The disclosure relates to a display device.
The development of a display device including quantum dot light-emitting diodes (QLEDs), organic light-emitting diodes (OLEDs), or the like having a thin film layered structure has been advancing.
In the display device described above, two light beams emitted from a light-emitting layer interfere with each other. More specifically, interference occurs between a first light beam directly radiated to the outside from the light-emitting layer and a second light beam radiated to the outside after the first light beam emitted from the light-emitting layer reflects on an electrode. Accordingly, the intensity of light emitted from the light-emitting layer varies depending on an optical path difference between the first light beam and the second light beam. Thus, the intensity of light visible to a person's eyes varies depending on a traveling direction of light radiated from a light-emitting surface, that is, an angle of view of the person viewing a display surface.
With the display device described above, when the thickness of a charge transport layer on a light-emitting side of the light-emitting layer is the same among the colors red, green, blue, and the like of the emitted light, for example, light distribution characteristics, that is, the intensity of light depending on the traveling direction of the light, varies among wavelengths of the light. In general, light with a shorter wavelength, that is, green light and blue light, compared with red light, is radiated with a higher intensity in a direction more inclined with respect to the reference direction described above. Thus, when the display surface is viewed along a direction inclined with respect to the reference direction orthogonal to the display surface, the display surface may be viewed in more greenish or blueish colors, compared with a color on the display surface viewed along the reference direction.
That is, there is a difference in tint between a case where the display surface is viewed along the reference direction orthogonal to the display surface and a case where the display surface is viewed along a direction inclined with respect to the reference direction.
The disclosure has been made in view of the problem described above. An object of the disclosure is to provide a display device with a reduced difference in tint of a display surface between a case where the display surface is viewed along the reference direction orthogonal to the display surface and a case where the display surface is viewed along a direction inclined with respect to the reference direction.
A display device according to an aspect of the disclosure includes a plurality of light-emitting layers each configured to emit light in a reference direction orthogonal to a light-emitting surface, and a light-blocking portion configured to block part of light traveling from the light-emitting surface in directions inclined with respect to the reference direction, in which the plurality of light-emitting layers include a first light-emitting layer configured to emit light with a first peak wavelength and a second light-emitting layer configured to emit light with a second peak wavelength that is longer than the first peak wavelength, and the first light-emitting layer has, compared with the second light-emitting layer, a large ratio of the part of light blocked by the light-blocking portion to light traveling in at least one certain direction out of the inclined directions.
Hereinafter, a display device according to embodiments of the present invention will be described with reference to the accompanying drawings. Note that, in the drawings, the same or equivalent elements are denoted by the same reference numerals and signs, and redundant descriptions thereof will be omitted.
A display device D according to a first embodiment will be described with reference to
An overview of a configuration of the display device D according to the embodiment will be described with reference to
Each of the group of pixels P includes a red subpixel R, a green subpixel G, and a blue subpixel B. In
The light-emitting surface is one of two opposite main surfaces of a light-emitting layer described below, and is the main surface that is on the side from which light emitted from the light-emitting layer is radiated to the outside of the display device D, that is, the main surface that is on the back side of the main surface that faces a reflection electrode. Specifically, the light-emitting surface is assumed to be a main surface on the upper side of the light-emitting layer in cross-sectional views and perspective views used for the following description. In this specification, the display surface DS described above is assumed to be formed by virtual planes including the respective light-emitting surfaces of the red subpixel R, the green subpixel G, and the blue subpixel B.
In this specification, unless otherwise specified, a “surface” means a plane limited to a portion where a member constituting the surface exists, whereas a “plane” means a plane without such a limitation. There may be a case where the light-emitting surfaces of the subpixels and the light-emitting layers thereof are on different planes, such as a case where the light-emitting surfaces of the red subpixel R, the green subpixel G, and the blue subpixel B are not on the same plane. In such a case, each subpixel and the light-emitting layer thereof are assumed to have individual light-emitting surfaces. Regarding the virtual plane and the display surface DS in the description on each subpixel, each subpixel is assumed to have an individual virtual plane and display surface DS.
The light-emitting surface of the red subpixel R, the light-emitting surface of the green subpixel G, and the light-emitting surface of the blue subpixel B can emit red light, green light, and blue light, respectively, in a radiating manner, with the reference direction orthogonal to the light-emitting surfaces serving as the center axis. The red light, the green light, and the blue light have, in this order, shorter peak wavelengths.
Thus, the following relationship holds: (the peak wavelength of the red light emitted from the light-emitting surface of the red subpixel R)>(the peak wavelength of the green light emitted from the light-emitting surface of the green subpixel G)>(the peak wavelength of the blue light emitted from the light-emitting surface of the blue subpixel B). Specifically, the peak wavelength of the red light emitted from a red light-emitting layer REML is, for example, from about 610 nm to about 780 nm. The peak wavelength of the green light emitted from a green light-emitting layer GEML is, for example, from about 500 nm to about 550 nm. The peak wavelength of the blue light emitted from a blue light-emitting layer BEML is, for example, from about 460 nm to about 500 nm.
