Display device

Information

  • Patent Application
  • 20080030642
  • Publication Number
    20080030642
  • Date Filed
    July 20, 2007
    17 years ago
  • Date Published
    February 07, 2008
    16 years ago
Abstract
A liquid crystal display device includes a molded resin frame, and a liquid crystal display panel formed by putting first and second substrates together and set in the molded resin frame. Two thick corner parts of the liquid crystal display panel where the first and the second substrate overlap each other, and two thin corner parts of the liquid crystal display panel including only the first substrate are separated from the molded resin frame by forming recesses in parts of the molded resin frame corresponding to the thick and the thin corner parts of the liquid crystal display panel. Each of the recesses respectively corresponding to the thin corner parts of the liquid crystal display panel has an end part corresponding to a part of the liquid crystal display panel where a corner part of the second substrate and a part of a side of the first substrate overlap each other.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects, features and advantages of the present invention will become more apparent from the following description taken in connection with the accompanying drawings, in which:



FIG. 1 is an exploded perspective view of a liquid crystal display device in a first embodiment according to the present invention;



FIG. 2 is a plan view of an assembly of a liquid crystal display panel and a molded resin frame included in the liquid crystal display device shown in FIG. 1;



FIG. 3 is a top view of a liquid crystal display panel included in a liquid crystal display device;



FIG. 4 is a side elevation taken in the direction of the arrow A in FIG. 3; and



FIG. 5 is a plan view of assistance in explaining a liquid crystal display device in a second embodiment according to the present invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

Embodiments of the present invention will now be described hereinafter with reference to the accompanying drawings.


First Embodiment

Referring to FIG. 1 showing a liquid crystal display device in a first embodiment according to the present invention, the liquid crystal display device has a liquid crystal display panel PNL formed by putting together a rectangular first substrate SUB1 and a rectangular second substrate SUB2 smaller than the first substrate SUB1. A liquid crystal layer is sealed in a space formed between the first substrate SUB1 and the second substrate SUB2. The short sides of the second substrate SUB2 are shorter than those of the first substrate SUB1.


A plurality of scanning lines and a plurality of data lines are formed on a major surface, namely, the inside surface, of the first substrate SUB1.


A plurality of color filters are formed on a major surface, namely, the inside surface, of the second substrate SUB2.


The liquid crystal display panel PNL including the first substrate SUB1 and the second substrate SUB2 is set in a molded resin frame MLD. Three sides of the second substrate SUB2 coincide respectively with three sides of the first substrate SUB1. One of the three sides of the first substrate SUB1 has a length equal to that of the corresponding one of the second substrate SUB2. A receded one of sides of the second substrate SUB2 other than those three sides is on the inner side of a corresponding side of the first substrate SUB1. Therefore, a part of the major surface of the first substrate SUB1 is exposed. Driver chips DRV provided with driving circuits are mounted on the exposed part of the major surface of the first substrate SUB1.


Corner parts of the inside surface of the molded resin frame MLD corresponding to lower corner parts, as viewed in FIG. 2, of the exposed part of the first substrate SUB1 and lower corner parts, as viewed in FIG. 2, of the second substrate SUB2 are cut to form recesses RET1 and RET2, respectively, to separate those corner parts from the molded resin frame MLD. Desirably, corner parts of the inside surface of the molded resin frame MLD corresponding to upper corner parts, as viewed in FIG. 2, of the first substrate SUB1 and the second substrate SUB2 are cut to form recesses RET3 and RET 4 to separate those corner parts from the molded resin frame MLD.


The molded resin frame MLD is formed in a size larger than that of the liquid crystal display panel PNL. The liquid crystal display panel PNL is set in the molded resin frame MLD. The molded resin frame MLD is provided in corner parts of its inside surface with the recesses RET1 to RET4. In some cases, corner parts of the liquid crystal display panel PNL cracks when vibrated if the corner parts are contiguous with the molded resin frame MLD because stress concentration is liable to occur in the corner parts of the liquid crystal display panel PNL. Therefore, the molded resin frame MLD needs to be provided with the recesses RET1 to RET4 to prevent the cracking of the corner parts of the liquid crystal display panel PNL. Strictly speaking, the recesses RET1 to RET4 of the molded resin frame MLD are opposite to the side walls of the liquid crystal display panel PNL.


If the recesses RET1 to RET4 are excessively large, the molded resin frame MLD is in contact with the liquid crystal display panel PNL in an excessively small contact area, and parts of the liquid crystal display panel PNL in contact with the molded resin frame MLD are liable to crack due to stress concentration on those parts. Therefore, parts of the sides of the liquid crystal display panel PNL need to be in contact with the molded resin frame MLD so that the sides of the liquid crystal display panel PNL may not crack.


The recesses RET3 and RET4 are opposite to thick corner parts of the liquid crystal display panel PNL where the first substrate SUB1 and the second substrate SUB2 overlap each other, namely, first corner parts.


