Exemplary embodiments relate to a display device for displaying an image.
It has become preferable to mount a display device on an electronic device as a user interface, and various types of display devices have been developed accordingly. Typically, a liquid crystal display (“LCD”) is a device for displaying an image by controlling the amount of light coming from the outside thereof, and an organic light-emitting diode (“OLED”) display is a device for displaying an image using a fluorescent organic compound that emits light in response to a current being applied thereto.
In general, a display device includes a display panel for displaying an image and a data driver and a gate driver for driving the display panel. The display panel includes a plurality of gate lines, a plurality of data lines, and a plurality of pixels. The data driver and the gate driver provide voltages for driving the pixels to the data lines and the gate lines, respectively.
The gate driver may be controlled by a gate clock signal provided by a clock generator. Even though the gate clock signal is required to be maintained at a predetermined voltage during a blank period between consecutive frames that form images displayed on the display device, but may not be able to be consistently maintained at the predetermined voltage because of current leakage. Thus, a structure is desired to maintain the gate clock signal at the predetermined, fixed voltage during the blank period.
Also, a structure is desired to improve the response speed of the gate clock signal and eliminate delays in the gate clock signal.
Exemplary embodiments of the invention provide a display device capable of maintaining a gate clock signal at a predetermined voltage during a blank period.
Exemplary embodiments of the invention provide a display device capable of improving the response speed of a gate clock signal or eliminating delays in the gate clock signal.
However, the invention is not restricted to those set forth herein. The above and other exemplary embodiments of the invention will become more apparent to one of ordinary skill in the art to which the invention pertains by referencing the detailed description of the invention given below.
According to an exemplary embodiment of the invention, a display device includes a display panel including a plurality of pixels which are connected to a plurality of gate lines and a plurality of data lines and display a plurality of consecutive frames of images, a data driver which drives the data lines, a gate driver which drives the gate lines, a clock generator which outputs a gate clock signal which drives the gate driver and swings between a gate-on voltage and a gate-off voltage, and a signal controller which outputs a gate pulse signal, which drives the clock generator and a data control signal which controls the data driver, where the clock generator includes a voltage maintainer which maintains the gate clock signal at a reference voltage that has a fixed value between the gate-on voltage and the gate-off voltage for a predetermined time.
According to another exemplary embodiment of the invention, a display device includes a display panel including a plurality of pixels which are connected to a plurality of gate lines and a plurality of data lines and display a plurality of consecutive frames of images, a data driver which drives the data lines, a gate driver which drives the gate lines, a clock generator which outputs a gate clock signal which drives the gate driver and swings between a gate-on voltage and a gate-off voltage, and a signal controller which outputs a gate pulse signal which drives the clock generator and a data control signal which controls the data driver, where the clock generator includes an impedance control circuit which controls a slew rate of the gate clock signal.
According to still another exemplary embodiment of the invention, a display device includes a display panel including a plurality of pixels which are connected to a plurality of gate lines and a plurality of data lines and display a plurality of consecutive frames of images, a data driver which drives the data lines, a gate driver which drives the gate lines, a clock generator which outputs a gate clock signal which drives the gate driver and swings between a gate-on voltage and a gate-off voltage, and a signal controller which outputs a gate pulse signal which drives the clock generator and a data control signal which controls the data driver, where the clock generator includes an impedance control circuit which delays or advance the gate clock signal.
According to the aforementioned and other exemplary embodiments of the invention, a display device capable of maintaining a gate clock signal at a predetermined voltage during a blank period can be provided.
Also, a display device capable of improving the response speed of a gate clock signal or eliminating a delay in the gate clock signal can be provided.
Other features and exemplary embodiments may be apparent from the following detailed description, the drawings, and the claims to persons of ordinary skill in the art.
The above and other exemplary embodiments and features of the invention will become more apparent by describing in detail exemplary embodiments thereof with reference to the attached drawings, in which:
The invention will now be described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. This invention may, however, be embodied in different forms and should not be construed as limited to the exemplary embodiments set forth herein. Rather, these exemplary embodiments are provided such that this disclosure will be thorough and complete, and will filly convey the scope of the invention to those skilled in the art. The same reference numbers indicate the same components throughout the specification. In the attached figures, the thickness of layers and regions is exaggerated for clarity.