A schematic configuration of each of the group of pixels P of the display device D of the first embodiment will be described with reference to
The bank BK is formed by a lattice portion and a frame portion surrounding the lattice portion, in plan view. The bank BK partitions a group of subpixels disposed in a matrix. However, the bank BK partitioning a group of subpixels is not an essential configuration of the display device D.
The bank BK functions as a light-blocking portion that can block light radiated from the light-emitting surfaces of the red light-emitting layer REML, the green light-emitting layer GEML, and the blue light-emitting layer BEML. The bank BK is formed of a material capable of absorbing or reflecting visible light. The visible light is light having wavelengths from about 380 nm to about 780 nm.
The bank BK blocks part of the light traveling from the light-emitting surface in a direction inclined with respect to the reference direction orthogonal to the light-emitting surface. The bank BK partitions the red light-emitting layer REML, the green light-emitting layer GEML, and the blue light-emitting layer BEML. The bank BK protrudes upward beyond the light-emitting surface of each of the red light-emitting layer REML, the green light-emitting layer GEML, and the blue light-emitting layer BEML.
As illustrated in
In each of the three pixels P forming the pixels P of the present embodiment, the red subpixel R, the green subpixel G, and the blue subpixel B are arranged in a single row along a virtual straight line VL in the row direction, that is, the lateral direction. The light-emitting surface of the red subpixel R, the light-emitting surface of the green subpixel G, and the light-emitting surface of the blue subpixel B each have a rectangular shape. The lengths of the one side of the rectangular shapes that is along the virtual straight line VL described above are respectively denoted by LR, LG, and LB.
The relationship LR>LG>LB holds. For example, LR is 200 μm, LG is 100 μm, and LB is 50 μm. The light-emitting surfaces of the red subpixel R, the green subpixel G, and the blue subpixel B have the same length along the direction orthogonal to the virtual straight line VL described above, which is 100 μm for example.
A distance from a top face of the bank BK to the light-emitting surface of the red light-emitting layer REML, a distance from the top face of the bank BK to the light-emitting surface of the green light-emitting layer GEML, and a distance from the top face of the bank BK to the light-emitting surface of the blue light-emitting layer BEML are the same, and are 10 μm.
Thus, the area of the light-emitting surface of the blue light-emitting layer BEML is smaller than the area of the light-emitting surface of the green light-emitting layer GEML. The area of the light-emitting surface of the green light-emitting layer GEML is smaller than the area of the light-emitting surface of the red light-emitting layer REML.
In other words, the following relationship holds: (the area of the light-emitting surface of the red light-emitting layer REML)>(the area of the light-emitting surface of the green light-emitting layer GEML)>(the area of the light-emitting surface of the blue light-emitting layer BEML).
On the other hand, the area of a shadow of the bank BK formed on the light-emitting surface of the red light-emitting layer REML, the area of a shadow of the bank BK formed on the light-emitting surface of the green light-emitting layer GEML, and the area of a shadow of the bank BK formed on the light-emitting surface of the blue light-emitting layer BEML are the same. Thus, regarding the ratio of the area of the shadow formed on the light-emitting surface to the area of the light-emitting surface, the following relationship holds: (red light-emitting layer REML)<(green light-emitting layer GEML)<(blue light-emitting layer BEML).
As illustrated in
In this specification, “periphery” when expressing the periphery of the light-emitting surface regarding the light-blocking portion SH means a region satisfying a condition (a distance DT between the light-emitting surface ES and the light-blocking portion SH in the virtual plane VP including the light-emitting surface)/(a height H of the light-blocking portion SH from the virtual plane VP)=2.7 (=tan 70°) or less.
This “distance DT between the light-emitting surface and the light-blocking portion SH in the virtual plane VP including the light-emitting surface” is a minimum value of the distance between a point a that is a certain point in the light-emitting surface and a point b that is a certain point in the light-blocking portion SH in the virtual plane VP including the light-emitting surface. The height H of the light-blocking portion SH from the virtual plane VP is a distance from the light-emitting surface to a highest point M in the light-blocking portion SH in a direction orthogonal to the light-emitting surface.
In general, in the use of a normal display device, the range in which the display surface DS of the display device D is viewed is considered to be the range of the conical shape from the reference direction orthogonal to the display surface DS to a direction inclined by approximately 700 with respect to the reference direction. Thus, when the display device D is viewed in an inclined direction, if the light-blocking portion SH is in the periphery of the light-emitting surface, a change in the tint can be reduced in a range of 0 to 700 from the reference direction orthogonal to the display surface DS.
