One embodiment of the present invention relates to a display device. One embodiment of the present invention relates to a method for manufacturing a display device.
Note that one embodiment of the present invention is not limited to the above technical field. Examples of a technical field of one embodiment of the present invention disclosed in this specification and the like include a semiconductor device, a display device, a light-emitting apparatus, a power storage device, a memory device, an electronic device, a lighting device, an input device, an input/output device, a driving method thereof, and a manufacturing method thereof. A semiconductor device refers to any device that can function by utilizing semiconductor characteristics.
In recent years, higher-resolution display panels have been required. Examples of devices that require high-resolution display panels include a smartphone, a tablet terminal, and a notebook computer. Furthermore, higher resolution has been required for a stationary display device such as a television device or a monitor device along with an increase in definition. An example of a device required to have the highest resolution is a device for virtual reality (VR) or augmented reality (AR).
Examples of display devices that can be used for the display panels include, typically, a liquid crystal display device, a light-emitting apparatus including a light-emitting element such as an organic EL (Electro Luminescence) element or a light-emitting diode (LED), and electronic paper performing display by an electrophoretic method or the like.
For example, the basic structure of an organic EL element (an organic electroluminescent element) is a structure in which a layer containing a light-emitting organic compound is provided between a pair of electrodes. By voltage application between a pair of electrodes, light emission can be obtained from the light-emitting organic compound. A display device using such an organic EL element does not need a backlight that is necessary for a liquid crystal display device and the like; thus, a thin, lightweight, high-contrast, and low-power display device can be achieved.
[Patent Document]
An object of one embodiment of the present invention is to provide a display device with high display quality. An object of one embodiment of the present invention is to provide a highly reliable display device. An object of one embodiment of the present invention is to provide a display device with low power consumption. An object of one embodiment of the present invention is to provide a display device that can easily achieve a higher resolution. An object of one embodiment of the present invention is to provide a display device with both high display quality and a high resolution. An object of one embodiment of the present invention is to provide a display device with high contrast.
An object of one embodiment of the present invention is to provide a display device having a novel structure or a method for manufacturing a display device. An object of one embodiment of the present invention is to provide a method for manufacturing the above-described display device with high yield. An object of one embodiment of the present invention is to at least reduce at least one of problems of the conventional technique.
Note that the description of these objects does not preclude the existence of other objects. One embodiment of the present invention does not have to achieve all of these objects. Note that objects other than these can be derived from the description of the specification, the drawings, the claims, and the like.
One embodiment of the present invention is a display device including a first pixel, a second pixel arranged to be adjacent to the first pixel, and a first insulating layer; the first pixel includes a first pixel electrode, a first EL layer over the first pixel electrode, and a common electrode over the first EL layer; the second pixel includes a second pixel electrode, a second EL layer over the second pixel electrode, and the common electrode over the second EL layer; a side surface of the first EL layer and a side surface of the second EL layer each include a region in contact with the first insulating layer; a side surface of the first pixel electrode is covered with the first EL layer; and a side surface of the second pixel electrode is covered with the second EL layer.
Another embodiment of the present invention is a display device including a first pixel, a second pixel arranged to be adjacent to the first pixel, and a first insulating layer; the first pixel includes a first pixel electrode, a first EL layer over the first pixel electrode, and a common electrode over the first EL layer; the second pixel includes a second pixel electrode, a second EL layer over the second pixel electrode, and the common electrode over the second EL layer; a side surface of the first EL layer and a side surface of the second EL layer each include a region in contact with the first insulating layer; end portions of the first pixel electrode are positioned inward from end portions of the first EL layer; and end portions of the second pixel electrode are positioned inward from end portions of the second EL layer.
Another embodiment of the present invention is a display device including a first pixel, a second pixel arranged to be adjacent to the first pixel, and a first insulating layer; the first pixel includes a first pixel electrode, a first EL layer over the first pixel electrode, and a common electrode over the first EL layer; the second pixel includes a second pixel electrode, a second EL layer over the second pixel electrode, and the common electrode over the second EL layer; a side surface of the first EL layer and a side surface of the second EL layer each include a region in contact with the first insulating layer; a side surface of the first pixel electrode is in contact with the first EL layer; and a side surface of the second pixel electrode is in contact with the second EL layer.
In the above-described structure, the top surface of the first EL layer, the top surface of the second EL layer, and the top surface of the first insulating layer each preferably include a region in contact with the common electrode.
In the above-described structure, the first pixel preferably includes a common layer positioned between the first EL layer and the common electrode; the second pixel preferably includes the common layer positioned between the second EL layer and the common electrode; and the top surface of the first EL layer, the top surface of the second EL layer, and the top surface of the first insulating layer each preferably include a region in contact with the common layer.
In the above-described structure, the first insulating layer preferably includes a region protruding above from at least one of the top surface of the first EL layer and the top surface of the second EL layer in a cross-sectional view of the display device.
In the above-described structure, at least one of the first EL layer and the second EL layer preferably includes a region protruding above from the top surface of the first insulating layer in a cross-sectional view of the display device.
In the above-described structure, the top surface of the first insulating layer preferably includes a concave curved surface shape in a cross-sectional view of the display device.
In the above-described structure, the top surface of the first insulating layer preferably includes a convex curved surface shape in a cross-sectional view of the display device.
Another embodiment of the present invention is a display device including a first pixel, a second pixel arranged to be adjacent to the first pixel, a first insulating layer, and a second insulating layer; the first pixel includes a first pixel electrode, a first EL layer over the first pixel electrode, and a common electrode over the first EL layer; the second pixel includes a second pixel electrode, a second EL layer over the second pixel electrode, and the common electrode over the second EL layer; a side surface of the first EL layer and a side surface of the second EL layer each include a region in contact with the first insulating layer; the second insulating layer is provided over and in contact with the first insulating layer and positioned below the common electrode; the first insulating layer contains an inorganic material; the second insulating layer contains an organic material; a side surface of the first pixel electrode is covered with the first EL layer; and a side surface of the second pixel electrode is covered with the second EL layer.
In the above-described structure, the top surface of the first EL layer, the top surface of the second EL layer, and the top surface of the first insulating layer each preferably include a region in contact with the common electrode.
In the above-described structure, the first pixel preferably includes a common layer positioned between the first EL layer and the common electrode; the second pixel preferably includes the common layer positioned between the second EL layer and the common electrode; and the top surface of the first EL layer, the top surface of the second EL layer, and the top surface of the first insulating layer each preferably include a region in contact with the common layer. In the above-described structure, the first insulating layer preferably includes a region protruding above from at least one of the top surface of the first EL layer and the top surface of the second EL layer in a cross-sectional view of the display device.
In the above-described structure, at least one of the first EL layer and the second EL layer preferably includes a region protruding above from the top surface of the first insulating layer in a cross-sectional view of the display device.
In the above-described structure, the top surface of the second insulating layer preferably includes a concave curved surface shape in a cross-sectional view of the display device.
In the above-described structure, the top surface of the second insulating layer preferably includes a convex curved surface shape in a cross-sectional view of the display device.
With one embodiment of the present invention, a display device with high display quality can be provided. A highly reliable display device can be provided. A display device with low power consumption can be provided. A display device that can easily achieve a higher resolution can be provided. A display device with both high display quality and a high resolution can be provided. A display device with high contrast can be provided.
With one embodiment of the present invention, a display device having a novel structure or a method for manufacturing a display device can be provided. A method for manufacturing the above-described display device with high yield can be provided. With one embodiment of the present invention, at least one of problems of the conventional technique can be at least reduced.
Note that the description of these effects does not preclude the existence of other effects. One embodiment of the present invention does not need to have all of these effects. Note that effects other than these can be derived from the description of the specification, the drawings, the claims, and the like.
Hereinafter, embodiments will be described with reference to the drawings. Note that the embodiments can be implemented in many different modes, and it will be readily understood by those skilled in the art that modes and details thereof can be changed in various ways without departing from the spirit and scope thereof. Thus, the present invention should not be interpreted as being limited to the following description of the embodiments.
Note that in structures of the invention described below, the same portions or portions having similar functions are denoted by the same reference numerals in different drawings, and the description thereof is not repeated. Furthermore, the same hatch pattern is used for the portions having similar functions, and the portions are not especially denoted by reference numerals in some cases.
Note that in each drawing described in this specification, the size, the layer thickness, or the region of each component is exaggerated for clarity in some cases. Therefore, they are not limited to the illustrated scale.
In this specification and the like, the term “top view diagram” can be replaced with the term “plan view diagram” in some cases. In this specification and the like, the term “top view” can be replaced with the term “plan view” in some cases.
Note that in this specification and the like, ordinal numbers such as “first”, “second”, and the like are used in order to avoid confusion among components and do not limit the number.
In this specification and the like, the term “film” and the term “layer” can be interchanged with each other. For example, in some cases, the term “conductive layer” and the term “insulating layer” can be interchanged with the term “conductive film” and the term “insulating film”, respectively.
Note that in this specification, an EL layer means a layer containing at least a light-emitting substance (also referred to as a light-emitting layer) or a stacked-layer body including the light-emitting layer provided between a pair of electrodes of a light-emitting element.
In this specification and the like, a display panel that is one embodiment of a display device has a function of displaying (outputting) an image or the like on (to) a display surface. Thus, the display panel is one embodiment of an output device.
In this specification and the like, a substrate of a display panel to which a connector such as an FPC (Flexible Printed Circuit) or a TCP (Tape Carrier Package) is attached, or a substrate on which an IC is mounted by a COG (Chip On Glass) method or the like is referred to as a display panel module, a display module, or simply a display panel or the like in some cases.
A light-emitting element of one embodiment of the present invention may include layers containing a substance with a high hole-injection property, a substance with a high hole-transport property, a substance with a high electron-transport property, a substance with a high electron-injection property, a substance with a bipolar property, and the like.
Note that the light-emitting layer and the layers containing a substance with a high hole-injection property, a substance with a high hole-transport property, a substance with a high electron-transport property, a substance with a high electron-injection property, a substance with a bipolar property, and the like may include an inorganic compound such as a quantum dot or a high molecular compound (e.g., an oligomer, a dendrimer, and a polymer). For example, when used for the light-emitting layer, the quantum dots can function as a light-emitting material.
Note that as the quantum dot material, a colloidal quantum dot material, an alloyed quantum dot material, a core-shell quantum dot material, a core quantum dot material, or the like can be used. A material containing elements belonging to Group 12 and Group 16, elements belonging to Group 13 and Group 15, or elements belonging to Group 14 and Group 16, may be used. Alternatively, a quantum dot material containing an element such as cadmium, selenium, zinc, sulfur, phosphorus, indium, tellurium, lead, gallium, arsenic, or aluminum may be used. In this specification and the like, a device formed using a metal mask or an FMM (fine metal mask, high-resolution mask) may be referred to as a device having an MM (metal mask) structure. In this specification and the like, a device formed without using a metal mask or an FMM may be referred to as a device having an MML (metal maskless) structure.
In this specification and the like, a structure in which light-emitting layers in light-emitting devices of different colors (here, blue (B), green (G), and red (R)) are separately formed or separately patterned may be referred to as an SBS (Side By Side) structure. In this specification and the like, a light-emitting device capable of emitting white light may be referred to as a white-light-emitting device. Note that a combination of white-light-emitting devices with coloring layers (e.g., color filters) enables a full-color display device.
Structures of light-emitting devices can be classified roughly into a single structure and a tandem structure. A device having a single structure includes one light-emitting unit between a pair of electrodes, and the light-emitting unit preferably includes one or more light-emitting layers. To obtain white light emission, two or more light-emitting layers are selected such that emission colors of the light-emitting layers are complementary colors. For example, when emission color of a first light-emitting layer and emission color of a second light-emitting layer are complementary colors, the light-emitting device can be configured to emit white light as a whole. The same applies to a light-emitting device including three or more light-emitting layers.
A device having a tandem structure includes two or more light-emitting units between a pair of electrodes, and each light-emitting unit preferably includes one or more light-emitting layers. To obtain white light emission, the structure is made so that light from light-emitting layers of the light-emitting units can be combined to be white light. Note that a structure for obtaining white light emission is similar to a structure in the case of a single structure. In the device having a tandem structure, it is suitable that an intermediate layer such as a charge-generation layer is provided between a plurality of light-emitting units.
When the white-light-emitting device (having a single structure or a tandem structure) and a light-emitting device having an SBS structure are compared to each other, the light-emitting device having an SBS structure can have lower power consumption than the white-light-emitting device. To reduce power consumption, a light-emitting device having an SBS structure is preferably used. Meanwhile, the white-light-emitting device is preferable in terms of lower manufacturing cost or higher manufacturing yield because the manufacturing process of the white-light-emitting device is simpler than that of a light-emitting device having an SBS structure.
In this embodiment, a structure example of a display device of one embodiment of the present invention and an example of a method for manufacturing the display device will be described.
One embodiment of the present invention is a display device including a light-emitting element (also referred to as a light-emitting device). The display device includes at least two light-emitting elements which emit light of different colors. The light-emitting elements each include a pair of electrodes and an EL layer between them. As the light-emitting elements, electroluminescent elements such as organic EL elements or inorganic EL elements can be used. Besides, light-emitting diodes (LEDs) can be used. The light-emitting elements of one embodiment of the present invention are preferably organic EL elements. The two or more light-emitting elements emitting different colors include respective EL layers containing different materials. For example, three kinds of light-emitting elements emitting red (R), green (G), and blue (B) light are included, whereby a full-color display device can be obtained.
Here, as a way of forming EL layers separately between light-emitting elements of different colors, an evaporation method using a shadow mask such as a metal mask is known. However, this method causes a deviation from the designed shape and position of an island-shaped organic film due to various influences such as the accuracy of the metal mask, the positional deviation between the metal mask and a substrate, a warp of the metal mask, and the vapor-scattering-induced expansion of outline of the deposited film; accordingly, it is difficult to achieve high resolution and a high aperture ratio. In addition, dust derived from a material attached to the metal mask in evaporation is generated in some cases. Such dust might cause defective patterning of the light-emitting elements. In addition, a short circuit derived from the dust may occur. A step of cleaning the material attached to the metal mask is necessary. Thus, a measure has been taken for pseudo improvement in resolution (also referred to as pixel density) by employing a unique pixel arrangement such as a PenTile arrangement, for example.
In one embodiment of the present invention, fine patterning of an EL layer is performed without a shadow mask such as a metal mask. With this, a display device with high resolution and a high aperture ratio, which has been difficult to achieve, can be manufactured. Moreover, EL layers can be formed separately, enabling the display device to perform extremely clear display with high contrast and high display quality.
Here, a description is made on a case where EL layers in light-emitting elements of two colors are separately formed, for simplicity. First, a stack of a first EL film and a first sacrificial film is formed to cover pixel electrodes. Next, a resist mask is formed over the first sacrificial film. Then, part of the first sacrificial film and part of the first EL film are etched using the resist mask, so that a first EL layer and a first sacrificial layer over the first EL layer are formed.
Next, a stack of a second EL film and a second sacrificial film is formed. Then, part of the second sacrificial film and part of the second EL film are etched using the resist mask, so that a second EL layer and a second sacrificial layer over the second EL layer are formed. Next, the pixel electrode is processed using the first sacrificial layer and the second sacrificial layer as a mask, so that a first pixel electrode overlapping with the first EL layer and a second pixel electrode overlapping with the second EL layer are formed. In this manner, the first EL layer and the second EL layer can be formed separately. Finally, the first sacrificial layer and the second sacrificial layer are removed, and a common electrode is formed, whereby light-emitting elements of two colors can be formed separately.
Furthermore, by repeating the above-described steps, EL layers in light-emitting elements of three or more colors can be separately formed; accordingly, a display device including light-emitting elements of three or more colors can be achieved.
At end portions of the EL layer, a step is generated owing to a region where the pixel electrode and the EL layer are provided and a region where the pixel electrode and the EL layer are not provided. At the time of forming the common electrode over the EL layer, coverage with the common electrode is degraded owing to the step at the end portions of the EL layer, which might cause disconnection of the common electrode. Furthermore, the common electrode might become thinner, whereby electric resistance might be increased.
In the case where end portions of the pixel electrode are substantially aligned with the end portions of the EL layer and the case where the end portions of the pixel electrode are positioned on an outer side than the end portions of the EL layer, the common electrode and the pixel electrode are sometimes short-circuited when the common electrode is formed over the EL layer.
In one embodiment of the present invention, an insulating layer is provided between the first EL layer and the second EL layer, whereby unevenness on the surface where the common electrode is provided can be reduced. Thus, the coverage with the common electrode can be increased at the end portions of the first EL layer and the end portions of the second EL layer, which allows favorable conductivity of the common electrode. In addition, a short circuit between the common electrode and the pixel electrode can be inhibited.
