown in
As shown in
Thus, by dividing the second insulating layer 168 formed of an organic insulating material in the peripheral region 118 by the opening region 120, the inorganic material layer is arranged so as to cover the side and bottom surfaces of the opening region 120, the sealing structure is formed. By sandwiching the second insulating layer 168 formed of an organic insulating material by a layer of inorganic material, moisture can be prevented from entering the pixel part 104 from the end of the substrate 102. The opening region 120 separating the second insulating layer 168 can function as a moisture blocking region, the structure can be referred to as a “moisture blocking structure”.
Next, a method of manufacturing the display device 100.
First, after forming the organic EL element 150 on the first surface of the substrate 102 having an insulating surface, to prepare a first inorganic insulating layer 128 (
After fabricating the first inorganic insulating layer 128, to fabricate the first detection electrode 134 (
Next, the organic insulating layer 130 is formed by a printing method or the like (
Then, to form the second inorganic insulating layer 132 (
At these stages, the sealing layer 126 is formed. At this stage, the first terminal part 112a and the second terminal part 112b are covered with the sealing layer 126. To remove the sealing layers 126 covering these parts, the steps of patterning the first inorganic insulating layer 128 and the second inorganic insulating layer 132 are performed (
Thereafter, to fabricate the first detection electrode 140 (
In the present embodiment, in the step of etching the first inorganic insulating layer and second inorganic insulating layer (S20), when etching the first inorganic insulating layer 128 and the second inorganic insulating layer 132, the opening 133 for exposing the first detection electrode 134 is formed in the second inorganic insulating layer 132. Here, since there is a difference in the etching rate of the inorganic insulating film constituting the metal and the first inorganic insulating layer 128 and the second inorganic insulating layer 132 constituting the first detection electrode 134 (silicon nitride film), the formation of the opening 133 and the inorganic insulating layer removal of the second terminal part 112b, it can be patterned collectively in the same etching process. Thus, reducing the manufacturing process of the display device 100, it is possible to reduce the manufacturing cost.
According to the present embodiment, since the dielectric layer for forming the capacitance between the first detection electrode 134 and the second detection electrode 140 is replaced by a portion of the sealing layer 126, it is possible to be thinning by reducing the number of layers of the thin film. Further, the forming step of the contact hole serving as the opening 133 on the second inorganic insulating layer 132, since the removing step of the inorganic insulating layer on the second terminal part (terminal out) can be patterned collectively, it is possible to reduce the manufacturing costs. Further, when the number of layers of the thin film to be stacked on the pixel part 104 is reduced, the light extraction efficiencies from the pixel 106 are improved. Then, the yield at the time of manufacture of the display device is also improved.
Such a structure is also applicable in a sheet-like substrate in which the substrate 102 is formed of an organic resin material, and it is possible to realize a reduction in the number of layers and a manufacturing process in a flexible display in which a touch panel is incorporated.
Further, the display device 200 shown in
Other configurations of the display device 200 according to the present embodiment is similar to the display device 100 according to the first embodiment, to achieve the same effect. Furthermore, the display device 200 according to the present embodiment, up to the vicinity of the second terminal part 102b, since the first detection electrode 134 is arranged sandwiched between the first inorganic insulating layer 128 and the second inorganic insulating layer 132 constituting the sealing layer 126, degradation of the wiring, corrosion is further reduced, it is possible to improve the reliability of the touch sensor.
As shown in
Other configurations of the display device 300 according to the present embodiment is similar to the display device 100 according to the first embodiment, to achieve the same effect.
Number | Date | Country | Kind |
---|---|---|---|
2017-155333 | Aug 2017 | JP | national |
This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2017-155333, filed on Aug. 10, 2017, and PCT Application No. PCT/JP2018/029905 filed on Aug. 9, 2018, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2018/029905 | Aug 2018 | US |
Child | 16773066 | US |