The structure of each of the red subpixel R, the green subpixel G, and the blue subpixel B forming the pixel P of the display device D of the first embodiment will be described with reference to
As illustrated in
The bank BK is formed on the substrate ST. With the bank BK, adjacent subpixels among the red subpixel R, the green subpixel G, and the blue subpixel B forming a single pixel P are partitioned from each other. Specifically, part of the bank BK is disposed between the red subpixel R and the green subpixel G. Another part of the bank BK is disposed between the green subpixel G and the blue subpixel B. Still another part of the bank BK is disposed between the blue subpixel B and the red subpixel R. The bank BK is disposed between the red subpixels R, between the green subpixels G, and between the blue subpixels B.
In
In
In
More specifically, a distance from the top face of the bank BK to the light-emitting surface of the red subpixel R, a distance from the top face of the bank BK to the light-emitting surface of the green subpixel G, and a distance from the top face of the bank BK to the light-emitting surface of the blue subpixel B are the same, and are 10 μm for example. A distance from the main surface of the substrate ST to the light-emitting surface of the red light-emitting layer REML, a distance from the main surface of the substrate ST to the light-emitting surface of the green light-emitting layer GEML, and a distance from the main surface of the substrate ST to the light-emitting surface of the blue light-emitting layer BEML are the same.
In the red subpixel R, a cathode C, an electron transport layer ETL, the red light-emitting layer REML, a common hole transport layer HTL, and a common anode A are disposed on the substrate ST in this order from the lower side. In the green subpixel G, the cathode C, the electron transport layer ETL, the green light-emitting layer GEML, the common hole transport layer HTL, and the common anode A are disposed on the substrate ST in this order from the lower side. In the blue subpixel B, the cathode C, the electron transport layer ETL, the blue light-emitting layer BEML, the common hole transport layer HTL, and the common anode A are disposed on the substrate ST in this order from the lower side.
In the present embodiment, the electron transport layer ETL, the hole transport layer HTL, and the anode A are transparent layers that transmit light emitted from each light-emitting layer. The cathode C is a reflection electrode that reflects the light emitted from each light-emitting layer.
The anode A and the cathode C are interchangeable in
Thus, in any case, a portion disposed on the upper side of the light-emitting layer includes a transparent portion transmitting the light emitted from the light-emitting layer. A portion disposed on the lower side of the light-emitting layer includes a portion reflecting the light emitted from the light-emitting layer toward the upper side, that is, the light-emitting layer.
In the present embodiment, the red light-emitting layer REML, the green light-emitting layer GEML, the blue light-emitting layer BEML, and the bank BK are covered by the common hole transport layer HTL. Alternatively, three hole transport layers may respectively and individually cover the red light-emitting layer REML, the green light-emitting layer GEML, and the blue light-emitting layer BEML. Also in this case, the three hole transport layers are covered by the common anode A. Still, three anodes may be disposed over the three hole transport layers, that is, over the red light-emitting layer REML, the green light-emitting layer GEML, and the blue light-emitting layer BEML individually.
The display device D of the present embodiment includes the anode A covering the entirety of the red light-emitting layer REML, the green light-emitting layer GEML, and the blue light-emitting layer BEML. The anode A functions as a transparent common electrode. In this case, one anode A supplies charge to each of the red light-emitting layer REML, the green light-emitting layer GEML, and the blue light-emitting layer BEML, or is supplied with charge from each of the red light-emitting layer REML, the green light-emitting layer GEML, and the blue light-emitting layer BEML. Alternatively, in
The display device D of the present embodiment includes the hole transport layer HTL covering the entirety of the red light-emitting layer REML, the green light-emitting layer GEML, and the blue light-emitting layer BEML. The hole transport layer HTL functions as a transparent common charge transport layer. In this case, one hole transport layer HTL transports charge to each of the red light-emitting layer REML, the green light-emitting layer GEML, and the blue light-emitting layer BEML, or receives charge transported from each of the red light-emitting layer REML, the green light-emitting layer GEML, and the blue light-emitting layer BEML.
In the present embodiment, each of the red light-emitting layer REML, the green light-emitting layer GEML, and the blue light-emitting layer BEML may be a light-emitting layer formed by a QLED, but may be a light-emitting layer formed by any other materials such as OLED.
The reason why red light, green light, and blue light each satisfy the relationship between the radiation angle and the intensity as illustrated in
An optical path length difference L between two light beams l1 and l2 traveling along the reference direction orthogonal to the light-emitting surface will be considered with reference to
A thickness of the light-emitting layer is denoted by d1, a refractive index of the light-emitting layer is denoted by n1, a thickness of a charge (electron or hole) transport layer is denoted by d2, and a refractive index of the charge transport layer is denoted by n2. The light emission point is assumed to be the center position of the light-emitting layer in the thickness direction. The wavelength of the light is denoted by λ.
In this case, the following relationship holds: optical path length difference L=2(n1·d1/2+n2·d2). The intensity of light is proportional to sin2(πL/λ).