It will be understood that, although the terms first, second, third, etc., may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another element. Thus, a first element discussed below could be termed a second element without departing from the teachings of the invention.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms, including “at least one,” unless the content clearly indicates otherwise. “Or” means “and/or.” As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” or “includes” and/or “including” when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.
Spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature’s relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the invention, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Hereinafter, exemplary embodiments of the invention will be described with reference to the attached drawings.
Referring to
The display panel 110 includes a plurality of data lines DL1 through DLm extending in a first direction dr1 and a plurality of gate lines GL1 through GLn extending in a second direction dr2 to intersect the data lines DL1 through DLm and further includes a plurality of pixels PX arranged in a matrix form at the intersections between the data lines DL1 through DLm and the gate lines GL1 through GLn. The data lines DL1 through DLm and the gate lines GL1 through GLn are insulated from each other.
Although not specifically illustrated, each of the pixels PX includes a switching transistor (not illustrated) connected to one of the data lines DL 1 through DLm and one of the gate lines GL1 through GLn, and a liquid crystal capacitor (not illustrated) and a storage capacitor (not illustrated) which are connected to the switching transistor.
The signal controller 210 receives control signals CTRL for controlling an image signal RGB and controlling the display of the image signal RGB and the control signals CTRL may include, for example, a vertical synchronization signal, a horizontal synchronization signal, a main clock signal, and a data enable signal, from an external source, in an exemplary embodiment. The signal controller 210 outputs a data signal DATA, which is obtained by processing the image signal RGB based on the control signals CTRL to be compatible with the operating conditions of the display panel 110, and a first driving control signal CONT1 to the data driver 240 and provides a second driving control signal CONT2 to the gate driver 230. In an exemplary embodiment, the first driving control signal CONT1 may include a horizontal synchronization start signal, a clock signal, and a line latch signal, and the second driving control signal CONT2 may include a vertical synchronization start signal STV, and an output enable signal, for example. Also, the signal controller 210 provides a gate pulse signal CPV to the clock generator 220.
The data driver 240 generates a gray voltage for driving each of the data lines DL1 through DLm in accordance with the data signal DATA and the first driving control signal CONT1, provided by the signal controller 210.
The clock generator 220 generates a gate clock signal CKV and a gate clock bar signal CKBV in response to the gate pulse signal CPV provided by the signal controller 210, and provides the gate clock signal CKV and the gate clock bar signal CKBV to the gate driver 230. The clock generator 220 may receive a gate-on voltage Von and a gate-off voltage Voff from an external source and may generate the gate clock signal CKV and the gate clock bar signal CKBV based on the gate-on voltage Von and the gate-off voltage Voff.
The gate driver 230 drives the gate lines GL1 through GLm in response to the second driving control signal CONT2, provided by the signal controller 210, and the gate clock signal CKV and the gate clock bar signal CKBV, provided by the clock generator 220. The gate driver 230 may be implemented not only as a gate driving integrated circuit (“IC”), but also as a circuit using an amorphous silicon thin-film transistor (“a-Si TFT”)), an oxide semiconductor, a crystalline semiconductor, or a polycrystalline semiconductor, for example.
Referring to
The gate clock generator 2261 generates the gate clock signal CKV and the gate clock bar signal CKBV in response to various control signals provided by the control signal generator 2262.
The control signal generator 2262 generates first through sixth gate pulse signals CPV1 through CPV6, which may be used for controlling various switching circuits of the gate clock generator 2261 and the voltage maintainer 2263, in response to the gate pulse signal CPV provided by the signal controller 210.
The voltage maintainer 2263 may generate an arbitrary voltage having a value between the gate-on voltage Von and the gat-off voltage Voff using the gate-on voltage Von and the gat-off voltage Voff and may provide the arbitrary voltage to the gate clock generator 2261.
Specifically, the gate clock generator 2261 includes first through fifth switching circuits SW1 through SW5 and a charge sharer 22611.