In the case where EL layers for different colors are adjacent to each other, it is difficult to set the distance between the EL layers adjacent to each other to be less than 10 μm with a formation method using a metal mask, for example; however, with use of the above method, the distance can be decreased to be less than or equal to 3 μm, less than or equal to 2 μm, or less than or equal to 1 μm. For example, with use of an exposure apparatus for LSI, the distance can be decreased to be less than or equal to 500 nm, less than or equal to 200 nm, less than or equal to 100 nm, or less than or equal to 50 nm. Accordingly, the area of a non-light-emitting region that may exist between two light-emitting elements can be significantly reduced, and the aperture ratio can be close to 100%. For example, the aperture ratio higher than or equal to 50%, higher than or equal to 60%, higher than or equal to 70%, higher than or equal to 80%, or higher than or equal to 90% and lower than 100% can be achieved.
Furthermore, a pattern of the EL layer itself can be made extremely smaller than that in the case of using a metal mask. For example, in the case of using a metal mask for forming EL layers separately, a variation in the thickness of the pattern occurs between the center and the edge of the pattern. This causes a reduction in an effective area that can be used as a light-emitting region with respect to the entire pattern area. In contrast, in the above manufacturing method, a pattern is formed by processing a film deposited to have a uniform thickness, which enables a uniform thickness in the pattern; thus, even with a fine pattern, almost the entire area can be used as a light-emitting region. Therefore, the above manufacturing method makes it possible to achieve both a high resolution and a high aperture ratio.
As described above, with the above manufacturing method, a display device in which 20 minute light-emitting elements are integrated can be obtained, and it is not necessary to conduct a pseudo improvement in resolution with a unique pixel arrangement such as a PenTile arrangement; therefore, the display device can achieve resolution higher than or equal to 500 ppi, higher than or equal to 1000 ppi, higher than or equal to 2000 ppi, higher than or equal to 3000 ppi, or higher than or equal to 5000 ppi while having what is called a stripe pattern where R, G, and B are arranged in one direction.
More specific structure examples and manufacturing method examples of the display device of one embodiment of the present invention will be described below with reference to drawings.
The light-emitting elements 110R, the light-emitting elements 110G, and the light-emitting elements 110B are arranged in a matrix. In a pixel 103 illustrated in
As the light-emitting elements 110R, the light-emitting elements 110G, and the light-emitting elements 110B, EL elements such as OLEDs (Organic Light Emitting Diodes) or QLEDs (Quantum-dot Light Emitting Diodes) are preferably used. As a light-emitting substance contained in the EL element, a substance that emits fluorescence (a fluorescent material), a substance that emits phosphorescence (a phosphorescent material), an inorganic compound (e.g., a quantum dot material), and a substance that exhibits thermally activated delayed fluorescence (a thermally activated delayed fluorescent (TADF) material) can be given, for example.
In this specification and the like, the thicknesses of a layer and a film are sometimes drawn to be larger for easy viewing in a drawing that is not enlarged. In an enlarged drawing, the distance between components included in a display device or the like may be differ. For example, the distance between end portions of the pixel electrode 111R and end portions of the EL layer 112R and the distance between end portions of the pixel electrode 111B and end portions of the EL layer 112B are drawn to be wide in
The light-emitting element 11OR includes the EL layer 112R between the pixel electrode 111R and the common electrode 113. The EL layer 112R contains at least a light-emitting organic compound that emits red light. The light-emitting element 110G includes the EL layer 112G between the pixel electrode 111G and the common electrode 113. The EL layer 112G contains at least a light-emitting organic compound that emits green light. The light-emitting element 110B includes the EL layer 112B between the pixel electrode 111B and the common electrode 113. The EL layer 112B contains at least a light-emitting organic compound that emits blue light.
In
The connection electrode 111C can be provided along the outer periphery of the display region. For example, the connection electrode 111C may be provided along one side of the outer periphery of the display region or may be provided along two or more sides of the outer periphery of the display region. That is, in the case where the display region has a rectangular top surface shape, a top surface shape of the connection electrode 111C can be a band-like shape, an L-like shape, a square bracket shape, a quadrangular shape, or the like.
In the region 130, the common electrode 113 is provided over the connection electrode 111C and a protective layer 121 is provided to cover the common electrode 113.
The EL layer 112R, the EL layer 112G, and the EL layer 112B each include a layer containing a light-emitting organic compound (a light-emitting layer). The light-emitting layer may contain one or more kinds of compounds (e.g., a host material and an assist material) in addition to the light-emitting substance (a guest material). As the host material and the assist material, one or more kinds of substances having a larger energy gap than the light-emitting substance (the guest material) can be selected and used. As the host material and the assist material, compounds which form an exciplex are preferably used in combination. To form an exciplex efficiently, it is particularly preferable to combine a compound that easily accepts holes (a hole-transport material) and a compound that easily accepts electrons (an electron-transport material).
Either a low molecular compound or a high molecular compound can be used for the light-emitting element, and an inorganic compound (e.g., a quantum dot material) may also be contained.
The EL layer 112R, the EL layer 112G, and the EL layer 112B may each include one or more of an electron-injection layer, an electron-transport layer, a hole-injection layer, and a hole-transport layer in addition to the light-emitting layer.
The pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B are provided for the respective light-emitting elements. The common electrode 113 is provided as a continuous layer shared by the light-emitting elements. A conductive film that has a property of transmitting visible light is used for either the respective pixel electrodes or the common electrode 113, and a reflective conductive film is used for the other. When the pixel electrodes are light-transmitting electrodes and the common electrode 113 is a reflective electrode, a bottom-emission display device can be obtained; in contrast, when the respective pixel electrodes are reflective electrodes and the common electrode 113 is a light-transmitting electrode, a top-emission display device can be obtained. Note that when both the respective pixel electrodes and the common electrode 113 transmit light, a dual-emission display device can be obtained.
For the pixel electrode 111, a conductive film having a reflective property with respect to visible light is preferably used. For the conductive film, silver, aluminum, titanium, tantalum, molybdenum, platinum, gold, titanium nitride, tantalum nitride, or the like can be used, for example. In addition, an alloy can be used for the pixel electrode 111. For example, an alloy containing silver can be used. As the alloy containing silver, an alloy containing silver, palladium, and copper can be used, for example. For example, an alloy containing aluminum can also be used. A stack including two or more of these materials may also be used.
As the pixel electrode 111, a conductive film having a transmitting property with respect to visible light can be used over the conductive film having a reflective property with respect to visible light. As a conductive material having a transmitting property with respect to visible light, a conductive oxide such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide containing gallium, indium tin oxide containing silicon, or indium zinc oxide containing silicon can be used. Alternatively, an oxide of the conductive material having a reflective property with respect to visible light may be used, and the oxide may be formed by oxidizing a surface of the conductive material having a reflective property with respect to visible light.
Specifically, titanium oxide may be used, for example. Titanium oxide may be formed by oxidation of a surface of titanium, for example.
By providing an oxide on a surface of the pixel electrode 111, oxidation reaction or the like with the pixel electrode 111 can be inhibited when the EL layer 112 is formed.
As the pixel electrode 111, the conductive film having a transmitting property with respect to visible light is stacked over the conductive film having a reflective property with respect to visible light, so that the conductive film having a transmitting property with respect to visible light can function as an optical adjustment layer.
The pixel electrode 111 including the optical adjustment layer can adjust the optical path length. The optical path length in each light-emitting element corresponds to the sum of the thickness of the optical adjustment layer and the thicknesses of layers provided below a film containing a light-emitting compound in the EL layer 112.
The optical path lengths of the light-emitting elements are set different from each other using a microcavity structure, whereby light of a specific wavelength can be intensified. This enables a display device with increased color purity.
For example, the thickness of the EL layer 112 is set different among the light-emitting elements, whereby a micorcavity structure can be obtained. For example, the EL layer 112R of the light-emitting element 11OR emitting light whose wavelength is the longest can be made to have the largest thickness, and the EL layer 112B of the light-emitting element 110B emitting light whose wavelength is the shortest can be made to have the smallest thickness. Without limitation to this, the thickness of each EL layer can be adjusted in consideration of the wavelength of light emitted by the light-emitting element, the optical characteristics of the layer included in the light-emitting element, the electrical characteristics of the light-emitting element, and the like.
The top surface and end portions of the pixel electrode 111 are covered with the EL layer 112. End portions of the EL layer 112 are preferably positioned outside the end portions of the pixel electrode 111.
When the EL layer 112 covers the top surface and the end portions of the pixel electrode 111, the formation step of the EL layer 112, the formation step of the insulating layer 131, and the like can be performed without exposure of the pixel electrode 111.
In the case where the end portions of the pixel electrode 111 and the like are exposed in an etching step at the formation of the EL layer 112 or the formation of the insulating layer 131, corrosion is generated in a region where the pixel electrode 111 is exposed in some cases. A product generated by corrosion of the pixel electrode 111 might be unstable; for example, the product might be dissolved in a solution in wet etching and might be diffused in an atmosphere in dry etching. With the dissolution in the solution of the product and scattering in the atmosphere, for example, the product might be attached to a side surface of the EL layer 112, a surface of the substrate 101, and the like, whereby a leakage path or the like may be formed between the plurality of the light-emitting elements 110 adjacent to each other.
The adhesion of a film to be the EL layer 112, a film to be the insulating layer 131, and the like may be reduced over the region where the pixel electrode 111 is exposed, and film separation or the like may occur.
When the top surface and the end portions of the pixel electrode 111 are covered with the EL layer 112, the yield of the light-emitting elements 110 can be improved, so that the display quality of the light-emitting elements 110 can be improved.
The insulating layer 131 is provided between adjacent light-emitting elements 110. The insulating layer 131 is positioned between the EL layers 112 included in the light-emitting elements 110. The common electrode 113 is provided over the insulating layer 131.
The insulating layer 131 is provided, for example, between two EL layers 112 exhibiting different colors. Alternatively, the insulating layer 131 is provided, for example, between two EL layers 112 exhibiting the same color. Alternatively, the following structure may be employed: the insulating layer 131 is provided between two EL layers 112 exhibiting different colors and is not provided between two EL layers 112 exhibiting the same color.
The insulating layer 131 is provided, for example, between two EL layers 112 in a top view.
It is preferable that the EL layer 112R, the EL layer 112G, and the EL layer 112B each include a region in contact with the top surface of the pixel electrode and a region in contact with a side surface of the insulating layer 131. The end portions of the EL layer 112R, the EL layer 112G, and the EL layer 112B are preferably in contact with the side surface of the insulating layer 131.
When the insulating layer 131 is provided between the light-emitting elements of different colors, the EL layer 112R, the EL layer 112G, and the EL layer 112G can be inhibited from being in contact with each other. This suitably prevents unintentional light emission due to a current flowing through two adjacent EL layers. As a result, the contrast can be increased to achieve a display device with high display quality.
The insulating layer 131 includes an insulating layer 131a and an insulating layer 131b. The insulating layer 131b is provided in contact with side surfaces of each of the EL layers 112 included in the light-emitting elements 110. Furthermore, the insulating layer 131a is provided over and in contact with the insulating layer 131b so as to fill a depressed portion of the insulating layer 131b in a cross-sectional view.
In the top view of
The insulating layer 131 is provided, for example, between two EL layers 112 exhibiting different colors. Alternatively, the insulating layer 131 is provided, for example, between two EL layers 112 exhibiting the same color. Alternatively, the following structure may be employed: the insulating layer 131 is provided between two EL layers 112 exhibiting different colors and is not provided between two EL layers 112 exhibiting the same color.
The insulating layer 131 is provided, for example, between two EL layers 112 in the top view.
The end portions of the EL layer 112 preferably include a region in contact with the insulating layer 131b.
When the insulating layer 131 is provided between the light-emitting elements of different colors, the EL layer 112R, the EL layer 112G, and the EL layer 112G can be inhibited from being in contact with each other. This suitably prevents unintentional light emission due to a current flowing through two adjacent EL layers. As a result, the contrast can be increased to achieve a display device with high display quality.
The insulating layer 131 may be provided not between adjacent pixels exhibiting the same color but only between pixels exhibiting different colors. In this case, the insulating layer 131 can have a stripe shape in the top view. When the insulating layer 131 has a stripe shape, the space necessary to form the insulating layer 131 becomes unnecessary and a high aperture ratio can be achieved compared with the case where the insulating layer 131 has a lattice shape. In the case where the insulating layer 131 has a stripe shape, the adjacent EL layers for the same color may be processed in a band shape so as to be continuous in a column direction.
The common layer 114 is preferably provided in contact with the top surface of the EL layer 112, the top surface of the insulating layer 131a, and the top surface of the insulating layer 131b. The common electrode 113 is preferably provided in contact with the top surface of the common layer 114. In the case where the light-emitting elements 110 do not include the common layer 114, the common electrode 113 is preferably provided in contact with the top surface of the EL layer 112, the top surface of the insulating layer 131a, and the top surface of the insulating layer 131b.
Between the adjacent light-emitting elements, a step is generated at the end portions of the EL layer 112 owing to a region where the EL layer 112 is provided and a region where the EL layer 112 is not provided. By including the insulating layer 131a and the insulating layer 131b in the display device of one embodiment of the present invention, the step can be planarized and coverage with the common electrode can be improved as compared with the case where the common electrode 113 is provided in contact with the substrate 101 between the adjacent light-emitting elements. Thus, connection failures due to the disconnection at the step can be inhibited. Alternatively, it is possible to inhibit an increase in electric resistance due to local thinning of the common electrode 113 by the step.
In one embodiment of the present invention, provision of the insulating layer 131a and the insulating layer 131b between the adjacently positioned EL layers 112 can make the unevenness on the formation surface of the common electrode 113 smaller, whereby coverage with the common electrode 113 at the end portions of the EL layer 112 can be increased and favorable conductivity of the common electrode 113 can be achieved.
For the formation surface of the common electrode 113 to have higher planarity, the top surface of the insulating layer 131a and the top surface of the insulating layer 131b are preferably substantially level with the top surface of the EL layer 112 in the end portions of the EL layer 112. The top surface of the insulating layer 131 preferably has a flat shape. Note that it is not always necessary that the top surface of the insulating layer 131a, the top surface of the insulating layer 131b, and the top surface of the EL layer 112 are level with each other. In the case where the levels of the top surfaces of the EL layers 112 are different in the EL layers 112 corresponding to different colors, the level of the top surface of the insulating layer 131a is preferably substantially level with the level of the top surface of the EL layer in the vicinity of the EL layer. The level of the top surface of the insulating layer 131b is preferably substantially level with the level of the EL layer in a region in contact with the side surfaces of the EL layers.
As illustrated in
The insulating layer 131b includes a region in contact with the side surface of the EL layer 112 and functions as a protective insulating layer of the EL layer 112. When the insulating layer 131b is provided, entry of oxygen, moisture, or constituent elements thereof from the side surface of the EL layer 112 into the inside can be inhibited, and thus a highly reliable display device can be obtained.
If the width of the insulating layer 131b in the region in contact with the side surface of the EL layer 112 is large in a cross-sectional view, the distance between the EL layers 112 is increased and the aperture ratio is lowered in some cases. If the width of the insulating layer 131b is small, the effect of inhibiting the entry of oxygen, moisture, or constituent elements thereof from the side surface of the EL layer 112 into the inside becomes small in some cases. The width of the insulating layer 131b in the region in contact with the side surface of the EL layer 112 is preferably greater than or equal to 3 nm and less than or equal to 200 nm, further preferably greater than or equal to 3 nm and less than or equal to 150 nm, further preferably greater than or equal to nm and less than or equal to 150 nm, still further preferably greater than or equal to 5 nm and less than or equal to 100 nm, still further preferably greater than or equal to 10 nm and less than or equal to 100 nm, yet further preferably greater than or equal to 10 nm and less than or equal to 50 nm. When the width of the insulating layer 131b is within the above-described range, a highly reliable display device with a high aperture ratio can be obtained.
The insulating layer 131b can be an insulating layer containing an inorganic material. As the insulating layer 131b, a single layer or a stacked layer of aluminum oxide, magnesium oxide, hafnium oxide, gallium oxide, indium gallium zinc oxide, silicon oxide, silicon oxynitride, silicon nitride, silicon nitride oxide, or the like can be used, for example. In particular, aluminum oxide is preferable because it has high selectivity with respect to the EL layers 112 in etching and has a function of protecting the EL layers 112 in forming the insulating layer 131b which is to be described later. In particular, an inorganic insulating material such as aluminum oxide, hafnium oxide, or silicon oxide, which is formed by an ALD method, is used for the insulating layer 131b, whereby the insulating layer 131b can be a film with few pinholes and have an excellent function of protecting the EL layers 112.
Note that in this specification, an oxynitride refers to a material that contains more oxygen than nitrogen in its composition, and a nitride oxide refers to a material that contains more nitrogen than oxygen in its composition. For example, in the case where silicon oxynitride is described, it refers to a material that contains more oxygen than nitrogen in its composition. In the case where silicon nitride oxide is described, it refers to a material that contains more nitrogen than oxygen in its composition.