Thus, when πL/λ=(2a+1)n/2, that is, L=(2a+1)×λ/2 (a is 0 or a natural number), the two light beams described above are constructive. Also, when πL/λ=bπ, i.e., L=bλ (b is a natural number), the two light beams described above are destructive.
For example, when λblue=465 nm and L=233 nm for the blue subpixel B, the two above-described light beams of the blue color traveling along the reference direction orthogonal to the light-emitting surface, from the light-emitting surface of the blue light-emitting layer BEML, are constructive when L/λ=0.5. In this case, when λred=620 nm and L=233 nm for the red subpixel R, L/λ=0.37, and when λred=530 nm and L=233 nm for the green subpixel G, L/λ=0.44, meaning that the condition under which the two above-described light beams are constructive is not satisfied.
For the simplicity of the calculation, the refractive index and the position of the light emission point, that is, the optical path length difference L is assumed to be not color dependent.
An optical path length difference between two light beams traveling along a direction inclined by an angle θ with respect to the reference direction orthogonal to the light-emitting surface is denoted by L cos θ. Thus, the intensity of light traveling along the direction inclined by the angle θ with respect to the reference direction orthogonal to the light-emitting surface is calculated by the following formula: sin2 [πL/λ cos θ].
Thus, the orientation characteristics of the light traveling along the direction inclined by the angle θ with respect to the reference direction orthogonal to the light-emitting surface is as follows.
Red light: sin2 [0.37 π cos θ]
Green light: sin2 [0.44 π cos θ]
Blue light: sin2 [0.50 π cos θ]
Using these orientation characteristics, a graph as illustrated in
As illustrated in
With reference to
From
With reference to
From
In this specification, the radiation angle described above is assumed to be indicated by an angle of a direction inclined with respect to the reference direction orthogonal to the light-emitting surface, with the direction orthogonal to the light-emitting surface assumed to be 0°.
From
With reference to
As illustrated in
As illustrated in
As described above, regarding the relationship among the red light-emitting layer REML, the green light-emitting layer GEML, and the blue light-emitting layer BEML, the ratio of the area of the shadow S of the bank BK serving as the light-blocking portion to the area of the light-emitting surface varies. On the other hand, regarding the relationship between the red light-emitting layers REML, the relationship between the green light-emitting layers GEML, and the relationship between the blue light-emitting layers BEML, the ratio of the area of the shadow S of the light-blocking portion to the area of the light-emitting surface is the same.
It is assumed that the red light-emitting layer REML, the green light-emitting layer GEML, the blue light-emitting layer BEML, and the bank BK (light-blocking portion) are irradiated with virtual light traveling in a direction (for example, the first direction D2 or the second direction D3: a certain direction) inclined with respect to the reference direction D1 orthogonal to the light-emitting surface described above. In this case, the blue light-emitting layer BEML has, compared with the green light-emitting layer GEML, a large ratio of the area of the shadow S of the bank BK (light-blocking portion) projected on the light-emitting surface to the area of the light-emitting surface. The green light-emitting layer GEML has, compared with the red light-emitting layer REML, a large ratio of the area of the shadow S of the bank BK (light-blocking portion) projected on the light-emitting surface to the area of the light-emitting surface.
In other words, the blue light-emitting layer BEML has, compared with the green light-emitting layer GEML, a large ratio of light blocked (absorbed or reflected) by the bank BK (light-blocking portion) to the light traveling in at least one certain direction out of directions inclined with respect to the reference direction D1 orthogonal to the light-emitting surface. The green light-emitting layer GEML has, compared with the red light-emitting layer REML, a large ratio of light blocked (absorbed or reflected) by the bank BK (light-blocking portion) to the light traveling in at least one certain direction out of the directions inclined with respect to the reference direction orthogonal to the light-emitting surface.
Thus, the display device D can reduce a difference between the tint on the display surface DS as viewed along the reference direction D1 orthogonal to the display surface DS and the tint on the display surface DS as viewed along a direction inclined with respect to the reference direction orthogonal to the display surface DS in the row direction.
In the display device D of the present embodiment, the distance between the top face of the bank BK and the light-emitting surface is the same among the red light-emitting layer REML, the green light-emitting layer GEML, and the blue light-emitting layer BEML. Thus, the difference in tint on the display surface DS due to a difference in viewing directions can be reduced using a simple method of setting the area of the light-emitting surface of the red light-emitting layer REML, the area of the light-emitting surface of the green light-emitting layer GEML, and the area of the light-emitting surface of the blue light-emitting layer BEML different from each other in the design stage.
Note that, the film thickness of the common charge transport layer, specifically, the hole transport layer HTL, is a film thickness with which blue light beams are constructive through interference when the display surface DS is viewed along the reference direction orthogonal to the display surface DS. For example, when the display surface DS is viewed along the reference direction orthogonal to the display surface DS, the intensity of the blue light with low emission efficiency is increased through interference, whereby the brightness of the blue light with low emission efficiency can be improved.