The first switching circuit SW1 provides one of the gate-on voltage Von and the gate-off voltage Voff to a first output terminal Nout1 of the clock generator 220 as the gate clock signal CKV through a second switching circuit SW2 in response to the first gate pulse signal CPV1.
The second switching circuit SW2 may either connect the first switching circuit SW1 and the first output terminal Nout1 of the clock generator 220, or connect the charge sharer 22611 and the first output terminal Nout1 of the clock generator 220, in response to the second gate pulse signal CPV2, and then may output the gate clock signal CKV to the first output terminal Nout1.
The third switching circuit SW3 may provide one of the gate-on voltage Von and the gate-off voltage Voff to the charge sharer 22611 in response to the third gate pulse signal CPV3.
The fourth switching circuit SW4 may provide one of the gate-on voltage Von and the gate-off voltage Voff to the second output terminal Nout2 of the clock generator 220 as the gate clock bar signal CKBV through a fifth switching circuit SW5 in response to the fourth gate pulse signal CPV4.
The fifth switching circuit SW5 may either connect the fourth switching circuit SW4 and the second output terminal Nout2 of the clock generator 220, or connect the charge sharer 22611 and the second output terminal Nout2 of the clock generator 220, in response to the fifth gate pulse signal CPV5, and then may output the gate clock bar signal CKBV to the second output terminal Nout2.
The charge sharer 22611 couples the first and second output terminals Nout1 and Nout2 of the clock generator 220 such that the gate clock signal CKV and the gate clock bar signal CKBV output via the first and second output terminals Nout1 and Nout2, respectively, may be matched. To this end, the charge sharer 22611 may include a charge sharing resistor Rs, a first transistor TR1, a second transistor TR2, and a shared amplifier Drv for driving the charge sharing resistor Rs, the first transistor TR1, and the second transistor TR2, but the structure of the charge sharer 22611 is not limited thereto. That is, any circuit configuration that can match the gate clock signal CKV and the gate clock bar signal CKV may be used.
Specifically, the charge sharer 22611 may make the gate clock signal CKV and the gate clock bar signal CKBV swing from the gate-on voltage Von to a reference voltage that ranges between the gate-on voltage Von and the gate-off voltage Voff, or from the gate-off voltage Voff to the reference voltage. The waveforms of the gate clock signal CKV and the gate clock bar signal CKBV will be described later.
The voltage maintainer 2263 includes first and second divider resistors Rv1 and Rv2 dividing a voltage supplied thereto and a sixth switching circuit SW6 providing the divided voltage to the charge sharer 22611 in response to the sixth gate pulse signal CPV6.
The sixth switching circuit SW6 may determine whether to connect the charge sharer 22611 and the voltage maintainer 2263 in response to the sixth gate pulse signal CPV6.
Specifically, the voltage maintainer 2263 may receive the gate-on voltage Von and the gate-off voltage Voff and may output the reference voltage produced by dividing the gate-on voltage Von and the gate-off voltage Voff. The reference voltage may be a fixed voltage at which the gate clock signal CKV and the gate clock bar signal CKBV are required to be maintained during a blank period (“Blank” of
In an exemplary embodiment, the reference voltage may have the median value of the gate-on voltage Von and the gate-off voltage Voff, i.e., (Von+Voff)/2, for example. In this example, the first and second divider resistors Rv1 and Rv2 may have the same resistance. If the reference voltage is (Von+Voff)/2, the gate clock signal CKV and the gate clock bar signal CKBV may have the same voltage variation when the blank period (“Blank” of
Specifically,
During the previous frame “N-1 Frame”, the gate clock signal CKV and the gate clock bar signal CKBV may alternately swing between the gate-on voltage Von and the gate-off voltage Voff depending on whether the gate pulse signal CPV is on or off. The gate clock signal CKV and the gate clock bar signal CKBV may be opposite in phase and may be symmetrical to each other.