For the formation of the insulating layer 131b, a sputtering method, a chemical vapor deposition (CVD) method, a molecular beam epitaxy (MBE) method, a pulsed laser deposition (PLD) method, an atomic layer deposition (ALD) method, or the like can be used. An ALD method with favorable coverage can be suitably used for forming the insulating layer 131b. The insulating layer 131a provided over the insulating layer 131b has a function of filling the depressed portion of the insulating layer 131b for planarization, which is formed between the adjacent light-emitting elements. In other words, the insulating layer 131a has an effect of improving the planarity of the formation surface of the common electrode 113. An insulating layer containing an organic material can be suitably used as the insulating layer 131a. For the insulating layer 131a, an acrylic resin, a polyimide resin, an epoxy resin, a polyamide resin, a polyimide-amide resin, a siloxane resin, a benzocyclobutene-based resin, a phenol resin, a precursor of any of these resins, or the like can be used, for example. Moreover, the insulating layer 131a can be formed using a photosensitive resin. As the photosensitive resin, a positive photosensitive material or a negative photosensitive material can be used.
By forming the insulating layer 131a using the photosensitive resin, the insulating layer 131a can be formed only by light exposure and development steps.
For example, the difference in level between the top surface of the insulating layer 131a and the top surface of the EL layer 112 is preferably less than or equal to 0.5 times, further preferably less than or equal to 0.3 times as larger as the thickness of the insulating layer 131a. In addition, for example, the insulating layer 131a may be provided so that the top surface of the EL layer 112 is higher than the top surface of the insulating layer 131a. It is preferable that the thickness of the insulating layer 131a be, for example, greater than or equal to 0.3 times, greater than or equal to 0.5 times, or greater than or equal to 0.7 times as large as the thickness of the pixel electrode 111.
The protective layer 121 is provided over the common electrode 113 so as to cover the light-emitting element 110R, the light-emitting element 110G, and the light-emitting element 110B. The protective layer 121 has a function of preventing diffusion of impurities such as water into the light-emitting elements from above.
The protective layer 121 can have, for example, a single-layer structure or a stacked-layer structure at least including an inorganic insulating film. As the inorganic insulating film, for example, an oxide film or a nitride film, such as a silicon oxide film, a silicon oxynitride film, a silicon nitride oxide film, a silicon nitride film, an aluminum oxide film, an aluminum oxynitride film, or a hafnium oxide film can be given. Alternatively, a semiconductor material such as indium gallium oxide or indium gallium zinc oxide may be used for the protective layer 121.
As the protective layer 121, a stacked film of an inorganic insulating film and an organic insulating film can be used. For example, a structure in which an organic insulating film is sandwiched between a pair of inorganic insulating films is preferable. Furthermore, the organic insulating film preferably functions as a planarization film. With this, the top surface of the organic insulating film can be flat, and accordingly, coverage with the inorganic insulating film thereover is improved, leading to an improvement in barrier properties. Moreover, the top surface of the protective layer 121 is flat; therefore, when a component (e.g., a color filter, an electrode of a touch sensor, a lens array, or the like) is provided above the protective layer 121, the component is less affected by an uneven shape caused by the lower structure.
Like the common electrode 113, the common layer 114 is provided across a plurality of light-emitting elements. The common layer 114 is provided to cover the EL layer 112R, the EL layer 112G, and the EL layer 112B. The structure including the common layer 114 can simplify the manufacturing steps and thus reduced the manufacturing cost. The common layer 114 and the common electrode 113 can be formed successively without an etching step or the like between formations of the common layer 114 and the common electrode 113. Thus, the interface between the common layer 114 and the common electrode can be clean, and the light-emitting element can have favorable characteristics.
Each of the EL layer 112R, the EL layer 112G, and the EL layer 112B preferably includes at least a light-emitting layer containing a light-emitting material emitting light of one color, for example. The common layer 114 preferably includes one or more of an electron-injection layer, an electron-transport layer, a hole-injection layer, and a hole-transport layer, for example. In the light-emitting element in which the pixel electrode serves as an anode and the common electrode serves as a cathode, a structure including the electron-injection layer or a structure including the electron-injection layer and the electron-transport layer can be used as the common layer 114. [Manufacturing method example 1] An example of a method for manufacturing the display device of one embodiment of the present invention is described below with reference to drawings. Here, the display device 100 described in the above structure example is taken as an example.
Note that thin films that form the display device (insulating films, semiconductor films, conductive films, and the like) can be formed by a sputtering method, a chemical vapor deposition (CVD) method, a vacuum evaporation method, a pulsed laser deposition (PLD) method, an atomic layer deposition (ALD) method, or the like. Examples of the CVD method include a plasma-enhanced chemical vapor deposition (PECVD) method and a thermal CVD method. As an example of the thermal CVD method, a metal organic chemical vapor deposition (MOCVD) method can be given.
Alternatively, thin films that form the display device (insulating films, semiconductor films, conductive films, and the like) can be formed by a method such as spin coating, dipping, spray coating, ink-jetting, dispensing, screen printing, offset printing, a doctor knife method, a slit coater, a roll coater, a curtain coater, or a knife coater.
When the thin films that form the display device are processed, a photolithography method or the like can be used. Besides, a nanoimprinting method, a sandblasting method, a lift-off method, or the like may be used for the processing of the thin films. Island-shaped thin films may be directly formed by a film formation method using a blocking mask such as a metal mask.
There are two typical examples of a photolithography method. In one of the methods, a resist mask is formed over a thin film that is to be processed, the thin film is processed by etching or the like, and the resist mask is removed. In the other method, after a photosensitive thin film is formed, light exposure and development are performed, so that the thin film is processed into a desired shape.
As the light used for exposure in the photolithography method, for example, an i-line (with a wavelength of 365 nm), a g-line (with a wavelength of 436 nm), an h-line (with a wavelength of 405 nm), or combined light of any of them can be used. Besides, ultraviolet light, KrF laser light, ArF laser light, or the like can be used. Exposure may be performed by liquid immersion exposure technique. As the light used for the exposure, extreme ultraviolet (EUV) light or X-rays may be used. Furthermore, instead of the light used for the exposure, an electron beam can also be used. It is preferable to use extreme ultraviolet light, X-rays, or an electron beam because extremely minute processing can be performed. Note that when light exposure is performed by scanning of a beam such as an electron beam, a photomask is unnecessary.
For etching of the thin films, a dry etching method, a wet etching method, a sandblast method, or the like can be used. [Preparation for substrate 101] As the substrate 101, a substrate having at least heat resistance high enough to withstand heat treatment performed later can be used. In the case where an insulating substrate is used as the substrate 101, a glass substrate, a quartz substrate, a sapphire substrate, a ceramic substrate, an organic resin substrate, or the like can be used. Alternatively, a single crystal semiconductor substrate using silicon or silicon carbide, a polycrystalline semiconductor substrate, a compound semiconductor substrate of silicon germanium or the like, or a semiconductor substrate such as an SOI substrate can be used.
As the substrate 101, it is particularly preferable to use the semiconductor substrate or the insulating substrate over which a semiconductor circuit including a semiconductor element such as a transistor is formed. Note that the details of the semiconductor circuit are not illustrated in
Next, part of the conductive film is etched, and the pixel electrode 111R, the pixel electrode 111G, the pixel electrode 111B, and the connection electrode 111C are formed over the substrate 101 (
In the case where a conductive film having a reflective property with respect to visible light is used as the pixel electrode, a material that has a reflectance as high as possible in the whole wavelength range of visible light (e.g., silver, aluminum, or the like) is preferably used. This can increase color reproducibility as well as light extraction efficiency of the light-emitting elements.
Next, an EL film 112Rf that is to be the EL layer 112R later is formed over the pixel electrode 111R, the pixel electrode 111G, the pixel electrode 111B.
The EL film 112Rf includes at least a film containing a light-emitting compound.
Besides, a structure in which one or more of films functioning as an electron-injection layer, an electron-transport layer, a charge-generation layer, a hole-transport layer, and a hole-injection layer are stacked may be employed. The EL film 112Rf can be formed by, for example, an evaporation method, a sputtering method, an inkjet method, or the like. Without limitation to this, the above-described deposition method can be used as appropriate.
Next, a film formation step of a sacrificial film will be described.
A sacrificial film 144R is a film to be a sacrificial layer 145R. A sacrificial film 144G is a film to be a sacrificial layer 145G. A sacrificial film 144B is a film to be a sacrificial layer 145B. The sacrificial layer 145R, the sacrificial layer 145G, and the sacrificial layer 145B are collectively referred to as “sacrificial layer 145” in some cases. The sacrificial layer 145 may have a single-layer structure or a stacked-layer structure including two or more layers.
Hereinafter, an example in which a sacrificial layer with a two-layer structure is used will be described.
In an example shown below, a stacked-layer structure of a sacrificial film 144(1)R and a sacrificial film 144(2)R is used as the sacrificial film 144R, a stacked-layer structure of a sacrificial film 144(1)G and a sacrificial film 144(2)G is used as the sacrificial film 144G, and a stacked-layer structure of a sacrificial film 144(1)B and a sacrificial film 144(2)B is used as the sacrificial film 144B.
The sacrificial film 144(1)R is a film to be a sacrificial layer 145(1)R, and the sacrificial film 144(2)R is a film to be a sacrificial layer 145(2)R. The sacrificial film 144(1)G is a film to be a sacrificial layer 145(1)G, and the sacrificial film 144(2)G is a film to be a sacrificial layer 145(2)G. The sacrificial film 144(1)B is a film to be a sacrificial layer 145(1)B, and the sacrificial film 144(2)B is a film to be a sacrificial layer 145(2)B.
In the film formation step of the sacrificial film, first, the sacrificial film 144(1)R is formed to cover the EL film 112Rf. The sacrificial film 144(1)R is provided in contact with the top surface of the connection electrode 111C. Next, the sacrificial film 144(2)R is formed over the sacrificial film 144(1)R.
The sacrificial film 144(1)R and the sacrificial film 144(2)R can be formed by a sputtering method, an ALD method (a thermal ALD method or a PEALD method), or a vacuum evaporation method, for example. A formation method that gives less damage to an EL layer is preferred, and for the sacrificial film 144(1)R directly formed over the EL film 112Rf, an ALD method or a vacuum evaporation method is more suitable for the formation of the sacrificial film 144(1)R than a sputtering method.
For the sacrificial film 144(1)R, an inorganic film such as a metal film, an alloy film, a metal oxide film, a semiconductor film, or an inorganic insulating film is suitably used.
As the sacrificial film 144(1)R, an oxide film can be used, for example. Typically, it is possible to use an oxide film or an oxynitride film such as silicon oxide, silicon oxynitride, aluminum oxide, aluminum oxynitride, hafnium oxide, or hafnium oxynitride. As the sacrificial film 144(1)R, a nitride film can be used, for example. Specifically, it is possible to use a nitride such as silicon nitride, aluminum nitride, hafnium nitride, titanium nitride, tantalum nitride, tungsten nitride, gallium nitride, or germanium nitride. Such an inorganic material can be formed by a deposition method such as a sputtering method, a CVD method, or an ALD method; the sacrificial film 144(1)R, which is formed directly over the EL film 112Rf, is particularly preferably deposited by an ALD method.
For the sacrificial film 144(1)R, a metal material such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, titanium, aluminum, yttrium, zirconium, or tantalum or an alloy material containing the metal material can be used. It is particularly preferable to use a low-melting-point material such as aluminum or silver.
Alternatively, the sacrificial film 144(1)R can be formed using a metal oxide such as indium gallium zinc oxide (In—Ga—Zn oxide, also referred to as IGZO). It is also possible to use indium oxide, indium zinc oxide (In—Zn oxide), indium tin oxide (In—Sn oxide), indium titanium oxide (In—Ti oxide), indium tin zinc oxide (In—Sn—Zn oxide), indium titanium zinc oxide (In—Ti—Zn oxide), indium gallium tin zinc oxide (In—Ga—Sn—Zn oxide), or the like. Alternatively, indium tin oxide containing silicon or the like can also be used.
Note that an element M (M is one or more kinds selected from aluminum, silicon, boron, yttrium, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, and magnesium) may be used instead of gallium. In particular, M is preferably one or more kinds selected from gallium, aluminum, and yttrium.
Any of the above-described materials usable for the sacrificial film 144(1)R can be used for the sacrificial film 144(2)R. From the above materials usable for the sacrificial film 144(1)R, one material can be selected for the sacrificial film 144(1)R and another material can be selected for the sacrificial film 144(2)R. One or more of the above materials usable for the sacrificial film 144(1)R can be selected for the sacrificial film 144(1)R, and a material other than the material(s) selected for the sacrificial film 144(1)R can be selected for the sacrificial film 144(2)R.
As the sacrificial film 144(1)R, it is possible to use a film highly resistant to etching treatment performed on various EL films such as the EL film 112Rf, i.e., a film having high etching selectivity with respect to the EL films. Moreover, as the sacrificial film 144(1)R, it is particularly preferable to use a film that can be removed by a wet etching method that is less likely to cause damage to the EL films.
For the sacrificial film 144(1)R, a material that can be dissolved in a solvent chemically stable with respect to at least the uppermost film of the EL film 112Rf may be used. Specifically, a material that will be dissolved in water or alcohol can be suitably used for the sacrificial film 144(1)R. In formation of the sacrificial film 144(1)R, it is preferable that application of such a material dissolved in a solvent such as water or alcohol be performed by a wet deposition method and followed by heat treatment for evaporating the solvent. At this time, the heat treatment is preferably performed under a reduced-pressure atmosphere, in which case the solvent can be removed at a low temperature in a short time and thermal damage to the EL film 112Rf can be accordingly minimized.
As a wet deposition method for forming the sacrificial film 144(1)R, spin coating, dipping, spray coating, ink-jetting, dispensing, screen printing, offset printing, a doctor knife method, a slit coater, a roll coater, a curtain coater, a knife coater, or the like can be given.
For the sacrificial film 144(1)R, an organic material such as polyvinyl alcohol (PVA), polyvinylbutyral, polyvinylpyrrolidone, polyethylene glycol, polyglycerin, pullulan, water-soluble cellulose, or an alcohol-soluble polyamide resin can be used.
As the sacrificial film 144(2)R, a film having high selectivity with respect to the sacrificial film 144(1)R is used.
It is particularly preferable that an inorganic insulating material such as aluminum oxide, hafnium oxide, or silicon oxide, which is formed by an ALD method, be used for the sacrificial film 144(1)R, and a metal oxide containing indium such as indium gallium zinc oxide (In—Ga—Zn oxide, also referred to as IGZO), which is formed by a sputtering method, be used for the sacrificial film 144(2)R.
Alternatively, as the sacrificial film 144(2)R, an organic film that can be used for the EL film 112Rf or the like can be used. For example, the same film as the organic film that is used as the EL film 112Rf, an EL film 112Gf, or an EL film 112Bf can be used for the sacrificial film 144(2)R. The use of such an organic film is preferable, in which case the deposition apparatus for the EL film 112Rf or the like can be used in common. Furthermore, the sacrificial layer 145(2)R can be removed at the same time as the etching of the EL film 112Rf or the like; thus, the step can be simplified.
For example, in the case where dry etching using a gas containing fluorine (also referred to as a fluorine-based gas) is used for the etching of the sacrificial film 144(1)R, silicon, silicon nitride, silicon oxide, tungsten, titanium, molybdenum, tantalum, tantalum nitride, an alloy containing molybdenum and niobium, an alloy containing molybdenum and tungsten, or the like can be used for the sacrificial film 144(2)R. Here, a metal oxide film such as IGZO or ITO is given as a film having high etching selectivity (that is, enabling low etching rate) in dry etching using the fluorine-based gas, and such a film can be used as the sacrificial film 144(1)R. [Formation of resist mask 143a] Next, a resist mask 143a is formed over the sacrificial film 144(2)R (
For the resist mask 143a, a resist material containing a photosensitive resin such as a positive type resist material or a negative type resist material can be used.
Here, in the case where the resist mask 143a is formed over the sacrificial film 144(2)R, there is a risk of dissolving the EL film 112Rf due to a solvent of the resist material if a defect such as a pinhole exists in the sacrificial film 144(2)R. By using an inorganic insulating material such as aluminum oxide, hafnium oxide, or silicon oxide, which is formed by an ALD method, for the sacrificial film 144(1)R, the sacrificial film 144(1)R can be a film with few pinholes, leading to prevention of such a defect.
[Etching of sacrificial film 144(1)R and sacrificial film 144(2)R]
Then, part of the sacrificial film 144(2)R and part of the sacrificial film 144(1)R that are not covered with the resist mask 143a are removed by etching, whereby the island-shaped or band-shaped sacrificial layer 145(1)R and sacrificial layer 145(2)R are formed. Here, the sacrificial layer 145(1)R and the sacrificial layer 145(2)R are formed over the pixel electrode 111R and over the connection electrode 111C.
Here, preferably, part of the sacrificial film 144(2)R is removed by etching using the resist mask 143a to form the sacrificial layer 145(2)R; then, the resist mask 143a is removed; after that, the sacrificial film 144(1)R is etched using the sacrificial layer 145(2)R as a hard mask. The etching of the sacrificial film 144(2)R preferably employs etching conditions with high selectivity with respect to the sacrificial film 144(1)R. Although a wet etching or a dry etching can be used for the etching for forming the hard mask, a shrinkage of the pattern can be inhibited by a dry etching method. For example, in the case where an inorganic insulating material such as aluminum oxide, hafnium oxide, or silicon oxide, which is formed by an ALD method, is used for the sacrificial film 144(1)R and a metal oxide containing indium such as indium gallium zinc oxide (In—Ga—Zn oxide, also referred to as IGZO), which is formed by a sputtering method, is used for the sacrificial film 144(2)R, the sacrificial film 144(2)R formed by a sputtering method is etched here to serve as a hard mask.