The recesses RET1 and RET2 on the side of the exposed part of the first substrate SUB1 on which the driver chips DRV are mounted are opposite to the side walls of the liquid crystal display panel PNL. Although the driver chips DRV are mounted on the first substrate SUB1 in this embodiment, the driver chips DRV may be mounted on a flexible wiring board and the flexible wiring board may be attached to the first substrate SUB1.


The recesses RET1 and RET2 are opposite to second corner parts of the liquid crystal display panel PNL, namely, corner parts of only the first substrate SUB1. The second corner parts are thinner than the first corner parts. Each of the second corner parts has a first side having a thin part including only the first substrate SUB1 and a thick part including both the first substrate SUB1 and the second substrate SUB2, and a second side having only a thin part, i.e., only the first substrate SUB1. Thus each of the recesses RET1 and RET2 is opposite to the first side having the thin part and the thick part, and the second side having only the thin part.


An end part, namely, an upper end part, as viewed in FIG. 2, of a part, extending along the side, namely, the vertical side as viewed in FIG. 2, having the thick part and the thin part, of each of the recesses RET1 and RET2 corresponds to the thick part. Thus stress concentration on only the first substrate SUB1 can be obviated to suppress the cracking of the first substrate SUB1. The thin part of the side having both the thin and the thin part is easily cracked. In the liquid crystal display panel of the present invention, the thin parts of the sides each having both the thick and the thin part are separated from the molded resin frame MLD. Thus the thin parts are prevented from being cracked.


A recess is formed in a part of the long side member, extending along the long side of only the first substrate SUB1, of the molded resin frame MLD. A flexible printed wiring board mounted on the exposed part of the first substrate SUB1 is extended outside through the recess formed in the long side member of the molded resin frame MLD. The side of the exposed part of the first substrate SUB1 excluding the opposite corner parts is in contact with the molded resin frame MLD.


A flexible printed wiring board FPC is bonded to an edge part of the exposed part of the major surface of the first substrate SUB1. The flexible printed wiring board FPC is connected to an external display signal source, not shown, provided with a microcomputer.


Optical compensation sheets including a diffusing sheet are attached to the back surface of the liquid crystal display panel PNL. Typically, the diffusing sheet is a prism sheet PRZ. The optical compensation sheets disperse illuminating light for illuminating the liquid crystal display panel PNL in a uniform distribution on the liquid crystal display panel PNL. A light guide plate GLB is attached to the back surface of a laminated structure including the optical compensation sheets. The light guide plate GLB has a front surface, namely, an upper surface, as viewed in FIG. 1, serving as a deflecting surface CDL provided with prisms. Light-emitting diodes LED mounted on the flexible printed wiring board FPC are disposed near one end edge of the light guide plate GLB. A reflecting sheet FRS is attached to the back surface of the light guide plate GLB. A structure including those components is fixedly held between a shield frame on the front side, namely, the viewer's side, and a back case, not shown, disposed behind the reflecting sheet FRS to form the liquid crystal display device.



FIG. 2 is a plan view of an assembly of the liquid crystal display panel PNL and the molded resin frame MLD shown in FIG. 1. As mentioned in connection with FIG. 1, the liquid crystal display panel PNL is set in the molded resin frame MLD. The molded resin frame MLD is provided in corner parts of its inside surface with the recesses RET1 to RET4. Each of the recesses RET1 and RET2 on the side of the exposed part of the first substrate SUB1 on which the driver chips DRV are mounted has the end part of the part, extending along the vertical side having the thick part and the thin part, of each of the recesses RET1 and RET2 corresponds to the thick part in which the first substrate SUB1 and the second substrate SUB2 overlap each other. The recesses RET3 and RET4 are opposite to thick corners, where the first substrate SUB1 and the second substrate SUB2 overlap each other, of the liquid crystal display panel PNL. Thus the recesses RET3 and RET4, similarly to the recesses RET1 and RET2, have a cracking preventing effect.


The substrates of the liquid crystal display panel PNL are prevented from cracking when an external impact is applied to the liquid crystal display panel PNL set in the molded resin frame MLD. Thus the liquid crystal display device provided with the liquid crystal display panel PNL has high reliability.


Second Embodiment

Referring to FIG. 5 showing a liquid crystal display device in a second embodiment according to the present invention, the liquid crystal display panel of the second embodiment is formed by putting together a first substrate and a second substrate by a method different from that by which the first substrate SUB1 and the second substrate SUB2 of the liquid crystal display panel PNL in the first embodiment are put together. As shown in FIG. 5, one long side and one short of the second substrate are aligned with one long side and one short side of the first substrate. A part of a major surface of the first substrate extending along the long and the short side of the second substrate receded inside from the corresponding long and the short side of the first substrate is exposed, and driver chips are mounted on the exposed part of the major surface of the first substrate. A molded resin frame is provided with recesses RET1 to RET4. The recesses RET1 and RET2 are symmetrical. The recess RET4 is opposite to a thick corner part where the first and the second substrate overlap each other. The recesses RET1 and RET3 have end parts which are opposite to thick parts where the first and the second substrate overlap each other, respectively. The first and the second substrate of the liquid crystal display device in the second embodiment, similarly to those of the liquid crystal display device in the first embodiment, are prevented from cracking when an external impact is applied to the liquid crystal display panel. Thus the liquid crystal display device has high reliability.