Generally, when a value of at least one of the optical path length difference and the wavelength is adjusted to make the orientation characteristics independent of the color of the emitted light, the thickness of the charge transport layer, for example, the hole transport layer HTL, is adjusted for each color of light emitted from the light-emitting layer. In this case, the charge transport layer common to a plurality of light-emitting layers, which is the hole transport layer HTL in the present embodiment, cannot be manufactured with a single manufacturing step. This complicates the manufacturing process of the display device D.
On the other hand, in the display device D of the present embodiment, the blocking ratio of the light emitted from the light-emitting surface by the bank BK serving as the light-blocking portion is set to be different among the red light-emitting layer REML, the green light-emitting layer GEML, and the blue light-emitting layer BEML.
With this configuration, the method of manufacturing the display device D can be simple compared with a case where the charge transport layer, for example, the hole transport layer HTL, is provided for each of the red subpixel R, the green subpixel G, and the blue subpixel B individually.
With the display device D of the present embodiment, the structure and the manufacturing method can be simple compared with cases described below, specifically, a case where a height position of the light-emitting surface is set to be different among the light-emitting layers emitting light of different colors and a case where a wall portion or a conical portion is disposed on the upper side of the bank BK.
A display device D according to a second embodiment will be described with reference to
As illustrated in
Thus, the display device D of the present embodiment can reduce the difference in tint described above in the same manner as with the display device D of the first embodiment. With the display device D of the present embodiment, since the area of the light-emitting surface of the blue subpixel B is larger than the areas of the light-emitting surfaces of the other subpixels, the emission amount of the blue subpixel B, having the lowest emission efficiency among the three pixels P, can be increased compared with the display device D of the first embodiment.
A display device D according to a third embodiment will be described with reference to
As illustrated in
That is, in the present embodiment, in one pixel P, the following relationship holds: (the number of red light-emitting layers REML)<(the number of green light-emitting layers GEML)<(the number of blue light-emitting layers BEML).
More specifically, the number of red light-emitting layers REML is one, the number of green light-emitting layers GEML is four, and the number of blue light-emitting layers BEML is sixteen. Thus, in one pixel P, the difference among the total area of the light-emitting surface of the red light-emitting layer REML, the total area of the light-emitting surfaces of the green light-emitting layers GEML, and the total area of the light-emitting surfaces of the blue light-emitting layers BEML is reduced.
In addition, as illustrated in
As can be seen from
As illustrated in
Also in the present embodiment, the ratio of the area of the shadow of the bank BK formed on the light-emitting surfaces of the blue light-emitting layers BEML to the area of the light-emitting surfaces of the blue light-emitting layers BEML is the same as that in the first embodiment. More specifically, also in the present embodiment, the ratio of the light emitted from the light-emitting surfaces of the blue light-emitting layers BEML and blocked by the light-blocking portion is larger than the ratio of the light emitted from the light-emitting surfaces of the green light-emitting layers GEML and blocked by the light-blocking portion in at least one certain direction out of directions inclined with respect to the reference direction described above. The ratio of the light emitted from the light-emitting surfaces of the green light-emitting layers GEML and blocked by the light-blocking portion is larger than the ratio of the light emitted from the light-emitting surface of the red light-emitting layer REML and blocked by the light-blocking portion in at least one certain direction out of the directions inclined with respect to the reference direction described above.
As described above, all of the light-emitting surfaces of the display device D of the present embodiment are square. Thus, according to the present embodiment, in addition to the effects obtained by the first and the second embodiments, the above-described effect of reducing the difference in tint can be obtained in any of the row direction and the column direction, that is, in any of the lateral direction and the vertical direction.
A display device D according to a fourth embodiment will be described with reference to
The structure of the display device D of the present embodiment will be described with reference to
As illustrated in
More specifically, the top face of the bank BK and the light-emitting surface of the red light-emitting layer REML are in the same plane. The depth from the top face of the bank BK to the light-emitting surface of the green light-emitting layer GEML is 10 μm. The depth from the top face of the bank BK to the light-emitting surface of the blue light-emitting layer BEML is 20 μm.
As illustrated in
Also in the present embodiment, the ratio of the light emitted from the light-emitting surface of the blue light-emitting layer BEML and blocked by the light-blocking portion is larger than the ratio of the light emitted from the light-emitting surface of the green light-emitting layer GEML and blocked by the light-blocking portion in at least one certain direction out of the directions inclined with respect to the reference direction described above. The ratio of the light emitted from the light-emitting surface of the green light-emitting layer GEML and blocked by the light-blocking portion is larger than the ratio of the light emitted from the light-emitting surface of the red light-emitting layer REML and blocked by the light-blocking portion in at least one certain direction out of the directions inclined with respect to the reference direction described above.