The removal of the resist mask 143a can be performed by wet etching or dry etching. It is particularly preferable to perform dry etching (also referred to as plasma ashing) using an oxygen gas as an etching gas to remove the resist mask 143a.
By etching of the sacrificial film 144(1)R using the sacrificial layer 145(2)R as a hard mask, the removal of the resist mask 143a can be performed in a state where the EL film 112Rf is covered with the sacrificial film 144(1)R. In particular, when the EL film 112Rf is exposed to oxygen, the electrical characteristics are adversely affected in some cases; thus, it is preferable that the EL film 112Rf be covered with the sacrificial film 144(1)R when etching using an oxygen gas, such as plasma ashing, is performed.
Then, the sacrificial film 144(1)R is removed by the etching using the sacrificial layer 145(2)R as a mask, the island-shaped or band-shaped sacrificial layer 145(1)R is formed. Note that in the method for manufacturing a display device of one embodiment of the present invention, either the sacrificial layer 145(1)R or the sacrificial layer 145(2)R may not be used.
[Etching of EL film 112Rf]
Next, part of the EL film 112Rf that is not covered with the sacrificial layer 145(1)R is removed by etching, so that the island-shaped or band-shaped EL layer 112R is formed.
For the etching of the EL film 112Rf, it is preferable to use dry etching using an etching gas that does not contain oxygen as its main component. This can inhibit the alteration of the EL film 112Rf to achieve a highly reliable display device. Examples of the etching gas that does not contain oxygen as its main component include CF4, C4F8, SF6, CHF3, Cl2, H2O, BCl3, and a noble gas such as He. Alternatively, a mixed gas of the above gas and a dilution gas that does not contain oxygen can be used as the etching gas. Here, in the etching of the EL film 112Rf, part of the sacrificial layer 145(1)R may be removed. For example, in the case where the sacrificial film 144(1)R has a two-layer structure, an inorganic insulating material such as aluminum oxide, hafnium oxide, or silicon oxide formed by an ALD method is used for a lower layer, and a metal oxide containing indium such as indium gallium zinc oxide (also referred to as In—Ga—Zn oxide or IGZO) formed by a sputtering method is used for an upper layer, the upper layer may be etched in the etching of the EL film 112Rf.
Note that etching of the EL film 112Rf is not limited to the above and may be performed by a dry etching using another gas or a wet etching.
When a dry etching using an etching gas containing an oxygen gas or an oxygen gas is used for the etching of the EL film 112Rf, the etching rate can be increased. Consequently, etching under a low-power condition can be performed while the etching rate is kept adequately high; hence, damage due to the etching can be reduced. Furthermore, a defect such as attachment of a reaction product generated at the etching can be inhibited. For example, an etching gas to which an oxygen gas is added to the etching gas that does not contain oxygen as its main component can be used. [Formation of EL layer 112G and EL layer 112B]
Subsequently, the EL film 112Gf, which is to be the EL layer 112G, is formed over the sacrificial layer 145(1)R, the pixel electrode 111G, and the pixel electrode 111B. For the EL film 112Gf, the description of the EL film 112Rf can be referred to.
Then, the sacrificial film 144(1)G is formed over the EL film 112Gf. For the sacrificial film 144(1)G, the description of the sacrificial film 144(1)R can be referred to.
Subsequently, the sacrificial film 144(2)G is formed over the sacrificial film 144(1)G. For the sacrificial film 144(2)G, the description of the sacrificial film 144(2)R can be referred to.
Next, a resist mask 143b is formed over the sacrificial film 144(2)G (
Subsequently, the sacrificial layer 145(1)G, the sacrificial layer 145(2)G, and the EL layer 112G are formed (
Next, the EL film 112Bf, which is to be the EL layer 112B, is formed over the sacrificial layer 145(2)R, the sacrificial layer 145(2)G, and the pixel electrode 111B. For the EL film 112Bf, the description of the EL film 112Rf can be referred to.
Subsequently, the sacrificial film 144(1)B is formed over the EL film 112Bf. For the sacrificial film 144(1)B, the description of the sacrificial film 144(1)R can be referred to. Next, the sacrificial film 144(2)B is formed over the sacrificial film 144(1)B. For the sacrificial film 144(2)B, the description of the sacrificial film 144(2)R can be referred to.
Subsequently, a resist mask 143c is formed over the sacrificial film 144(2)B (
Next, the sacrificial layer 145(1)B, the sacrificial layer 145(2)B, and the EL layer 112B are formed (
In this specification and the like, the thicknesses of a layer and a film are sometimes drawn to be larger for easy viewing in a drawing that is not enlarged. In an enlarged drawing, the distance between components included in a display device or the like may be differ. For example, the distance between the end portions of the pixel electrode 111 and the end portions of the EL layer 112 is drawn to be wide in
Next, the sacrificial layer 145(2)R, the sacrificial layer 145(2)G, and the sacrificial layer 145(2)B (hereinafter collectively referred to as “sacrificial layer 145(2)”) are removed by etching or the like (
Next, an insulating film 131bf to be the insulating layer 131b is formed (
For the formation of the insulating film 131bf, a sputtering method, a chemical vapor deposition (CVD) method, a molecular beam epitaxy (MBE) method, a pulsed laser deposition (PLD) method, an atomic layer deposition (ALD) method, or the like can be used. An ALD method with favorable coverage can be suitably used for forming the insulating film 131bf.
As the insulating film 131bf, a single layer or a stacked layer of aluminum oxide, magnesium oxide, hafnium oxide, gallium oxide, indium gallium zinc oxide, silicon oxide, silicon oxynitride, silicon nitride, silicon nitride oxide, or the like can be used, for example. In particular, aluminum oxide is preferable because it has high selectivity with respect to the EL layer 112 in etching and has a function of protecting the EL layer 112 in forming the insulating layer 131b which is to be described later.
The insulating film 131bf is formed by an ALD method, so that the insulating film 131bf can be a film with few pinholes, and the insulating layer 131b having an excellent function of protecting the EL layers 112 can be formed.
The deposition temperature of the insulating film 131bf is preferably lower than the upper temperature limit of the EL layer 112.
Here, aluminum oxide is formed by an ALD method for the insulating film 131bf. The formation temperature of the insulating film 131bf by an ALD method is preferably higher than or equal to 60° C. and lower than or equal to 150° C., further preferably higher than or equal to 70° C. and lower than or equal to 115° C., still further preferably higher than or equal to 80° C. and lower than or equal to 100° C. By forming the insulating film 131bf at such a temperature, a dense insulating film can be obtained and damage to the EL layers 112 can be reduced.
Next, an insulating film 131af to be the insulating layer 131a is formed (
As the insulating film 131af, an insulating film containing an organic material is preferably used, and a resin is preferably used as the organic material.
As a material that can be used for the insulating film 131af, an acrylic resin, a polyimide resin, an epoxy resin, a polyamide resin, a polyimide-amide resin, a siloxane resin, a benzocyclobutene-based resin, a phenol resin, and precursors of these resins can be given, for example. A photosensitive resin can be used for the insulating film 131af. As the photosensitive resin, a positive photosensitive material or a negative photosensitive material can be used.
By forming the insulating film 131af using a photosensitive resin, the insulating film 131af can be formed only by light exposure and development steps; thus, damage to layers included in the light-emitting elements 110, in particular, damage to EL layers, can be reduced.
As illustrated in
Next, the insulating layer 131a is formed. Here, when a photosensitive resin is used for the insulating film 131af, the insulating layer 131a can be formed without providing an etching mask such as a resist mask or a hard mask. Since a photosensitive resin can be processed only by the light exposure and development steps, the insulating layer 131a can be formed without using a dry etching method or the like. Thus, the step can be simplified. In addition, damage to the EL layers due to etching of the insulating film 131af can be reduced. Note that part of the upper portion of the insulating layer 131a may be etched to adjust the level of the surface.
The insulating layer 131a may be formed by performing etching substantially uniformly on the top surface of the insulating film 131af. Such uniform etching for planarization is also referred to as etch back.
To form the insulating layer 131a, the light exposure and development steps and the etch back step may be used in combination.
An example of a method for forming the insulating layer 131a is described with reference to
Note that the insulating layer 131ap illustrated in
Next, etching of the insulating film 131bf and the sacrificial layer 145(1) is performed (
The insulating film 131bf and the sacrificial layer 145(1) are formed using the same material, whereby etching can be performed at the same time, so that the step can be simplified in some cases.
A dry etching method or a wet etching method can be used for the etching of the insulating film 131bf. The etching may be performed by ashing using oxygen plasma or the like. Chemical mechanical polishing (CMP) may be used for the etching of the insulating film 131bf.
Note that it is preferable to reduce damage to the EL layer 112 due to etching at the time of etching the insulating film 131bf. Therefore, it is preferable to use a material with high etching selectivity with respect to the EL layer 112 for the insulating film 131bf, for example.
By using an inorganic material for the insulating film 131bf, the selectivity with respect to the EL layer 112 can be high in some cases. As the insulating layer 131b, a single layer or a stacked layer of aluminum oxide, magnesium oxide, hafnium oxide, gallium oxide, indium gallium zinc oxide, silicon oxide, silicon oxynitride, silicon nitride, silicon nitride oxide, or the like can be used. In particular, aluminum oxide is preferable because it has high selectivity with respect to the EL layer 112 in etching and has a function of protecting the EL layer 112 in forming the insulating layer 131b which is to be described later. In particular, an inorganic insulating material such as aluminum oxide, hafnium oxide, or silicon oxide, which is formed by an ALD method, is used for the insulating layer 131b, whereby the insulating layer 131b can be a film with few pinholes and has an excellent function of protecting the EL layer 112.
At the time of forming the insulating film 131af and the insulating film 131bf, levels of the top surfaces can be adjusted by the etching amount. Here, the etching amount is preferably adjusted so that the insulating layer 131b can cover the side surface of the EL layer 112. In particular, the etching amount is preferably adjusted so that the insulating layer 131b can cover a side surface of the light-emitting layer included in the EL layer 112.
The surface planarity of the insulating film 131af containing an organic material may change due to unevenness of the formation surface and the sparseness and density of the pattern formed on the formation surface. The planarity of the insulating film 131af may change due to the viscosity or the like of a material used for the insulating film 131af. For example, in some cases, the thickness of the insulating film 131af in a region not overlapping with the EL layer 112 becomes smaller than the thickness of the insulating film 131af in a region overlapping with the EL layer 112. In such a case, for example, etch back of the insulating film 131af is performed, whereby the level of the top surface of the insulating layer 131 becomes lower than the level of the top surface of the sacrificial layer 145(1) in some cases.
The insulating film 131af has a concave curved surface shape (a hollow shape), a convex curved surface shape (a bulging shape), or the like in a region between the plurality of EL layers 112 in some cases.
[Formation of common layer 114]
Then, the common layer 114 is formed. Note that in the case where the common layer 114 is not included, the common electrode 113 may be formed to cover the EL layer 112R, the EL layer 112G, and the EL layer 112B.
Next, the common electrode 113 is formed over the common layer 114. The common electrode 113 can be formed by a sputtering method or a vacuum evaporation method, for example. Note that in the case where the common layer 114 is not provided over the connection electrode 111C, a metal mask that shields the upper portion of the connection electrode 111C may be used in forming the common layer 114. The metal mask used here does not need to shield a pixel region of the display portion; hence, a high-resolution mask is not required.
Through the above steps, the light-emitting element 110R, the light-emitting element 110G, and the light-emitting element 110B can be manufactured. [Formation of protective layer 121]
Next, the protective layer 121 is formed over the common electrode 113 (
Through the above steps, the display device 100 illustrated in
The display device 100 illustrated in
In
The structure illustrated in
The structure in
At least part of this embodiment can be implemented in combination with the other embodiments described in this specification as appropriate.
In this embodiment, a structure example of a display device of one embodiment of the present invention will be described.
The display device in this embodiment can be a high-definition display device or a large-sized display device. Accordingly, the display device in this embodiment can be used for display portions of electronic devices such as a digital camera, a digital video camera, a digital photo frame, a mobile phone, a portable game machine, a smartphone, a watch-type terminal, a tablet terminal, a portable information terminal, and an audio reproducing device, in addition to display portions of electronic devices with a relatively large screen, such as a television device, a desktop or laptop personal computer, a monitor of a computer or the like, digital signage, and a large game machine such as a pachinko machine.
The display device 400A has a structure in which a substrate 452 and a substrate 451 are bonded to each other. In
The display device 400A includes a display portion 462, a circuit 464, a wiring 465, and the like.
As the circuit 464, a scan line driver circuit can be used, for example.
The wiring 465 has a function of supplying a signal and power to the display portion 462 and the circuit 464. The signal and power are input to the wiring 465 from the outside through the FPC 472 or from the IC 473.
The display device 400A illustrated in
The light-emitting element described in Embodiment 1 as an example can be used as the light-emitting element 430a, the light-emitting element 430b, and the light-emitting element 430c.
In the case where a pixel of the display device includes three kinds of subpixels including light-emitting elements emitting different colors from each other, the three subpixels can be of three colors of red (R), green (G), and blue (B) or of three colors of yellow (Y), cyan (C), and magenta (M). In the case where four subpixels are included, the four subpixels can be of four colors of red (R), green (G), blue (B), and white (W) or of four colors of R, G, B, and Y.
A protective layer 410 and the substrate 452 are bonded to each other with an adhesive layer 442. A solid sealing structure, a hollow sealing structure, or the like can be employed to seal the light-emitting elements. In
In an opening portion provided in the insulating layer 214 to expose the top surface of a conductive layer 222b included in the transistor 205, part of a conductive layer 418a, part of a conductive layer 418b, and part of a conductive layer 418c are formed along the bottom surface and a side surface of the opening portion. The conductive layer 418a, the conductive layer 418b, and the conductive layer 418c are each connected to the conductive layer 222b included in the transistor 205 through the opening provided in the insulating layer 214. A pixel electrode contains a material that reflects visible light, and a counter electrode contains a material that transmits visible light. Another part of the conductive layer 418a, another part of the conductive layer 418b, and another part of the conductive layer 418c are provided over the insulating layer 214.
A pixel electrode 411a, a pixel electrode 411b, and a pixel electrode 411c are provided over the conductive layer 418a, the conductive layer 418b, and the conductive layer 418c, respectively. An insulating layer 414 may be provided between the conductive layer 418a and the conductive layer 411a included in the light-emitting element 430a, between the conductive layer 418b and the conductive layer 411b included in the light-emitting element 430b, and between the conductive layer 418c and the conductive layer 411c included in the light-emitting element 430c.
As illustrated in
The pixel electrode 111 described in the above embodiment can be used as each of the pixel electrode 411a, the pixel electrode 411b, and the pixel electrode 411c.
The insulating layer 421 is provided in each of a region positioned between the light-emitting element 430a and the light-emitting element 430b and over the insulating layer 214 and a region positioned between the light-emitting element 430b and the light-emitting element 430c and over the insulating layer 214. As the insulating layer 421, the insulating layer 131 described in the above embodiment can be referred to.
Light emitted from the light-emitting element is emitted toward the substrate 452 side. For the substrate 452, a material having a high visible-light-transmitting property is preferably used.
The transistor 201 and the transistor 205 are formed over the substrate 451. These transistors can be manufactured using the same material in the same step.
An insulating layer 211, an insulating layer 213, an insulating layer 215, and the insulating layer 214 are provided in this order over the substrate 451. Part of the insulating layer 211 functions as a gate insulating layer of each transistor. Part of the insulating layer 213 functions as a gate insulating layer of each transistor. The insulating layer 215 is provided to cover the transistors. The insulating layer 214 is provided to cover the transistors and has a function of a planarization layer. Note that the number of gate insulating layers and the number of insulating layers covering the transistors are not limited and may have either a single layer or two or more layers.
A material through which impurities such as water and hydrogen do not easily diffuse is preferably used for at least one of the insulating layers covering the transistors. This is because such an insulating layer can function as a barrier layer. Such a structure can effectively inhibit diffusion of impurities into the transistors from the outside and increase the reliability of the display device.
An inorganic insulating film is preferably used as each of the insulating layer 211, the insulating layer 213, and the insulating layer 215. As the inorganic insulating film, a silicon nitride film, a silicon oxynitride film, a silicon oxide film, a silicon nitride oxide film, an aluminum oxide film, or an aluminum nitride film can be used, for example. A hafnium oxide film, an yttrium oxide film, a zirconium oxide film, a gallium oxide film, a tantalum oxide film, a magnesium oxide film, a lanthanum oxide film, a cerium oxide film, a neodymium oxide film, or the like may be used. A stack including two or more of the above insulating films may also be used.