Although the present invention has been described as applied to the liquid crystal display device, the present invention is applicable also to displays employing easily breakable glass or ceramic substrates. The present invention exercises the foregoing effects when applied to a display provided with a display panel formed by putting two substrates together and having parts differing from each other in thickness.


Although the invention has been described in its preferred embodiments with a certain degree of particularity, obviously many changes and variations are possible therein. It is therefore to be understood that the present invention may be practiced otherwise than as specifically described herein without departing from the scope and spirit thereof.

Claims
  • 1. A liquid crystal display device comprising: a molded resin frame; anda liquid crystal display panel including panel assembly formed by putting first and second substrates together and sealing a liquid crystal layer in a space between the first and the second substrate, and set in the molded resin frame;wherein three sides of the second substrate coincide respectively with three sides of the first substrate, a receded one of sides of the second substrate other than those three sides is on the inner side of a corresponding side of the first substrate so that a part of a major surface of the first substrate is exposed, driver chips provided with driving circuits are mounted on the exposed part of the major surface of the first substrate, parts of an inside surface of the molded resin frame contiguous with edges of the liquid crystal display panel are cut to form recesses for separating the inside surface of the molded resin frame from corner parts of the liquid crystal display panel, and a part, extending along a side of the liquid crystal display panel having a thin part including an edge of only the first substrate and a thick part including edges of both the first and the second substrate, of each of the recesses corresponds to the exposed part of the major surface of the first substrate has an end part corresponding to the thick part of the side of the liquid crystal display panel.
  • 2. The liquid crystal display device according to claim 1, wherein corner parts of the inside surface of the molded resin frame corresponding to thick corner parts of the liquid crystal display panel where the first and the second substrate overlap each other are cut to form recesses to separate those thick corner parts from the molded resin frame.
  • 3. A display device comprising: a molded resin frame; anda display panel formed by putting first and second substrate together and set in the molded resin frame;wherein the first and the second substrate are rectangular, the display panel has a thick part where the first and the second substrate overlap each other and a thin part including only the first substrate, the thin part has corner parts, the molded resin frame is provided with recesses extending along the corner parts of the thin part, respectively, and each of the recesses has an end part opposite to the thick part and a part opposite to the thin part.
  • 4. A liquid crystal display device comprising: a molded resin frame; anda liquid display panel formed by putting a color filter substrate and a TFT substrate larger than the color filer substrate in a first direction together and set in the molded resin frame;wherein the liquid crystal display panel has, near a side extending in the first direction, a thick part where the color filter substrate and the TFT substrate overlap each other, and a thin part including only the TFT substrate, and the molded resin frame is separated from the thin part including only the TFT substrate of the liquid crystal display panel.
  • 5. The liquid crystal display device according to claim 4, wherein the molded resin frame is in contact with sides of the thin part including only the TFT substrate, extending in a direction perpendicular to the first direction.
  • 6. The liquid crystal display device according to claim 4, wherein a flexible wiring substrate is disposed contiguously with the side of the thin part including only the TFT substrate, extending in a direction perpendicular to the first direction.
  • 7. The liquid crystal display device according to claim 4, wherein corner parts of the thin part, including only the TFT substrate, of the liquid crystal display panel are separated from the molded resin frame.
  • 8. The liquid crystal display device according to claim 4, wherein the molded resin frame is provided with recesses opposite to corner parts of the thin part, including only the TFT substrate, of the liquid crystal display panel.
  • 9. The liquid crystal display device according to claim 4, wherein four corners of the liquid crystal display panel are separated from the molded resin frame.
  • 10. A liquid crystal display device comprising: a molded resin frame; anda liquid crystal display panel formed by putting a color filter substrate and a TFT substrate larger than the color filter substrate together and set in the molded resin frame;wherein a first side of the liquid crystal display panel has a thick part in which the TFT substrate and the color filter substrate overlap each other, and a thin part including only the TFT substrate, and the molded resin frame is separated from a part of the first side corresponding to a boundary between the thick part in which the color filter sub and the TFT substrate overlap each other and the thin part including only the TFT substrate.
  • 11. The liquid crystal display device according to claim 10, wherein a second side of the liquid crystal display panel perpendicular to the first side has a thick part in which the TFT substrate and the color filter substrate overlap each other, and a thin part including only the TFT substrate, and the molded resin frame is separated from a part of the second side corresponding to a boundary between the thick part where the color filter sub and the TFT substrate overlap each other and the thin part including only the TFT substrate.
  • 12. The liquid crystal display device according to claim 10, wherein corner parts of the thin part including only the TFT substrate of the liquid crystal display panel are separated from the molded resin frame.
  • 13. The liquid crystal display device according to claim 10, wherein the molded resin frame is provided with recesses opposite to corner parts of the thin part, including only the TFT substrate, of the liquid crystal display panel.
  • 14. The liquid crystal display device according to claim 10, wherein four corners of the liquid crystal display panel are separated from the molded resin frame.
Priority Claims (1)
Number Date Country Kind
2006-214291 Aug 2006 JP national