The difference in tint on the display surface DS due to a difference in viewing directions can be reduced using a simple method of setting the depth from the top face of the bank BK to the light-emitting surface of each of the red light-emitting layer REML, the green light-emitting layer GEML, and the blue light-emitting layer BEML different from each other.
Also in the present embodiment, since all of the light-emitting surfaces have a square shape, the difference in tint described above can be reduced in any of the row direction and the column direction. With the display device D of the present embodiment, the difference in tint described above can be reduced in any of the row direction and the column direction without increasing the number of green subpixels G and blue subpixels B with respect to the number of red subpixels R.
As illustrated in
In the substrate ST and the green subpixel R, an adjustment layer Y, the cathode C, the electron transport layer ETL, the green light-emitting layer GEML, the hole transport layer HTL, and the anode A are layered in this order on the substrate ST. The adjustment layer Y is disposed between the substrate ST and the electron transport layer ETL, and has a smaller thickness than that of the adjustment layer X. The adjustment layer Y has a contact hole CHG across its thickness direction. A part of the cathode C in the contact hole CHG and a TFT in the substrate ST are electrically connected.
In the blue subpixel B, the cathode C, the electron transport layer ETL, the blue light-emitting layer BEML, the hole transport layer HTL, and the anode A are layered in this order on the substrate ST. In the blue subpixel B, no adjustment layer is provided.
Note that also in the present embodiment, the transparent common hole transport layer HTL and the transparent common anode A may be layered in this order to cover the red light-emitting layer REML, the green light-emitting layer GEML, the blue light-emitting layer BEML, and the top face of the bank BK.
In each of the red subpixel R, the green subpixel G, and the blue subpixel B, the heights of the cathode C, the electron transport layer ETL, the light-emitting layer, and the bank BK from the main surface of the substrate ST are the same. Thus, due to the presence of the adjustment layer X and the adjustment layer Y, the depths from the top face of the bank BK to each of the light-emitting surface of the red light-emitting layer REML, the light-emitting surface of the green light-emitting layer GEML, and the light-emitting surface of the blue light-emitting layer BEML are different.
From
From
A method of manufacturing the display device D of the present embodiment will be described with reference to
As illustrated in
In the state illustrated in
By the method of manufacturing the adjustment layers X and Y of the present embodiment, the depths from the top face of the bank BK to the light-emitting surface can be easily adjusted.
In addition, with the display device D of the present embodiment described above, the areas of the light-emitting surfaces need not be set to be different among the light-emitting layers emitting light of different colors, and thus the emission amounts of the light-emitting layers need not be intentionally set to be different. Thus, the manufacturing method of the light-emitting layers is simplified.
A display device D according to a fifth embodiment will be described with reference to
As illustrated in
A first wall portion BW is disposed in the periphery of the light-emitting surface of the blue light-emitting layer BEML and on an upper side of the virtual plane including the light-emitting surface of the blue light-emitting layer BEML. A second wall portion GW is disposed in the periphery of the light-emitting surface of the green light-emitting layer GEML and on the upper side of the virtual plane including the light-emitting surface of the green light-emitting layer GEML. The first wall portion BW has, compared with the second wall portion GW, a large height from the light-emitting surface.
More specifically, the first wall portion BW is disposed on the upper side of the top face of the bank BK adjacent to the blue light-emitting layer BEML. The second wall portion GW is disposed on the upper side of the top face of the bank BK adjacent to the green light-emitting layer GEML. No wall portion is disposed on the upper side of the top face of the bank BK adjacent to the red light-emitting layer REML. The first wall portion BW has, compared with the second wall portion GW, a large height from the top face of the bank BK. Note that the top face of the bank BK is included in a virtual plane having the same distance from the main surface (upper side surface) of the substrate ST.
Similar to the bank BK, the first wall portion BW and the second wall portion GW are formed of a material that blocks light, specifically, a material that absorbs or reflects light. Thus, the first wall portion BW and the second wall portion GW, together with the bank BK, function as light-blocking portions that inhibit the traveling of light radiated from the light-emitting surface of the red light-emitting layer REML, the light-emitting surface of the green light-emitting layer GEML, and the light-emitting surface of the blue light-emitting layer BEML.
The first wall portion BW is disposed to extend along one side of the square light-emitting surface of the blue light-emitting layer BEML on the top face of the bank BK adjacent to the blue light-emitting layer BEML. The first wall portion BW functions as a light-blocking portion for the blue light-emitting layer BEML. The first wall portion BW is formed of a material that absorbs or reflects visible light (light having a wavelength of approximately 380 nm to 780 nm).
The second wall portion GW is disposed to extend along one side of the square light-emitting surface of the green light-emitting layer GEML on the top face of the bank BK adjacent to the green light-emitting layer GEML. The second wall portion GW functions as a light-blocking portion for the green light-emitting layer GEML. The second wall portion GW is formed of a material that absorbs or reflects visible light (light having a wavelength of approximately 380 nm to 780 nm).