Here, an organic insulating film often has a lower barrier property than an inorganic insulating film. Therefore, the organic insulating film preferably has an opening in the vicinity of the end portion of the display device 400A. This can inhibit entry of impurities from the end portion of the display device 400A through the organic insulating film. Alternatively, the organic insulating film may be formed such that its end portion is positioned inward from the end portion of the display device 400A, to prevent the organic insulating film from being exposed at the end portion of the display device 400A.
An organic insulating film is suitable for the insulating layer 214 functioning as a planarization layer. Examples of materials that can be used for the organic insulating film include an acrylic resin, a polyimide resin, an epoxy resin, a polyamide resin, a polyimide-amide resin, a siloxane resin, a benzocyclobutene-based resin, a phenol resin, and precursors of these resins.
In a region 228 illustrated in
The insulating layer 421b can be formed using the same material as that of the insulating layer 421. The insulating layer 421b is formed in the same step as the insulating layer 421, for example. The protective layer 410 is formed to cover the opening. By using an inorganic layer as the protective layer 410, entry of impurities into the display portion 462 from the outside through the insulating layer 214 can be inhibited even when an organic insulating film is used as the insulating layer 214. Consequently, the reliability of the display device 400A can be increased.
Each of the transistor 201 and the transistor 205 includes a conductive layer 221 functioning as a gate, the insulating layer 211 functioning as a gate insulating layer, a conductive layer 222a functioning as one of a source and a drain, the conductive layer 222b functioning as the other of the source and the drain, a semiconductor layer 231, the insulating layer 213 functioning as a gate insulating layer, and a conductive layer 223 functioning as a gate. Here, a plurality of layers obtained by processing the same conductive film are shown with the same hatching pattern. The insulating layer 211 is positioned between the conductive layer 221 and the semiconductor layer 231. The insulating layer 213 is positioned between the conductive layer 223 and the semiconductor layer 231.
There is no particular limitation on the structure of the transistors included in the display device in this embodiment. For example, a planar transistor, a staggered transistor, or an inverted staggered transistor can be used. A top-gate or bottom-gate transistor structure can be used. Alternatively, gates may be provided above and below a semiconductor layer where a channel is formed.
The structure in which the semiconductor layer where a channel is formed is provided between two gates is used for the transistor 201 and the transistor 205. The two gates may be connected to each other and supplied with the same signal to drive the transistor. Alternatively, the threshold voltage of the transistor may be controlled by supplying a potential for controlling the threshold voltage to one of the two gates and a potential for driving to the other.
There is no particular limitation on the crystallinity of a semiconductor material used for the transistors, and any of an amorphous semiconductor and a semiconductor having crystallinity (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, or a semiconductor partly including crystal regions) may be used. It is preferable to use a semiconductor having crystallinity, in which case deterioration of the transistor characteristics can be inhibited.
It is preferable that a semiconductor layer of a transistor contain a metal oxide (also referred to as an oxide semiconductor). That is, a transistor using a metal oxide in its channel formation region (hereinafter, an OS transistor) is preferably used for the display device in this embodiment. Alternatively, a semiconductor layer of a transistor may contain silicon.
Examples of silicon include amorphous silicon and crystalline silicon (e.g., low-temperature polysilicon or single crystal silicon).
The semiconductor layer preferably contains indium, M(M is one or more kinds selected from gallium, aluminum, silicon, boron, yttrium, tin, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, and magnesium), and zinc, for example. Specifically, M is preferably one or more kinds selected from aluminum, gallium, yttrium, and tin.
It is particularly preferable that an oxide containing indium (In), gallium (Ga), and zinc (Zn) (also referred to as IGZO) be used for the semiconductor layer.
When the semiconductor layer is an In—M—Zn oxide, the atomic ratio of In is preferably greater than or equal to the atomic ratio of Min the In—M—Zn oxide. Examples of the atomic ratio of the metal elements in such an In—M—Zn oxide include In:M:Zn=1:1:1 or a composition in the neighborhood thereof, In:M:Zn=1:1:1.2 or a composition in the neighborhood thereof, In:M:Zn=2:1:3 or a composition in the neighborhood thereof, In:M:Zn=3:1:2 or a composition in the neighborhood thereof, In:M:Zn=4:2:3 or a composition in the neighborhood thereof, In:M:Zn=4:2:4.1 or a composition in the neighborhood thereof, In:M:Zn=5:1:3 or a composition in the neighborhood thereof, In:M:Zn=5:1:6 or a composition in the neighborhood thereof, In:M:Zn=5:1:7 or a composition in the neighborhood thereof, In:M:Zn=5:1:8 or a composition in the neighborhood thereof, In:M:Zn=6:1:6 or a composition in the neighborhood thereof, and In:M:Zn=5:2:5 or a composition in the neighborhood thereof. Note that a composition in the neighborhood includes the range of ±30% of an intended atomic ratio.
For example, when the atomic ratio is described as In:Ga:Zn=4:2:3 or a composition in the neighborhood thereof, the case is included where the atomic ratio of Ga is greater than or equal to 1 and less than or equal to 3 and the atomic ratio of Zn is greater than or equal to 2 and less than or equal to 4 with the atomic ratio of In being 4. When the atomic ratio is described as In:Ga:Zn=5:1:6 or a composition in the neighborhood thereof, the case is included where the atomic ratio of Ga is greater than 0.1 and less than or equal to 2 and the atomic ratio of Zn is greater than or equal to 5 and less than or equal to 7 with the atomic ratio of In being 5. When the atomic ratio is described as In:Ga:Zn=1:1:1 or a composition in the neighborhood thereof, the case is included where the atomic ratio of Ga is greater than 0.1 and less than or equal to 2 and the atomic ratio of Zn is greater than 0.1 and less than or equal to 2 with the atomic ratio of In being 1.
The transistor included in the circuit 464 and the transistor included in the display portion 462 may have the same structure or different structures. A plurality of transistors included in the circuit 464 may have the same structure or two or more kinds of structures. Similarly, a plurality of transistors included in the display portion 462 may have the same structure or two or more kinds of structures.
A connection portion 204 is provided in a region of the substrate 451 that does not overlap with the substrate 452. In the connection portion 204, the wiring 465 is electrically connected to the FPC 472 through a conductive layer 466 and a connection layer 242. As the conductive layer 466, a conductive film obtained by processing the same conductive film as the pixel electrode or a conductive film obtained by processing a stacked film in which a conductive film that is the same as the pixel electrode and a conductive film that is the same as the optical adjustment layer can be used. On the top surface of the connection portion 204, the conductive layer 466 is exposed. Thus, the connection portion 204 and the FPC 472 can be electrically connected to each other through the connection layer 242.
A light-blocking layer 417 is preferably provided on the surface of the substrate 452 on the substrate 451 side. A variety of optical members can be arranged on the outer side of the substrate 452. Examples of the optical members include a polarizing plate, a retardation plate, a light diffusion layer (e.g., a diffusion film), an anti-reflective layer, and a light-condensing film. Furthermore, an antistatic film inhibiting the attachment of dust, a water repellent film inhibiting the attachment of stain, a hard coat film inhibiting generation of a scratch caused by the use, an impact-absorbing layer, or the like may be provided on the outer side of the substrate 452.
Providing the protective layer 410 covering the light-emitting elements inhibits entry of impurities such as water into the light-emitting elements; as a result, the reliability of the light-emitting elements can be increased.
In the region 228 in the vicinity of the end portion of the display device 400A, the insulating layer 215 and the protective layer 410 are preferably in contact with each other through the opening in the insulating layer 214. In particular, the inorganic insulating film included in the insulating layer 215 and the inorganic insulating film included in the protective layer 410 are preferably in contact with each other. This can inhibit entry of impurities into the display portion 462 from the outside through the organic insulating film. Consequently, the reliability of the display device 400A can be increased.
For each of the substrate 451 and the substrate 452, glass, quartz, ceramics, sapphire, a resin, a metal, an alloy, a semiconductor, or the like can be used. The substrate on the side from which light from the light-emitting element is extracted is formed using a material that transmits the light. When the substrate 451 and the substrate 452 are formed using a flexible material, the flexibility of the display device can be increased. Furthermore, a polarizing plate may be used as the substrate 451 or the substrate 452.
For each of the substrate 451 and the substrate 452, it is possible to use a polyester resin such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), a polyacrylonitrile resin, an acrylic resin, a polyimide resin, a polymethyl methacrylate resin, a polycarbonate (PC) resin, a polyethersulfone (PES) resin, a polyamide resin (e.g., nylon or aramid), a polysiloxane resin, a cycloolefin resin, a polystyrene resin, a polyamide-imide resin, a polyurethane resin, a polyvinyl chloride resin, a polyvinylidene chloride resin, a polypropylene resin, a polytetrafluoroethylene (PTFE) resin, an ABS resin, cellulose nanofiber, or the like. Glass that is thin enough to have flexibility may be used for one or both of the substrate 451 and the substrate 452.
In the case where a circularly polarizing plate overlaps with the display device, a highly optically isotropic substrate is preferably used as the substrate included in the display device. A highly optically isotropic substrate has a low birefringence (in other words, a small amount of birefringence).
The absolute value of a retardation (phase difference) of a highly optically isotropic substrate is preferably less than or equal to 30 nm, further preferably less than or equal to 20 nm, still further preferably less than or equal to 10 nm.
Examples of a highly optically isotropic film include a triacetyl cellulose (TAC, also referred to as cellulose triacetate) film, a cycloolefin polymer (COP) film, a cycloolefin copolymer (COC) film, and an acrylic film.
When a film is used for the substrate and the film absorbs water, the shape of the display panel might be changed, e.g., creases are generated. Thus, for the substrate, a film with a low water absorption rate is preferably used. For example, the water absorption rate of the film is preferably 1% or lower, further preferably 0.1% or lower, still further preferably 0.01% or lower.
As the adhesive layer, any of a variety of curable adhesives such as a reactive curable adhesive, a thermosetting curable adhesive, an anaerobic adhesive, and a photocurable adhesive such as an ultraviolet curable adhesive can be used. Examples of these adhesives include an epoxy resin, an acrylic resin, a silicone resin, a phenol resin, a polyimide resin, an imide resin, a PVC (polyvinyl chloride) resin, a PVB (polyvinyl butyral) resin, and an EVA (ethylene vinyl acetate) resin. In particular, a material with low moisture permeability, such as an epoxy resin, is preferred. A two-component-mixture-type resin may be used. An adhesive sheet or the like may be used.
As the connection layer 242, an anisotropic conductive film (ACF), an anisotropic conductive paste (ACP), or the like can be used.
As materials for the gates, the source, and the drain of a transistor and conductive layers such as a variety of wirings and electrodes included in the display device, any of metals such as aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, tantalum, and tungsten, or an alloy containing any of these metals as its main component can be used. A single-layer structure or a stacked-layer structure including a film containing any of these materials can be used.
As a light-transmitting conductive material, a conductive oxide such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, or zinc oxide containing gallium, or graphene can be used. It is also possible to use a metal material such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, or titanium; or an alloy material containing any of these metal materials. Alternatively, a nitride of the metal material (e.g., titanium nitride) or the like may be used. Note that in the case of using the metal material or the alloy material (or the nitride thereof), the thickness is preferably set small enough to transmit light. Alternatively, a stacked film of any of the above materials can be used for the conductive layers. For example, a stacked film of indium tin oxide and an alloy of silver and magnesium is preferably used because conductivity can be increased. They can also be used for conductive layers such as a variety of wirings and electrodes included in the display device, and conductive layers (e.g., conductive layers functioning as the pixel electrode and the common electrode) included in the light-emitting element.
Examples of insulating materials that can be used for the insulating layers include resins such as an acrylic resin and an epoxy resin, and inorganic insulating materials such as silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, and aluminum oxide.
The transistor 201 and the transistor 205 each include the conductive layer 221 functioning as a gate, the insulating layer 211 functioning as a gate insulating layer, a semiconductor layer including a channel formation region 231i and a pair of low-resistance regions 231n, the conductive layer 222a connected to one of the pair of low-resistance regions 231n, the conductive layer 222b connected to the other of the pair of low-resistance regions 231n, an insulating layer 225 functioning as a gate insulating layer, the conductive layer 223 functioning as a gate, and the insulating layer 215 covering the conductive layer 223. The insulating layer 211 is positioned between the conductive layer 221 and the channel formation region 231i. The insulating layer 225 is positioned between the conductive layer 223 and the channel formation region 231i.
The conductive layer 222a and the conductive layer 222b are connected to the corresponding low-resistance regions 231n through openings provided in the insulating layer 215 and the insulating layer 225. One of the conductive layer 222a and the conductive layer 222b functions as a source, and the other functions as a drain.
In a transistor 209 illustrated in
Transistors containing silicon in their semiconductor layers where channels are formed may be used as all transistors included in the pixel circuit for driving the light-emitting element. As silicon, single crystal silicon, polycrystalline silicon, amorphous silicon, and the like can be given. In particular, a transistor containing low-temperature polysilicon (LTPS) in its semiconductor layer (hereinafter also referred to as an LTPS transistor) can be used. The LTPS transistor has high field-effect mobility and favorable frequency characteristics.
With the use of transistors using silicon such as LTPS transistors, a circuit required to be driven at a high frequency (e.g., a source driver circuit) can be formed on the same substrate as the display portion. Thus, external circuits mounted on the display device can be simplified, and costs of parts and mounting costs can be reduced.
It is preferable to use a transistor including a metal oxide (hereinafter also referred to as an oxide semiconductor) in a semiconductor where a channel is formed (hereinafter such a transistor is also referred to as an OS transistor) as at least one of the transistors included in the pixel circuit. An OS transistor has extremely higher field-effect mobility than amorphous silicon. In addition, the OS transistor has extremely low leakage current between a source and a drain in an off state (hereinafter, also referred to as off-state current), and charge accumulated in a capacitor that is connected in series to the transistor can be held for a long period. Furthermore, power consumption of the display device can be reduced with an OS transistor.
When an LTPS transistor is used as one or more of the transistors included in the pixel circuit and an OS transistor is used as the rest, the display device with low power consumption and high driving capability can be obtained. A structure in which an LTPS transistor and an OS transistor are combined is referred to as LTPO in some cases. As a favorable example, it is preferable that the OS transistor be used as a transistor or the like functioning as a switch for controlling conduction or non-conduction between wirings and the LTPS transistor be used as a transistor or the like for controlling a current.
For example, one transistor included in the pixel circuit functions as a transistor for controlling a current flowing through the light-emitting element and can be referred to as a driving transistor. One of a source and a drain of the driving transistor is electrically connected to a pixel electrode of the light-emitting element. An LTPS transistor is preferably used as the driving transistor. Thus, the amount of current flowing through the light-emitting element can be increased in the pixel circuit.
In contrast, another transistor included in the pixel circuit functions as a switch for controlling selection and non-selection of the pixel and can be referred to as a selection transistor. A gate of the selection transistor is electrically connected to a gate line, and one of a source and a drain thereof is electrically connected to a source line (a signal line). An OS transistor is preferably used as the selection transistor. Accordingly, the gray level of the pixel can be maintained even with an extremely low frame frequency (e.g., 1 fps or less); thus, power consumption can be reduced by stopping the driver in displaying a still image.
As described above, the display device of one embodiment of the present invention can achieve a high aperture ratio, high resolution, high display quality, and low power consumption.
At least part of the structure examples, the drawings corresponding thereto, and the like described in this embodiment as an example can be combined with the other structure examples, the other drawings, and the like as appropriate.
In this embodiment, a structure example of a display device different from those described above will be described.
The display device in this embodiment can be a high-resolution display device.
Accordingly, the display device in this embodiment can be used for display portions of information terminals (wearable devices) such as watch-type and bracelet-type information terminals and display portions of wearable devices capable of being worn on the head, such as a VR device like a head-mounted display and a glasses-type AR device.
The display module 280 includes a substrate 291 and a substrate 292. The display module 280 includes a display portion 281. The display portion 281 is a region of the display module 280 where an image is displayed, and is a region where light emitted from pixels provided 30 in a pixel portion 284 described later can be seen.
The pixel portion 284 includes a plurality of pixels 284a arranged periodically. An enlarged view of one pixel 284a is illustrated on the right side of
The pixel circuit portion 283 includes a plurality of pixel circuits 283a arranged periodically.
One pixel circuit 283a is a circuit that controls light emission of three light-emitting elements included in one pixel 284a. One pixel circuit 283a may be provided with three circuits each of which controls light emission of one light-emitting element. For example, the pixel circuit 283a can include at least one selection transistor, one current control transistor (driving transistor), and a capacitor for one light-emitting element. In this case, a gate signal is input to a gate of the selection transistor, and a source signal is input to one of a source and a drain of the selection transistor. Thus, an active-matrix display device is achieved.
The circuit portion 282 includes a circuit for driving the pixel circuits 283a in the pixel circuit portion 283. For example, one or both of a gate line driver circuit and a source line driver circuit are preferably included. In addition, at least one of an arithmetic circuit, a memory circuit, a power supply circuit, and the like may be included.