During the blank period “Blank” that follows the previous frame “N-1 Frame”, the gate pulse signal CPV is maintained to be the “off” status, and as a result, the gate clock signal CKV and the gate clock bar signal CKBV may be matched by the charge sharer 22611 to be maintained at the reference voltage. In this exemplary embodiment, the reference voltage may have the median value of the gate-on voltage Von and the gate-off voltage Voff, i.e., (Von+Voff)/2, for example.
During the blank period “Blank”, it is preferable for the gate clock signal CKV and the gate clock bar signal CKBV to be consistently maintained without any change. There is a probability that the levels of the gate clock signal CKV and the gate clock bar signal CKBV may change due to current leakage unless a separate power source is provided. Specifically, in the case that the current leakage exists, at the beginning of the current frame “N Frame”, an amplitude Vu at which the gate clock signal CKV swings for the first time and an amplitude Vd at which the gate clock bar signal CKBV swings for the first time may differ from each other, resulting in different charging rates. Also, even the gate driver 230 may be affected and may thus cause unintended horizontal lines to appear on a displayed image.
On the other hand, in the exemplary embodiment of
In response to the vertical synchronization start signal STV being on, the current frame “N Frame” may begin, and the gate clock signal CKV and the gate clock bar signal CKBV that have been maintained at the reference voltage begin to swing in opposite directions from each other. In the exemplary embodiment of
A clock generator 220_a according to the exemplary embodiment of
Referring to
The voltage maintainer 2263_a includes first and second divider resistors Rv1_a and Rv2_a dividing a voltage supplied thereto and a sixth switching circuit SW6 determining whether to provide the divided voltage to the charge sharer 22611.
The first and second divider resistors Rv1_a and Rv2_a, unlike the first and second divider resistors Rv1 and Rv2 of
In the exemplary embodiment of
A clock generator 220_b according to the exemplary embodiment of
Referring to
The gate clock generator 2261_b includes first through fifth switching circuits SW1 through SW5, a charge sharer 22611, and the first and second impedance control circuits RCS1 and RCS2.
The first impedance control circuit RCS1 is connected between the charge sharer 22611 and the second switching circuit SW2. The second impedance control circuit RCS2 is connected between the charge sharer 22611 and the fifth switching circuit SW5.
The first impedance control circuit RCS1 may control the slew rate of a gate clock signal CKV during periods when charge sharing is performed such that the gate clock signal CKV swings from a gate-off voltage Voff to a reference voltage and when charge sharing is performed such that the gate clock signal CKV swings from a gate-on voltage Von to the reference voltage. The slew rate of a signal means the speed at which the signal reaches a desired voltage from any particular voltage. The higher the slew rate of the gate clock signal CKV is, the faster the response speed of the gate clock signal CKV is. Specifically, the higher the impedance of the first impedance control circuit RCS1 is, the lower the slew rate of the gate clock signal CKV is, and the lower the impedance of the first impedance control circuit RCS1 is, the higher the slew rate of the gate clock signal CKV is.
The second impedance control circuit RCS2 may control the slew rate of a gate clock bar signal CKBV during periods when charge sharing is performed such that the gate clock bar signal CKBV swings from the gate-off voltage Voff to the reference voltage and when charge sharing is performed such that the gate clock bar signal CKBV swings from the gate-on voltage Von to the reference voltage. Specifically, the higher the impedance of the second impedance control circuit RCS2 is, the lower the slew rate of the gate clock bar signal CKBV is, and the lower the impedance of the second impedance control circuit RCS2 is, the higher the slew rate of the gate clock bar signal CKBV is.
The gate clock signal CKV of
Referring to
The section A1 may be a period during which the gate clock signal CKV maintained at the gate-off voltage Voff swings to the reference voltage (e.g., (Von+Voff)/2) through charge sharing.
The section A2 may be a period during which the gate clock signal CKV swings from the reference voltage to the gate-on voltage Von through charging.
The section A3 may be a period during which the gate clock signal CKV, the gate-on voltage Von, is provided to the gate driver 230 of
The section A4 may be a period during which the gate clock signal CKV maintained at the gate-on voltage Von swings to the reference voltage through charge sharing.
The section A5 may be a period during which the gate clock signal CKV swings from the reference voltage to the gate-off voltage Voff through charging.