The first wall portion BW and the second wall portion GW are cuboids having different heights and the same length and width. The height of the first wall portion BW is larger than the height of the second wall portion GW. For example, the height of the first wall portion BW is 20 μm, and the height of the second wall portion GW is 10 μm.
Note that the second wall portion GW may not be provided, that is, the height of the second wall portion GW may be zero.
In the present embodiment, the light-emitting surfaces of the red light-emitting layer REML, the green light-emitting layer GEML, and the blue light-emitting layer BEML have a square shape and have the same area.
From
From
Also in the present embodiment, the ratio of the light emitted from the light-emitting surface of the blue light-emitting layer BEML and blocked by the light-blocking portion is larger than the ratio of the light emitted from the light-emitting surface of the green light-emitting layer GEML and blocked by the light-blocking portion. The ratio of the light emitted from the light-emitting surface of the green light-emitting layer GEML and blocked by the light-blocking portion is larger than the ratio of the light emitted from the light-emitting surface of the red light-emitting layer REML and blocked by the light-blocking portion.
Thus, also with the display device D of the present embodiment, the difference in tint described above can be reduced in the row direction, that is, in the lateral direction. With the display device D of the present embodiment, the difference in tint on the display surface DS due to a difference in viewing directions can be reduced using a simple method of setting the height of the first wall portion BW and the height of the second wall portion GW different from each other.
A display device D according to a sixth embodiment will be described with reference to
As illustrated in
More specifically, the first wall portion BW and the second wall portion GW are disposed on the upper side of the top face of the bank BK. Note that, also in the present embodiment, the light-emitting surface of a red light-emitting layer REML, the light-emitting surface of the green light-emitting layer GEML, and the light-emitting surface of the blue light-emitting layer BEML all have a square shape and have the same area as in the fifth embodiment.
However, the first wall portion BW and the second wall portion GW of the present embodiment are cuboids having different lengths and the same height (50 μm) and width (50 μm), unlike the first wall portion BW and the second wall portion GW of the fifth embodiment. The length of the first wall portion BW is 34 μm, and is larger than the length of the second wall portion GW, which is 18 μm.
Specifically, compared with the second wall portion GW, the first wall portion BW has the same height but has a large length extending along one side of the square light-emitting surface. Note that the second wall portion GW may not be provided, that is, the length of the second wall portion GW may be zero.
From
From
As can be seen from comparison between
In other words, also in the present embodiment, the ratio of the light emitted from the light-emitting surface of the blue blue light-emitting layer BEML and blocked by the light-blocking portion is larger than the ratio of the light emitted from the light-emitting surface of the green light-emitting layer GEML and blocked by the light-blocking portion in at least one certain direction out of directions inclined with respect to the reference direction described above. The ratio of the light emitted from the light-emitting surface of the blue green light-emitting layer GEML and blocked by the light-blocking portion is larger than the ratio of the light emitted from the light-emitting surface of the red light-emitting layer REML and blocked by the light-blocking portion in at least one certain direction out of the directions inclined with respect to the reference direction described above.
Thus, also with the display device D of the present embodiment, the difference in tint described above can be reduced in the row direction, that is, in the lateral direction. The difference in tint on the display surface DS due to a difference in viewing directions can be reduced using a simple method of setting the length of the first wall portion BW and the length of the second wall portion GW different from each other.
A display device D according to a seventh embodiment will be described with reference to
As illustrated in
The first conical portion BC and the second conical portion GC have a conical shape in the present embodiment, but may have a pyramid shape. No conical portion is disposed on the upper side of the bank BK adjacent to a red light-emitting layer REML.
The height of the first conical portion BC and the height of the second conical portion GC illustrated in
Thus, the first conical portion BC has, compared with the second conical portion GC, a large diameter for the circle defining the base (or large length for one side of the square defining the base). Note that the second conical portion GC may not be provided, and thus the diameter of the circle (or length of one side of the square) defining the base of the second conical portion GC may be zero.
The light-emitting surface of the red light-emitting layer REML, the light-emitting surface of the green light-emitting layer GEML, and the light-emitting surface of the blue light-emitting layer BEML each have a square shape of the same size.
The first conical portion BC and the second conical portion GC are formed of a material that absorbs or reflects light, to form the light-blocking portion, as in the case of the bank BK. Thus, the first conical portion BC and the second conical portion GC, together with the bank BK, function as light-blocking portions that inhibit the traveling of light radiated from the light-emitting surface of the green light-emitting layer GEML and the light-emitting surface of the blue light-emitting layer BEML. The first conical portion BC and the second conical portion GC serving as the light-blocking portions are formed of a material that absorbs or reflects visible light (light having a wavelength of approximately 380 nm to 780 nm).