The FPC 290 functions as a wiring for supplying a video signal, a power supply potential, or the like to the circuit portion 282 from the outside. An IC may be mounted on the FPC 290.
The display module 280 can have a structure in which one or both of the pixel circuit portion 283 and the circuit portion 282 are stacked below the pixel portion 284; hence, the aperture ratio (effective display area ratio) of the display portion 281 can be significantly high. For example, the aperture ratio of the display portion 281 can be greater than or equal to 40% and less than 100%, preferably greater than or equal to 50% and less than or equal to 95%, further preferably greater than or equal to 60% and less than or equal to 95%. Furthermore, the pixels 284a can be arranged extremely densely and thus the display portion 281 can have extremely high resolution. For example, the pixels 284a are preferably arranged in the display portion 281 with a resolution greater than or equal to 2000 ppi, preferably greater than or equal to 3000 ppi, further preferably greater than or equal to 5000 ppi, still further preferably greater than or equal to 6000 ppi, and less than or equal to 20000 ppi or less than or equal to 30000 ppi.
Such a display module 280 has extremely high resolution, and thus can be suitably used for a VR device such as a head-mounted display or a glasses-type AR device. For example, even with a structure in which the display portion of the display module 280 is seen through a lens, pixels of the extremely-high-resolution display portion 281 included in the display module 280 are prevented from being perceived when the display portion is enlarged by the lens, so that display providing a high sense of immersion can be performed. Without being limited thereto, the display module 280 can be suitably used for electronic devices including a relatively small display portion. For example, the display module 280 can be suitably used in a display portion of a wearable electronic device such as a wrist watch.
The display device 400C illustrated in
The transistor 310 is a transistor including a channel formation region in the substrate 301. As the substrate 301, a semiconductor substrate such as a single crystal silicon substrate can be used, for example. The transistor 310 includes part of the substrate 301, a conductive layer 311, low-resistance regions 312, an insulating layer 313, and an insulating layer 314. The conductive layer 311 functions as a gate electrode. The insulating layer 313 is positioned between the substrate 301 and the conductive layer 311 and functions as a gate insulating layer. The low-resistance regions 312 are regions where the substrate 301 is doped with an impurity, and function as one of a source and a drain. The insulating layer 314 is provided to cover a side surface of the conductive layer 311 and functions as an insulating layer.
An element isolation layer 315 is provided between the two adjacent transistors 310 to be embedded in the substrate 301.
An insulating layer 261 is provided to cover the transistor 310, and the capacitor 240 is provided over the insulating layer 261.
The capacitor 240 includes a conductive layer 241, a conductive layer 245, and an insulating layer 243 positioned therebetween. The conductive layer 241 functions as one electrode of the capacitor 240, the conductive layer 245 functions as the other electrode of the capacitor 240, and the insulating layer 243 functions as the dielectric of the capacitor 240.
The conductive layer 241 is provided over the insulating layer 261 and is embedded in an insulating layer 254. The conductive layer 241 is electrically connected to one of a source and a drain of the transistor 310 through a plug 271 embedded in the insulating layer 261. The insulating layer 243 is provided to cover the conductive layer 241. The conductive layer 245 is provided in a region overlapping with the conductive layer 241 with the insulating layer 243 therebetween.
An insulating layer 255 is provided to cover the capacitor 240, and the light-emitting elements 430a, 430b, and 430c and the like are provided over the insulating layer 255. A protective layer 416 is provided over the light-emitting elements 430a, 430b, and 430c, and a substrate 420 is bonded to the top surface of the protective layer 416 with a resin layer 419. The substrate 420 corresponds to the substrate 292 illustrated in
The pixel electrode of the light-emitting element is electrically connected to one of the source and the drain of the transistor 310 through a plug 256 embedded in the insulating layer 255, the conductive layer 241 embedded in the insulating layer 254, and the plug 271 embedded in the insulating layer 261.
The display device 400D illustrated in
A transistor 320 is a transistor in which a metal oxide (also referred to as an oxide semiconductor) is used in a semiconductor layer where a channel is formed.
The transistor 320 includes a semiconductor layer 321, an insulating layer 323, a conductive layer 324, a pair of conductive layers 325, an insulating layer 326, and a conductive layer 327.
A substrate 331 corresponds to the substrate 291 in
An insulating layer 332 is provided over the substrate 331. The insulating layer 332 functions as a barrier layer that prevents diffusion of impurities such as water and hydrogen from the substrate 331 into the transistor 320 and release of oxygen from the semiconductor layer 321 to the insulating layer 332 side. As the insulating layer 332, for example, a film through which hydrogen or oxygen is less likely to diffuse than in a silicon oxide film, such as an aluminum oxide film, a hafnium oxide film, or a silicon nitride film, can be used.
The conductive layer 327 is provided over the insulating layer 332, and the insulating layer 326 is provided to cover the conductive layer 327. The conductive layer 327 functions as a first gate electrode of the transistor 320, and part of the insulating layer 326 functions as a first gate insulating layer. An oxide insulating film such as a silicon oxide film is preferably used as at least part of the insulating layer 326 that is in contact with the semiconductor layer 321. The top surface of the insulating layer 326 is preferably planarized.
The semiconductor layer 321 is provided over the insulating layer 326. The semiconductor layer 321 preferably includes a metal oxide (also referred to as an oxide semiconductor) film having semiconductor characteristics. A material that can be suitably used for the semiconductor layer 321 will be described in detail later.
The pair of conductive layers 325 are provided over and in contact with the semiconductor layer 321 and function as a source electrode and a drain electrode.
An insulating layer 328 is provided to cover the top and side surfaces of the pair of conductive layers 325, a side surface of the semiconductor layer 321, and the like, and an insulating layer 264 is provided over the insulating layer 328. The insulating layer 328 functions as a barrier layer that prevents diffusion of impurities such as water and hydrogen from the insulating layer 264 and the like into the semiconductor layer 321 and release of oxygen from the semiconductor layer 321. As the insulating layer 328, an insulating film similar to the insulating layer 332 can be used.
An opening reaching the semiconductor layer 321 is provided in the insulating layer 328 and the insulating layer 264. The insulating layer 323 that is in contact with the side surfaces of the insulating layer 264, the insulating layer 328, and the conductive layer 325 and the top surface of the semiconductor layer 321, and the conductive layer 324 are embedded in the opening. The conductive layer 324 functions as a second gate electrode, and the insulating layer 323 functions as a second gate insulating layer.
The top surface of the conductive layer 324, the top surface of the insulating layer 323, and the top surface of the insulating layer 264 are planarized so that they are substantially level with each other, and an insulating layer 329 and an insulating layer 265 are provided to cover these layers.
The insulating layer 264 and the insulating layer 265 each function as an interlayer insulating layer. The insulating layer 329 functions as a barrier layer that prevents diffusion of impurities such as water and hydrogen from the insulating layer 265 and the like into the transistor 320. As the insulating layer 329, an insulating film similar to the insulating layer 328 and the insulating layer 332 can be used.
A plug 274 electrically connected to one of the pair of conductive layers 325 is provided to be embedded in the insulating layer 265, the insulating layer 329, and the insulating layer 264. Here, the plug 274 preferably includes a conductive layer 274a that covers the side surfaces of openings formed in the insulating layer 265, the insulating layer 329, the insulating layer 264, and the insulating layer 328 and part of the top surface of the conductive layer 325, and a conductive layer 274b in contact with the top surface of the conductive layer 274a. In this case, a conductive material through which hydrogen and oxygen are less likely to diffuse is preferably used for the conductive layer 274a.
The structures of the insulating layer 254 and the components thereover up to the substrate 420 in the display device 400D are similar to those in the display device 400C.
The display device 400E illustrated in
In the display device 400E, a substrate 301B provided with the transistor 310B, the capacitor 240, and the light-emitting devices is attached to a substrate 301A provided with the transistor 310A.
The substrate 301B is provided with a plug 343 that penetrates the substrate 301B. The plug 343 is electrically connected to a conductive layer 342 provided on a rear surface of the substrate 301B (a surface opposite to the substrate 420 side). In contrast, over the substrate 301A, a conductive layer 341 is provided over the insulating layer 261.
The conductive layer 341 and the conductive layer 342 are bonded to each other, whereby the substrate 301A and the substrate 301B are electrically connected to each other.
The conductive layer 341 and the conductive layer 342 are preferably formed using the same conductive material. For example, a metal film containing an element selected from Al, Cr, Cu, Ta, Ti, Mo, and W, a metal nitride film containing the above element as a component (a titanium nitride film, a molybdenum nitride film, or a tungsten nitride film), or the like can be used. Copper is particularly preferably used for the conductive layer 341 and the conductive layer 342. Thus, it is possible to employ Cu-to-Cu (copper-to-copper) direct bonding technique (a technique for achieving electrical continuity by connecting Cu (copper) pads). Note that the conductive layer 341 and the conductive layer 342 may be bonded to each other through bumps.
The display device 400F illustrated in
The insulating layer 261 is provided to cover the transistor 310, and a conductive layer 251 is provided over the insulating layer 261. An insulating layer 262 is provided to cover the conductive layer 251, and a conductive layer 252 is provided over the insulating layer 262. The conductive layer 251 and the conductive layer 252 each function as a wiring. An insulating layer 263 and the insulating layer 332 are provided to cover the conductive layer 252, and the transistor 320 is provided over the insulating layer 332. The insulating layer 265 is provided to cover the transistor 320, and the capacitor 240 is provided over the insulating layer 265. The capacitor 240 and the transistor 320 are electrically connected to each other through the plug 274.
The transistor 320 can be used as a transistor included in the pixel circuit. The transistor 310 can be used as a transistor included in the pixel circuit or a transistor included in a driver circuit (a gate line driver circuit or a source line driver circuit) for driving the pixel circuit. The transistor 310 and the transistor 320 can also be used as transistors included in a variety of circuits such as an arithmetic circuit and a memory circuit.
With such a structure, not only the pixel circuit but also the driver circuit and the like can be formed directly under the light-emitting elements; thus, the display device can be downsized as compared with the case where a driver circuit is provided around a display region.
At least part of the structure examples, the drawings corresponding thereto, and the like described in this embodiment as an example can be combined with the other structure examples, the other drawings, and the like as appropriate.
In this embodiment, a light-emitting element (also referred to as a light-emitting device) that can be used in a display device of one embodiment of the present invention will be described.
As illustrated in
The structure including the layer 4420, the light-emitting layer 4411, and the layer 4430, which is provided between the pair of electrodes, can function as a single light-emitting unit, and the structure in
Note that the structure in which a plurality of light-emitting layers (light-emitting layers 4411, 4412, and 4413) are provided between the layer 4420 and the layer 4430 as illustrated in
The structure in which a plurality of light-emitting units (an EL layer 786a and an EL layer 786b) are connected in series with an intermediate layer (a charge-generation layer) 4440 therebetween as illustrated in
In
Different light-emitting materials may be used for the light-emitting layer 4411, the light-emitting layer 4412, and the light-emitting layer 4413. White light emission can be obtained when the light-emitting layer 4411, the light-emitting layer 4412, and the light-emitting layer 4413 emit light of complementary colors.
In
Also in the structures illustrated in
A structure in which light-emitting layers in light-emitting devices (here, light-emitting layers for blue (B), green (G), and red (R)) are separately formed is referred to as an SBS (Side By Side) structure in some cases.
The emission color of the light-emitting device can be red, green, blue, cyan, magenta, yellow, white, or the like depending on the material that constitutes the EL layer 786.
Furthermore, the color purity can be further increased when the light-emitting device has a microcavity structure.
The light-emitting device that emits white light preferably contains two or more kinds of light-emitting substances in the light-emitting layer. To obtain white light emission, two or more kinds of light-emitting substances are selected such that their emission colors are complementary. For example, when the emission color of a first light-emitting layer and the emission color of a second light-emitting layer are complementary colors, it is possible to obtain a light-emitting device which emits white light as a whole. The same can be applied to a light-emitting device including three or more light-emitting layers.
The light-emitting layer preferably contains two or more light-emitting substances that emit light of R (red), G (green), B (blue), Y (yellow), 0 (orange), and the like. Alternatively, the light-emitting layer preferably contains two or more light-emitting substances that emit light containing two or more of spectral components of R, G, and B.
Here, a specific structure example of a light-emitting device is described.
The light-emitting device includes at least the light-emitting layer. The light-emitting device may further include, as a layer other than the light-emitting layer, a layer containing a substance with a high hole-injection property, a substance with a high hole-transport property, a hole-blocking material, a substance with a high electron-transport property, an electron-blocking material, a substance with a high electron-injection property, a substance with a bipolar property (a substance with a high electron-transport property and a high hole-transport property), or the like.
Either a low molecular compound or a high molecular compound can be used for the light-emitting device, and an inorganic compound may also be included. Each layer included in the light-emitting device can be formed by an evaporation method (including a vacuum evaporation method), a transfer method, a printing method, an inkjet method, a coating method, or the like.
For example, the light-emitting device can include one or more of a hole-injection layer, a hole-transport layer, a hole-blocking layer, an electron-blocking layer, an electron-transport layer, and an electron-injection layer in addition to the light-emitting layer.
The hole-injection layer is a layer injecting holes from an anode to the hole-transport layer, and a layer containing a material with a high hole-injection property. As the material with a high hole-injection property, an aromatic amine compound and a composite material containing a hole-transport material and an acceptor material (an electron-accepting material), and the like can be given.
The hole-transport layer is a layer transporting holes, which are injected from the anode by the hole-injection layer, to the light-emitting layer. The hole-transport layer is a layer containing a hole-transport material. As the hole-transport material, a substance having a hole mobility greater than or equal to 1×10−6 cm2/Vs is preferable. Note that other substances can also be used as long as they have a property of transporting more holes than electrons. As the hole-transport material, materials having a high hole-transport property, such as a π-electron rich heteroaromatic compound (e.g., a carbazole derivative, a thiophene derivative, and a furan derivative) and an aromatic amine (a compound having an aromatic amine skeleton), are preferable.
The electron-transport layer is a layer transporting electrons, which are injected from a cathode by the electron-injection layer, to the light-emitting layer. The electron-transport layer is a layer containing an electron-transport material. As the electron-transport material, a substance having an electron mobility greater than or equal to 1×10−6 cm2/Vs is preferable. Note that other substances can also be used as long as they have a property of transporting more electrons than holes. As the electron-transport material, it is possible to use a material having a high electron-transport property, such as a metal complex having a quinoline skeleton, a metal complex having a benzoquinoline skeleton, a metal complex having an oxazole skeleton, a metal complex having a thiazole skeleton, an oxadiazole derivative, a triazole derivative, an imidazole derivative, an oxazole derivative, a thiazole derivative, a phenanthroline derivative, a quinoline derivative having a quinoline ligand, a benzoquinoline derivative, a quinoxaline derivative, a dibenzoquinoxaline derivative, a pyridine derivative, a bipyridine derivative, a pyrimidine derivative, or a π-electron deficient heteroaromatic compound including a nitrogen-containing heteroaromatic compound.
The electron-injection layer is a layer injecting electrons from the cathode to the electron-transport layer, and a layer containing a material with a high electron-injection property. As the material with a high electron-injection property, an alkali metal, an alkaline earth metal, or a compound thereof can be used. As the material with a high electron-injection property, a composite material containing an electron-transport material and a donor material (an electron-donating material) can also be used.
For the electron-injection layer, for example, an alkali metal, an alkaline earth metal, or a compound thereof, such as lithium, cesium, lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF2), 8-(quinolinolato)lithium (abbreviation: Liq), 2-(2-pyridyl)phenolatolithium (abbreviation: LiPP), 2-(2-pyridyl)-3-pyridinolatolithium (abbreviation: LiPPy), 4-phenyl-2-(2-pyridyl)phenolatolithium (abbreviation: LiPPP), lithium oxide (LiOx), or cesium carbonate can be used.
Alternatively, for the electron-injection layer, an electron-transport material may be used. For example, a compound having an unshared electron pair and having an electron deficient heteroaromatic ring can be used as the electron-transport material. Specifically, a compound having at least one of a pyridine ring, a diazine ring (a pyrimidine ring, a pyrazine ring, and a pyridazine ring), and a triazine ring can be used.
Note that the lowest unoccupied molecular orbital (LUMO) of the organic compound having an unshared electron pair is preferably greater than or equal to −3.6 eV and less than or equal to −2.3 eV. In general, the highest occupied molecular orbital (HOMO) level and the LUMO level of an organic compound can be estimated by CV (cyclic voltammetry), photoelectron spectroscopy, optical absorption spectroscopy, inverse photoelectron spectroscopy, or the like.
For example, 4,7-diphenyl-1,10-phenanthroline (abbreviation: BPhen), 2,9-bis(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthroline (abbreviation: NBPhen), diquinoxalino[2,3-α: 2′,3 ‘-c]phenazine (abbreviation: HATNA), 2,4,6-tris[3’-(pyridin-3-yl)biphenyl-3-yl]-1,3,5-triazine (abbreviation: TmPPPyTz), or the like can be used as the organic compound having an unshared electron pair. Note that NBPhen has a higher glass transition temperature (Tg) than BPhen and thus has high heat resistance.
The light-emitting layer is a layer containing a light-emitting substance. The light-emitting layer can contain one or more kinds of light-emitting substances. As the light-emitting substance, a substance that exhibits an emission color of blue, purple, bluish purple, green, yellowish green, yellow, orange, red, or the like is appropriately used. As the light-emitting substance, a substance that emits near-infrared light can also be used.
Examples of the light-emitting substance include a fluorescent material, a phosphorescent material, a TADF material, and a quantum dot material.
Examples of the fluorescent material include a pyrene derivative, an anthracene derivative, a triphenylene derivative, a fluorene derivative, a carbazole derivative, a dibenzothiophene derivative, a dibenzofuran derivative, a dibenzoquinoxaline derivative, a quinoxaline derivative, a pyridine derivative, a pyrimidine derivative, a phenanthrene derivative, and a naphthalene derivative.
Examples of the phosphorescent material include an organometallic complex (particularly an iridium complex) having a 4H-triazole skeleton, a 1H-triazole skeleton, an imidazole skeleton, a pyrimidine skeleton, a pyrazine skeleton, or a pyridine skeleton; an organometallic complex (particularly an iridium complex) having a phenylpyridine derivative including an electron-withdrawing group as a ligand; a platinum complex; and a rare earth metal complex.
The light-emitting layer may contain one or more kinds of organic compounds (e.g., a host material and an assist material) in addition to the light-emitting substance (a guest material). As one or more kinds of organic compounds, one or both of the hole-transport material and the electron-transport material can be used. Alternatively, as one or more kinds of organic compounds, a bipolar material or a TADF material may be used.
The light-emitting layer preferably includes, for example, a phosphorescent material and a combination of a hole-transport material and an electron-transport material that easily forms an exciplex. With such a structure, light emission can be efficiently obtained by ExTET (Exciplex— Triplet Energy Transfer), which is energy transfer from an exciplex to a light-emitting substance (a phosphorescent material). When a combination of materials is selected so as to form an exciplex that exhibits light emission whose wavelength overlaps with the wavelength of a lowest-energy-side absorption band of the light-emitting substance, energy can be transferred smoothly and light emission can be obtained efficiently. With this structure, high efficiency, low-voltage driving, and a long lifetime of the light-emitting device can be achieved at the same time.
This embodiment can be combined with the other embodiments as appropriate.
Described in this embodiment is a metal oxide (also referred to as an oxide semiconductor) that can be used in the OS transistor described in the above embodiment.
The metal oxide preferably contains at least indium or zinc. In particular, indium and zinc are preferably contained. In addition, aluminum, gallium, yttrium, tin, or the like is preferably contained. Furthermore, one or more kinds selected from boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, cobalt, and the like may be contained.
The metal oxide can be formed by a sputtering method, a chemical vapor deposition (CVD) method such as a metal organic chemical vapor deposition (MOCVD) method, an atomic layer deposition (ALD) method, or the like.
Amorphous (including completely amorphous), CAAC (c-axis-aligned crystalline), nc (nanocrystalline), CAC (cloud-aligned composite), single crystal, and polycrystalline (poly crystal) structures can be given as examples of a crystal structure of an oxide semiconductor.
A crystal structure of a film or a substrate can be evaluated with an X-ray diffraction (XRD) spectrum. For example, evaluation is possible using an XRD spectrum obtained by GIXD (Grazing-Incidence XRD) measurement. Note that a GIXD method is also referred to as a thin film method or a Seemann—Bohlin method.
For example, the XRD spectrum of a quartz glass substrate shows a peak with a substantially bilaterally symmetrical shape. On the other hand, the peak of the XRD spectrum of an IGZO film having a crystal structure has a bilaterally asymmetrical shape. The bilaterally asymmetrical peak of the XRD spectrum clearly shows the existence of a crystal in the film or the substrate. In other words, the crystal structure of the film or the substrate cannot be regarded as “amorphous” unless it has a bilaterally symmetrical peak in the XRD spectrum.
A crystal structure of a film or a substrate can also be evaluated with a diffraction pattern obtained by a nanobeam electron diffraction (NBED) method (such a pattern is also referred to as a nanobeam electron diffraction pattern). For example, a halo pattern is observed in the diffraction pattern of the quartz glass substrate, which indicates that the quartz glass substrate is in an amorphous state. Furthermore, not a halo pattern but a spot-like pattern is observed in the diffraction pattern of the IGZO film deposited at room temperature. Thus, it is suggested that the IGZO film deposited at room temperature is in an intermediate state, which is neither a crystal state nor an amorphous state, and it cannot be concluded that the IGZO film is in an amorphous state.
Oxide semiconductors might be classified in a manner different from the above-described one when classified in terms of the structure. Oxide semiconductors are classified into a single crystal oxide semiconductor and a non-single-crystal oxide semiconductor, for example. Examples of the non-single-crystal oxide semiconductor include the above-described CAAC-OS and nc-OS. Other examples of the non-single-crystal oxide semiconductor include a polycrystalline oxide semiconductor, an amorphous-like oxide semiconductor (a-like OS), and an amorphous oxide semiconductor.
Here, the above-described CAAC-OS, nc-OS, and a-like OS will be described in detail.
The CAAC-OS is an oxide semiconductor that has a plurality of crystal regions each of which has c-axis alignment in a particular direction. Note that the particular direction refers to the film thickness direction of a CAAC-OS film, the normal direction of the surface where the CAAC-OS film is formed, or the normal direction of the surface of the CAAC-OS film. The crystal region refers to a region having a periodic atomic arrangement. When an atomic arrangement is regarded as a lattice arrangement, the crystal region also refers to a region with a uniform lattice arrangement. The CAAC-OS has a region where a plurality of crystal regions are connected in the a-b plane direction, and the region has distortion in some cases. Note that the distortion refers to a portion where the direction of a lattice arrangement changes between a region with a uniform lattice arrangement and another region with a uniform lattice arrangement in a region where a plurality of crystal regions are connected. That is, the CAAC-OS is an oxide semiconductor having c-axis alignment and having no clear alignment in the a-b plane direction.
Note that each of the plurality of crystal regions is formed of one or more fine crystals (crystals each of which has a maximum diameter of less than 10 nm). In the case where the crystal region is formed of one fine crystal, the maximum diameter of the crystal region is less than 10 nm. In the case where the crystal region is formed of a large number of fine crystals, the size of the crystal region may be approximately several tens of nanometers.
In the case of an In—M—Zn oxide (the element M is one or more kinds selected from aluminum, gallium, yttrium, tin, titanium, and the like), the CAAC-OS tends to have a layered crystal structure (also referred to as a layered structure) in which a layer containing indium (In) and oxygen (hereinafter, an In layer) and a layer containing the element M, zinc (Zn), and oxygen (hereinafter, an (M,Zn) layer) are stacked. Indium and the element M can be replaced with each other. Therefore, indium may be contained in the (M,Zn) layer. In addition, the element M may be contained in the In layer. Note that Zn may be contained in the In layer. Such a layered structure is observed as a lattice image in a high-resolution TEM (Transmission Electron Microscope) image, for example.
When the CAAC-OS film is subjected to structural analysis by Out-of-plane XRD measurement with an XRD apparatus using θ/2θ scanning, for example, a peak indicating c-axis alignment is detected at 2θ of 31° or around 31° . Note that the position of the peak indicating c-axis alignment (the value of 2θ) may change depending on the kind, composition, or the like of the metal element contained in the CAAC-OS.
For example, a plurality of bright spots are observed in the electron diffraction pattern of the CAAC-OS film. Note that one spot and another spot are observed point-symmetrically with a spot of the incident electron beam passing through a sample (also referred to as a direct spot) as the symmetric center.
When the crystal region is observed from the particular direction, a lattice arrangement in the crystal region is basically a hexagonal lattice arrangement; however, a unit lattice is not always a regular hexagon and is a non-regular hexagon in some cases. A pentagonal lattice arrangement, a heptagonal lattice arrangement, and the like are included in the distortion in some cases. Note that a clear grain boundary cannot be observed even in the vicinity of the distortion in the CAAC-OS. That is, formation of a grain boundary is inhibited by the distortion of a lattice arrangement. This is probably because the CAAC-OS can tolerate distortion owing to a low density of arrangement of oxygen atoms in the a-b plane direction, an interatomic bond distance changed by substitution of a metal atom, and the like.
A crystal structure in which a clear grain boundary is observed is what is called polycrystal. It is highly probable that the grain boundary becomes a recombination center and traps carriers and thus decreases the on-state current and field-effect mobility of a transistor, for example. Thus, the CAAC-OS in which no clear grain boundary is observed is one of crystalline oxides having a crystal structure suitable for a semiconductor layer of a transistor. Note that Zn is preferably contained to form the CAAC-OS. For example, an In—Zn oxide and an In—Ga—Zn oxide are suitable because they can inhibit generation of a grain boundary as compared with an In oxide.
The CAAC-OS is an oxide semiconductor with high crystallinity in which no clear grain boundary is observed. Thus, in the CAAC-OS, a reduction in electron mobility due to the grain boundary is unlikely to occur. Moreover, since the crystallinity of an oxide semiconductor might be decreased by entry of impurities, formation of defects, or the like, the CAAC-OS can be regarded as an oxide semiconductor that has small amounts of impurities and defects (e.g., oxygen vacancies). Hence, an oxide semiconductor including the CAAC-OS is physically stable. Therefore, the oxide semiconductor including the CAAC-OS is resistant to heat and has high reliability. In addition, the CAAC-OS is stable with respect to high temperatures in the manufacturing step (what is called thermal budget). Accordingly, the use of the CAAC-OS for the OS transistor can extend the degree of freedom of the manufacturing step.
[nc-OS]
In the nc-OS, a microscopic region (e.g., a region with a size greater than or equal to 1 nm and less than or equal to 10 nm, in particular, a region with a size greater than or equal to 1 nm and less than or equal to 3 nm) has a periodic atomic arrangement. In other words, the nc-OS includes a fine crystal. Note that the size of the fine crystal is, for example, greater than or equal to 1 nm and less than or equal to 10 nm, particularly greater than or equal to 1 nm and less than or equal to 3 nm; thus, the fine crystal is also referred to as a nanocrystal. Furthermore, there is no regularity of crystal orientation between different nanocrystals in the nc-OS. Hence, the orientation in the whole film is not observed. Accordingly, the nc-OS cannot be distinguished from an a-like OS and an amorphous oxide semiconductor by some analysis methods. For example, when an nc-OS film is subjected to structural analysis by Out-of-plane XRD measurement with an XRD apparatus using θ/2θ scanning, a peak indicating crystallinity is not detected. Furthermore, a diffraction pattern like a halo pattern is observed when the nc-OS film is subjected to electron diffraction (also referred to as selected-area electron diffraction) using an electron beam with a probe diameter larger than the diameter of a nanocrystal (e.g., larger than or equal to 50 nm). Meanwhile, in some cases, a plurality of spots in a ring-like region with a direct spot as the center are observed in the obtained electron diffraction pattern when the nc-OS film is subjected to electron diffraction (also referred to as nanobeam electron diffraction) using an electron beam with a probe diameter nearly equal to or smaller than the diameter of a nanocrystal (e.g., larger than or equal to 1 nm and smaller than or equal to 30 nm).
[a-like OS]
The a-like OS is an oxide semiconductor having a structure between those of the nc-OS and the amorphous oxide semiconductor. The a-like OS has a void or a low-density region.
That is, the a-like OS has lower crystallinity than the nc-OS and the CAAC-OS. Moreover, the a-like OS has a higher hydrogen concentration in the film than the nc-OS and the CAAC-OS.
Next, the above-described CAC-OS will be described in detail. Note that the CAC-OS relates to the material composition.
The CAC-OS refers to one composition of a material in which elements constituting a metal oxide are unevenly distributed with a size greater than or equal to 0.5 nm and less than or equal to 10 nm, preferably greater than or equal to 1 nm and less than or equal to 3 nm, or a similar size, for example. Note that a state in which one or more metal elements are unevenly distributed and regions including the metal element(s) are mixed with a size greater than or equal to 0.5 nm and less than or equal to 10 nm, preferably greater than or equal to 1 nm and less than or equal to 3 nm, or a similar size in a metal oxide is hereinafter referred to as a mosaic pattern or a patch-like pattern.
In addition, the CAC-OS has a composition in which materials are separated into a first region and a second region to form a mosaic pattern, and the first regions are distributed in the film (this composition is hereinafter also referred to as a cloud-like composition). That is, the CAC-OS is a composite metal oxide having a composition in which the first regions and the second regions are mixed.
Here, the atomic ratios of In, Ga, and Zn to the metal elements contained in the CAC-OS in an In—Ga—Zn oxide are denoted with [In], [Ga], and [Zn], respectively. For example, the first region in the CAC-OS in the In—Ga—Zn oxide has [In] higher than [In] in the composition of the CAC-OS film. Moreover, the second region has [Ga] higher than [Ga] in the composition of the CAC-OS film. For example, the first region has higher [In] and lower [Ga] than the second region. Moreover, the second region has higher [Ga] and lower [In] than the first region.
Specifically, the first region includes indium oxide, indium zinc oxide, or the like as its main component. The second region includes gallium oxide, gallium zinc oxide, or the like as its main component. That is, the first region can be referred to as a region containing In as its main component. The second region can be referred to as a region containing Ga as its main component.
Note that a clear boundary between the first region and the second region cannot be observed in some cases.
In a material composition of a CAC-OS in an In—Ga—Zn oxide that contains In, Ga, Zn, and O, regions containing Ga as a main component are observed in part of the CAC-OS and regions containing In as a main component are observed in part thereof. These regions are randomly present to form a mosaic pattern. Thus, it is suggested that the CAC-OS has a structure in which metal elements are unevenly distributed.
The CAC-OS can be formed by a sputtering method under a condition where a substrate is not heated, for example. Moreover, in the case of forming the CAC-OS by a sputtering method, any one or more selected from an inert gas (typically, argon), an oxygen gas, and a nitrogen gas are used as a deposition gas. The ratio of the flow rate of the oxygen gas to the total flow rate of the deposition gas in deposition is preferably as low as possible; for example, the ratio of the flow rate of the oxygen gas to the total flow rate of the deposition gas in deposition is preferably higher than or equal to 0% and lower than 30%, further preferably higher than or equal to 0% and lower than or equal to 10%.
For example, energy dispersive X-ray spectroscopy (EDX) is used to obtain EDX mapping, and according to the EDX mapping, the CAC-OS in the In—Ga—Zn oxide has a structure in which the region containing In as its main component (the first region) and the region containing Ga as its main component (the second region) are unevenly distributed and mixed.
Here, the first region has a higher conductivity than the second region. In other words, when carriers flow through the first region, the conductivity of a metal oxide is exhibited. Accordingly, when the first regions are distributed in a metal oxide like a cloud, high field-effect mobility (μ) can be achieved.
On the other hand, the second region has a higher insulating property than the first region. In other words, when the second regions are distributed in a metal oxide, leakage current can be inhibited.
Thus, in the case where the CAC-OS is used for a transistor, a switching function (On/Off switching function) can be given to the CAC-OS owing to the complementary action of the conductivity derived from the first region and the insulating property derived from the second region. That is, the CAC-OS has a conducting function in part of the material and has an insulating function in another part of the material; as a whole, the CAC-OS has a function of a semiconductor. Separation of the conducting function and the insulating function can maximize each function. Accordingly, when the CAC-OS is used for a transistor, high on-state current (Ion), high field-effect mobility (μ), and excellent switching operation can be achieved.
A transistor using the CAC-OS has high reliability. Thus, the CAC-OS is most suitable for a variety of semiconductor devices such as display devices.
An oxide semiconductor has various structures with different properties. Two or more kinds among the amorphous oxide semiconductor, the polycrystalline oxide semiconductor, the a-like OS, the CAC-OS, the nc-OS, and the CAAC-OS may be included in an oxide semiconductor of one embodiment of the present invention.
Next, the case where the above oxide semiconductor is used for a transistor will be described.
When the above oxide semiconductor is used for a transistor, a transistor with high field-effect mobility can be achieved. In addition, a transistor having high reliability can be achieved.
An oxide semiconductor with a low carrier concentration is preferably used for the transistor. For example, the carrier concentration of an oxide semiconductor is lower than or equal to 1×1017 cm−3, preferably lower than or equal to 1×1015 cm−3, further preferably lower than or equal to 1×1013 cm−3, still further preferably lower than or equal to 1×1011 cm−3, yet further preferably lower than 1×1010 cm−3, and higher than or equal to 1×10−9 cm−3. In order to reduce the carrier concentration of an oxide semiconductor film, the impurity concentration in the oxide semiconductor film is reduced so that the density of defect states can be reduced. In this specification and the like, a state with a low impurity concentration and a low density of defect states is referred to as a highly purified intrinsic or substantially highly purified intrinsic state. Note that an oxide semiconductor having a low carrier concentration may be referred to as a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor.
A highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor film has a low density of defect states and accordingly has a low density of trap states in some cases.