Referring to
First of all, as illustrated in
Next, the silicon oxide film 2 is etched. Thus, part of the silicon oxide film 2 irradiated with light is removed. As a result, as illustrated in
When the first conical portion BC and the second conical portion are formed on the top face of the bank BK, the structure illustrated in
As illustrated in
As can be seen in
Thus, a ratio of the area of the shadow of the second conical portion GC formed on the light-emitting surface of the green light-emitting layer GEML to the area of the light-emitting surface of the green light-emitting layer GEML is smaller than a ratio of the area of the shadow of the first conical portion BC formed on the light-emitting surface of the blue light-emitting layer BEML to the area of the light-emitting surface of the blue light-emitting layer BEML.
Note that in
From
From
As can be seen from comparison between
Thus, also in the present embodiment, the ratio of the light emitted from the light-emitting surface of the blue blue light-emitting layer BEML and blocked by the light-blocking portion is larger than the ratio of the light emitted from the light-emitting surface of the green light-emitting layer GEML and blocked by the light-blocking portion in at least one certain direction out of the directions inclined with respect to the reference direction described above. The ratio of the light emitted from the light-emitting surface of the blue green light-emitting layer GEML and blocked by the light-blocking portion is larger than the ratio of the light emitted from the light-emitting surface of the red light-emitting layer REML and blocked by the light-blocking portion in at least one certain direction out of the directions inclined with respect to the reference direction described above. Thus, also with the display device D of the present embodiment, the difference in tint described above can be reduced in the row direction, that is, in the lateral direction.
With the display device D of the present embodiment, the difference in tint on the display surface DS due to a difference in viewing directions can be reduced using a simple method of setting the diameter of the circle defining the base of the first conical portion BC and the diameter of the base of the second conical portion GC different from each other.
A display device D according to an eighth embodiment will be described with reference to
The display device D includes a comb-shaped portion CO disposed on the upper side of the top face of the bank BK adjacent to a red light-emitting layer REML, a green light-emitting layer GEML, and a blue light-emitting layer BEML, the comb-shaped portion CO having one or more notches, for example, three notches, each open toward the side opposite to the bank BK. The comb-shaped portion CO functions as a light-blocking portion that inhibits the traveling of light emitted from each of the red light-emitting layer REML, the green light-emitting layer GEML, and the blue light-emitting layer BEML. The comb-shaped portion CO serving as the light-blocking portion is formed of a material that absorbs or reflects visible light (light having a wavelength of approximately 380 nm to 780 nm).
The following relationship holds: (the area of the region in a notch RO corresponding to the red light-emitting layer REML)>(the area of the region in a notch GO corresponding to the green light-emitting layer GEML)>(the area of the region in a notch BO corresponding to the blue light-emitting layer BEML). Note that, also in the present embodiment, the light-emitting surface of a red light-emitting layer REML, the light-emitting surface of the green light-emitting layer GEML, and the light-emitting surface of the blue light-emitting layer BEML all have a square shape and have the same area as in the fifth embodiment.
Also in the present embodiment, the ratio of the light emitted from the light-emitting surface of the blue blue light-emitting layer BEML and blocked by the light-blocking portion is larger than the ratio of the light emitted from the light-emitting surface of the green light-emitting layer GEML and blocked by the light-blocking portion in at least one certain direction out of the directions inclined with respect to the reference direction described above. The ratio of the light emitted from the light-emitting surface of the blue green light-emitting layer GEML and blocked by the light-blocking portion is larger than the ratio of the light emitted from the light-emitting surface of the red light-emitting layer REML and blocked by the light-blocking portion in at least one certain direction out of the directions inclined with respect to the reference direction described above. Thus, also with the display device D of the present embodiment, the difference in tint described above can be reduced in the row direction, that is, in the lateral direction.
The difference in tint on the display surface DS due to a difference in viewing directions can be reduced using a simple method of setting the areas of the regions of the three respective notches corresponding to the red light-emitting layer REML, the green light-emitting layer GEML, and the blue light-emitting layer BEML different from each other.
With the display device D of the present embodiment, the comb-shaped portion CO can be formed by simply processing a plate member. Thus, detailed processing for the wall portions or the conical portions as described in the above embodiments is not required. Thus, the display device D can be easily manufactured.
A display device D according to a ninth embodiment will be described with reference to
The display device D further includes a transparent plate SG disposed at a distance from the bank BK above the top face of the bank BK. The comb-shaped portion CO is fixed to the transparent plate SG. Also with the display device D of the present embodiment, the difference in tint described above can be reduced in the row direction, that is, in the lateral direction, as in the display device D of the eighth embodiment.
The comb-shaped portion CO functions as a spacer between the bank BK and the transparent plate SG. Thus, a state where the distance between the transparent plate SG and the bank BK is of a predetermined value or more can be maintained.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2020/026358 | 7/6/2020 | WO |