Charge trapped by the trap states in the oxide semiconductor takes a long time to disappear and might behave like fixed charge. Thus, a transistor whose channel formation region is formed in an oxide semiconductor with a high density of trap states has unstable electrical characteristics in some cases.
Accordingly, in order to obtain stable electrical characteristics of a transistor, reducing the impurity concentration in an oxide semiconductor is effective. In order to reduce the impurity concentration in the oxide semiconductor, it is preferable that the impurity concentration in an adjacent film be also reduced. Examples of impurities include hydrogen, nitrogen, an alkali metal, an alkaline earth metal, iron, nickel, and silicon.
Here, the influence of each impurity in the oxide semiconductor will be described.
When silicon or carbon, which is one of Group 14 elements, is contained in the oxide semiconductor, defect states are formed in the oxide semiconductor. Thus, the concentration of silicon and carbon in the oxide semiconductor and the concentration of silicon and carbon in the vicinity of an interface with the oxide semiconductor (the concentration obtained by secondary ion mass spectrometry (SIMS)) are each set lower than or equal to 2×1018 atoms/cm3, preferably lower than or equal to 2×1017 atoms/cm3.
When the oxide semiconductor contains an alkali metal or an alkaline earth metal, defect states are formed and carriers are generated in some cases. Accordingly, a transistor using an oxide semiconductor that contains an alkali metal or an alkaline earth metal tends to have normally-on characteristics. Thus, the concentration of an alkali metal or an alkaline earth metal in the oxide semiconductor, which is obtained by SIMS, is lower than or equal to 1×1018 atoms/cm3, preferably lower than or equal to 2×1016 atoms/cm3.
When the oxide semiconductor contains nitrogen, the oxide semiconductor easily becomes n-type by generation of electrons serving as carriers and an increase in carrier concentration. As a result, a transistor using an oxide semiconductor containing nitrogen as a semiconductor is likely to have normally-on characteristics. When nitrogen is contained in the oxide semiconductor, a trap state is sometimes formed. This might make the electrical characteristics of the transistor unstable. Therefore, the concentration of nitrogen in the oxide semiconductor, which is obtained by SIMS, is lower than 5×1019 atoms/cm3, preferably lower than or equal to 5×1018 atoms/cm3, further preferably lower than or equal to 1×1018 atoms/cm3, still further preferably lower than or equal to 5×1017 atoms/cm3.
Hydrogen contained in the oxide semiconductor reacts with oxygen bonded to a metal atom to be water, and thus forms an oxygen vacancy in some cases. Entry of hydrogen into the oxygen vacancy generates an electron serving as a carrier in some cases. Furthermore, bonding of part of hydrogen to oxygen bonded to a metal atom causes generation of an electron serving as a carrier in some cases. Thus, a transistor using an oxide semiconductor containing hydrogen is likely to have normally-on characteristics. Accordingly, hydrogen in the oxide semiconductor is preferably reduced as much as possible. Specifically, the hydrogen concentration in the oxide semiconductor, which is obtained by SIMS, is lower than 1×102θ atoms/cm3, preferably lower than 1×1019 atoms/cm3, further preferably lower than 5×1018 atoms/cm3, still further preferably lower than 1×1018 atoms/cm3.
When an oxide semiconductor with sufficiently reduced impurities is used for the channel formation region of the transistor, stable electrical characteristics can be given.
At least part of this embodiment can be implemented in combination with the other embodiments described in this specification as appropriate.
In this embodiment, electronic devices of one embodiment of the present invention will be described with reference to
An electronic device in this embodiment includes the display device of one embodiment of the present invention. For the display device of one embodiment of the present invention, increases in resolution, definition, and sizes are easily achieved. Thus, the display device of one embodiment of the present invention can be used for display portions of a variety of electronic devices.
The display device of one embodiment of the present invention can be manufactured at low cost, which leads to a reduction in manufacturing cost of an electronic device.
Examples of electronic devices include electronic devices with a relatively large screen, such as a television device, a desktop or laptop personal computer, a monitor of a computer or the like, digital signage, and a large game machine such as a pachinko machine; a digital camera; a digital video camera; a digital photo frame; a mobile phone; a portable game machine; a portable information terminal; and an audio reproducing device.
In particular, the display device of one embodiment of the present invention can have a high resolution, and thus can be suitably used for an electronic device having a relatively small display portion. As such an electronic device, a watch-type or bracelet-type information terminal device (wearable device); and a wearable device worn on a head, such as a device for VR such as a head-mounted display and a glasses-type device for AR can be given, for example. Examples of wearable devices include a device for SR and a device for MR.
The definition of the display device of one embodiment of the present invention is preferably as high as HD (number of pixels: 1280×72θ), FHD (number of pixels: 192θ×1080), WQHD (number of pixels: 2560×1440), WQXGA (number of pixels: 2560×1600), 4K2K (number of pixels: 3840×2160), or 8K4K (number of pixels: 7680×432θ). In particular, definition of 4K2K, 8K4K, or higher is preferable. Furthermore, the pixel density (resolution) of the display device of one embodiment of the present invention is preferably higher than or equal to 300 ppi, further preferably higher than or equal to 500 ppi, still further preferably higher than or equal to 1000 ppi, still further preferably higher than or equal to 2θ00 ppi, still further preferably higher than or equal to 3000 ppi, still further preferably higher than or equal to 5000 ppi, yet further preferably higher than or equal to 7000 ppi. With such a display device with high definition and high resolution, the electronic device can have higher realistic sensation, sense of depth, and the like in personal use such as portable use and home use.
The electronic device in this embodiment can be incorporated along a curved surface of an inside wall or an outside wall of a house or a building or the interior or the exterior of a car.
The electronic device in this embodiment may include an antenna. With the antenna receiving a signal, a video, information, and the like can be displayed on a display portion. When the electronic device includes an antenna and a secondary battery, the antenna may be used for contactless power transmission.
The electronic device in this embodiment may include a sensor (a sensor having a function of measuring force, displacement, position, speed, acceleration, angular velocity, rotational frequency, distance, light, liquid, magnetism, temperature, a chemical substance, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, oscillation, a smell, or infrared rays).
The electronic device in this embodiment can have a variety of functions. For example, the electronic device can have a function of displaying a variety of information (a still image, a moving image, a text image, and the like) on the display portion, a touch panel function, a function of displaying a calendar, date, time, and the like, a function of executing a variety of software (programs), a wireless communication function, and a function of reading out a program or data stored in a recording medium.
An electronic device 6500 illustrated in
The electronic device 6500 includes a housing 6501, a display portion 6502, a power button 6503, buttons 6504, a speaker 6505, a microphone 6506, a camera 6507, a light source 6508, and the like. The display portion 6502 has a touch panel function.
The display device of one embodiment of the present invention can be used in the display portion 6502.
A protection member 6510 having a light-transmitting property is provided on a display surface side of the housing 6501, and a display panel 6511, an optical member 6512, a touch sensor panel 6513, a printed circuit board 6517, a battery 6518, and the like are provided in a space surrounded by the housing 6501 and the protection member 6510.
The display panel 6511, the optical member 6512, and the touch sensor panel 6513 are fixed to the protection member 6510 with an adhesive layer (not illustrated).
Part of the display panel 6511 is folded back in a region outside the display portion 6502, and an FPC 6515 is connected to the part that is folded back. An IC 6516 is mounted on the FPC 6515. The FPC 6515 is connected to a terminal provided on the printed circuit board 6517.
A flexible display (a display device having flexibility) of one embodiment of the present invention can be used for the display panel 6511. Thus, an extremely lightweight electronic device can be achieved. Since the display panel 6511 is extremely thin, the battery 6518 with high capacity can be mounted while the thickness of the electronic device is controlled. Moreover, part of the display panel 6511 is folded back so that a connection portion with the FPC 6515 is provided on the back side of the pixel portion, whereby an electronic device with a narrow bezel can be achieved.
The display device of one embodiment of the present invention can be used for the display portion 7000.
Operation of the television device 7100 illustrated in
Note that the television device 7100 has a structure in which a receiver, a modem, and the like are provided. A general television broadcast can be received with the receiver. When the television device is connected to a communication network with or without wires via the modem, one-way (from a transmitter to a receiver) or two-way (between a transmitter and a receiver or between receivers, for example) information communication can be performed.
The display device of one embodiment of the present invention can be used for the display portion 7000.
Digital signage 7300 illustrated in
The display device of one embodiment of the present invention can be used in the display portion 7000 in each of
A larger area of the display portion 7000 can increase the amount of information that can be provided at a time. The larger display portion 7000 attracts more attention, so that the effectiveness of the advertisement can be increased, for example.
The use of a touch panel in the display portion 7000 is preferable because in addition to display of an image or a moving image on the display portion 7000, intuitive operation by a user is possible. Moreover, for an application for providing information such as route information or traffic information, usability can be enhanced by intuitive operation.
As illustrated in
It is possible to make the digital signage 7300 or the digital signage 7400 execute a game with use of the screen of the information terminal 7311 or the information terminal 7411 as an operation means (controller). Thus, an unspecified number of users can join in and enjoy the game concurrently.
The camera 8000 includes a housing 8001, a display portion 8002, operation buttons 8003, a shutter button 8004, and the like. Furthermore, a detachable lens 8006 is attached to the camera 8000. Note that the lens 8006 and the housing may be integrated with each other in the camera 8000.
Images can be taken with the camera 8000 at the press of the shutter button 8004 or the touch of the display portion 8002 serving as a touch panel.
The housing 8001 includes a mount including an electrode, so that the finder 8100, a stroboscope, or the like can be connected to the housing.
The finder 8100 includes a housing 8101, a display portion 8102, a button 8103, and the like.
The housing 8101 is attached to the camera 8000 by a mount for engagement with the mount of the camera 8000. The finder 8100 can display a video received from the camera 8000 and the like on the display portion 8102.
The button 8103 functions as a power button or the like.
The display device of one embodiment of the present invention can be used in the display portion 8002 of the camera 8000 and the display portion 8102 of the finder 8100. Note that a finder may be incorporated in the camera 8000.
The head-mounted display 8200 includes a mounting portion 82001, a lens 8202, a main body 82b3, a display portion 8204, a cable 8205, and the like. A battery 8206 is incorporated in the mounting portion 8201.
The cable 8205 supplies power from the battery 8206 to the main body 82θ3. The main body 82θ3 includes a wireless receiver or the like to receive video information and display it on the display portion 8204. The main body 82θ3 includes a camera, and information on the movement of the eyeballs or the eyelids of the user can be used as an input means.
The mounting portion 8201 may include a plurality of electrodes capable of sensing a current flowing accompanying with the movement of the user's eyeball at a position in contact with the user to recognize the user's sight line. The mounting portion 8201 may also have a function of monitoring the user's pulse with use of a current flowing through the electrodes. The mounting portion 8201 may include a variety of sensors such as a temperature sensor, a pressure sensor, and an acceleration sensor to have a function of displaying the user's biological information on the display portion 8204, a function of changing a video displayed on the display portion 8204 in accordance with the movement of the user's head, and the like.
The display device of one embodiment of the present invention can be used in the display portion 8204.
A user can see display on the display portion 8302 through the lenses 8305. The display portion 8302 is preferably curved so that the user can feel high realistic sensation. Another image displayed on another region of the display portion 8302 is viewed through the lenses 8305, so that three-dimensional display using parallax or the like can be performed. Note that the structure is not limited to the structure in which one display portion 8302 is provided; two display portions 8302 may be provided and one display portion may be provided per eye of the user.
The display device of one embodiment of the present invention can be used for the display portion 8302. The display device of one embodiment of the present invention can achieve extremely high definition. For example, a pixel is not easily seen by the user even when the user sees display that is magnified by the use of the lenses 8305 as illustrated in
A user can see display on the display portion 8404 through the lens 8405. The lens 8405 has a focus adjustment mechanism and can adjust the position according to the user's eyesight. The display portion 8404 is preferably a square or a horizontal rectangle. This can improve a realistic sensation.
The mounting portion 8402 preferably has flexibility and elasticity so as to be adjusted to fit the size of the user's face and not to slide down. In addition, part of the mounting portion 8402 preferably has a vibration mechanism functioning as a bone conduction earphone. Thus, audio devices such as an earphone and a speaker are not necessarily provided separately, and the user can enjoy videos and sounds only when wearing the head-mounted display 8400. Note that the housing 8401 may have a function of outputting sound data by wireless communication.
The mounting portion 8402 and the cushion 8403 are portions in contact with the user's face (forehead, cheek, or the like). The cushion 8403 is in close contact with the user's face, so that light leakage can be prevented, which increases the sense of immersion. The cushion 8403 is preferably formed using a soft material so that the head-mounted display 8400 is in close contact with the user's face when being worn by the user. For example, a material such as rubber, silicone rubber, urethane, or sponge can be used. Furthermore, when a sponge or the like whose surface is covered with cloth, leather (natural leather or synthetic leather), or the like is used, a gap is unlikely to be generated between the user's face and the cushion 8403, whereby light leakage can be suitably prevented. Furthermore, using such a material is preferable because it has a soft texture and the user does not feel cold when wearing the device in a cold season, for example. The member in contact with user's skin, such as the cushion 8403 or the mounting portion 8402, is preferably detachable in order to easily perform cleaning or replacement.
Electronic devices illustrated in
The electronic devices illustrated in
The display device of one embodiment of the present invention can be used for the display portion 9001.
The electronic devices illustrated in
At least part of the structure examples, the drawings corresponding thereto, and the like described in this embodiment as an example can be combined with the other structure examples, the other drawings, and the like as appropriate.
In this example, a display panel of one embodiment of the present invention was fabricated.
[Fabrication of Display Panel] Fabrication of the display panel was performed based on the method described in Embodiment 1 and Manufacturing method example 1. Specifically, first, over a single crystal silicon substrate, a substrate provided with a pixel circuit including a transistor, a wiring, and the like and a pixel electrode are formed was prepared. Next, after an EL layer of red, an EL layer of green, and an EL layer of blue were sequentially formed, insulating layers protecting side surfaces of the EL layers were formed. Subsequently, sacrificial layers and protective layers over the EL layers were removed. Then, an electron-injection layer, a common electrode, and a protective layer were formed in this order over the EL layers.
As a substrate, a single crystal silicon substrate was used and the display panel was fabricated by stacking a single crystal silicon transistor, a wiring layer, an oxide semiconductor transistor (an OS transistor), and a light-emitting element in this order. The OS transistor was formed using an In—Ga—Zn oxide film (IGZO) in a semiconductor layer.
The EL layer was formed to have a stacked-layer structure including a hole-injection layer, a hole-transport layer, a light-emitting layer, and an electron-transport layer. As the sacrificial layer, an aluminum oxide film formed by an ALD method at a substrate temperature of 80° C. and a tungsten film formed by a sputtering method were used. As an insulating layer protecting a sidewall of the EL layer, an aluminum oxide film formed by an ALD method and a photosensitive resin were used. A stacked film of a lithium fluoride film and an ytterbium film was used as the electron-injection layer, a mixed film of silver and magnesium was used as the common electrode, and an ITO film formed by a sputtering method was used as the protective layer over the common electrode.
In the display panel fabricated in this example, a display portion had a square with a size of 0.99 inches diagonal, the number of effective pixels was 192θ×192θ, the resolution was 2731 ppi, the pixel pitch was 9.3 μm×9.3 μm, the pixel arrangement was a stripe arrangement of R, G, and B, the aperture ratio was 43% (designed value), and the frame frequency was 90 Hz. [Display result]
The spectrum of the fabricated display panel was measured. The wavelength dependence of spectral radiance intensity was measured in states where all the pixels of the display panel display red (R), green (G), blue (B), and black (BK). Here, similar evaluation was performed on two kinds of display panels using a white OLED and a color filter (Comparative example 1 and Comparative example 2) for comparison. Note that the resolution of Comparative example 1 and Comparative example 2 are approximately the same as that of the display panel fabricated in this example (denoted as Example).
Focusing on Example, R, G, and B each have a small half width and almost no overlap among spectra of the colors was observed. Furthermore, it was found that almost no light emission was observed in black display and light leakage at the time of black display was extremely small as shown in
On the other hand, focusing on Comparative example 1, the half width of the spectrum was large as compared to that of Example. Furthermore, a peak is observed at a wavelength of around 650 nm in blue display (B), and a peak is observed at a wavelength of around 450 nm and at a wavelength of around 62θ nm in green display (G). This peak is probably due to an influence of crosstalk and is a factor of decrease in contrast. Furthermore, as shown in
In addition, in Comparative example 2, light emission due to crosstalk was observed in blue display (B) and green display (G) at a wavelength of around 600 nm although light leakage at the time of black display was not observed as shown in
From the above, it was confirmed that the display panel fabricated in this example can achieve extremely high contrast and a color rendering property without crosstalk, even with extremely high resolution as high as 2731 ppi.
Number | Date | Country | Kind |
---|---|---|---|
2021-039487 | Mar 2021 | JP | national |
2021-059333 | Mar 2021 | JP | national |
2021-066401 | Apr 2021 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2022/051861 | 3/3/2022 | WO |