Among the sections A1 through A5, swings of the gate clock signal CKV that result from charge sharing performed by the charge sharer 22611 of
As the impedance of the first impedance control circuit RCS1 of
In an exemplary embodiment, resistors, inductors, capacitors, operational amplifiers, or voltage followers using emitter followers may be used as the first and second impedance control circuits RCS1 and RCS2 of
A clock generator 220_c according to the exemplary embodiment of
Referring to
The gate clock generator 2261_c includes first through fifth switching circuits SW1 through SW5, a charge sharer 22611, and the first and second impedance control circuits RCG1 and RCG2.
The first impedance control circuit RCG1 is connected between the first and second switching circuits SW1 and SW2. The second impedance control circuit RCS2 is connected between the fourth and fifth switching circuits SW4 and SW5.
The first impedance control circuit RCG1 may control the slew rate of a gate clock signal CKV during periods when charging is performed such that the gate clock signal CKV swings from a reference voltage to a gate-on voltage Von and when charging is performed such that the gate clock signal CKV swings from a reference voltage to a gate-off voltage Voff. Specifically, the higher the impedance of the first impedance control circuit RCG1 is, the lower the slew rate of the gate clock signal CKV is, and the lower the impedance of the first impedance control circuit RCG1 is, the higher the slew rate of the gate clock signal CKV is.
The second impedance control circuit RCG2 may control the slew rate of a gate clock bar signal CKBV during periods when charging is performed such that the gate clock bar signal CKBV swings from the reference voltage to the gate-on voltage Von and when charging is performed such that the gate clock bar signal CKBV swings from the reference voltage to the gate-off voltage Voff. Specifically, the higher the impedance of the second impedance control circuit RCS2 is, the lower the slew rate of the gate clock bar signal CKBV is, and the lower the impedance of the second impedance control circuit RCS2 is, the higher the slew rate of the gate clock bar signal CKBV is.
The gate clock signal CKV of
Referring to
Among the sections A1 through A5, swings of the gate clock signal CKV that result from charging using the gate-on voltage Von and discharging using the gate-off voltage Voff may occur only during the sections A2 and A5.
As the impedance of the first impedance control circuit RCG1 of
In an exemplary embodiment, resistors, inductors, capacitors, operational amplifiers, and voltage followers using emitter followers may be used as the first and second impedance control circuits RCG1 and RCG2 of
A clock generator 220_d according to the exemplary embodiment of
Referring to
The gate clock generator 2261_d includes first through fifth switching circuits SW1 through SW5, a charge sharer 22611, and the first and second impedance control circuits RDE1 and RDE2.
The first impedance control circuit RDE1 is connected between the second switching circuit SW2 and a first output terminal Nout1 of the clock generator 220_d. The second impedance control circuit RDE2 is connected between the fifth switching circuit SW5 and a second output terminal Nout2 of the clock generator 220_d.
The first impedance control circuit RDE1 may advance the gate clock signal CKV or delay the gate clock signal CKV.
The second impedance control circuit RDE2 may advance the gate clock bar signal CKBV or delay the gate clock signal CKV.
Accordingly, if any one of the gate clock signal CKV and the gate clock bar signal CKBV is delayed or advanced such that the gate clock signal CKV and the gate clock bar signal CKBV are no longer matched, the gate clock signal CKV or the gate clock bar signal CKBV may be delayed or advanced to be re-matched by controlling the impedances of the first and second impedance control circuits RDE1 and RDE2.
The delaying of the gate clock signal CKV of
Referring to
Referring to
A clock generator 220_e according to the exemplary embodiment of
Referring to
The control signal generator 2262_e receives a gate pulse signal CPV from the signal controller 210 of
Referring to
In this exemplary embodiment, the gate clock signal CKV and the gate clock bar signal CKBV sequentially swing rather than simultaneously swing at the beginning of a frame, but the invention is not limited thereto. In general, when a user turns on a display device that was completely off, control signals for controlling various elements of the display device begin to swing. In this case, like the exemplary embodiment of
Also,
However, the embodiments of the invention are not restricted to the exemplary embodiments set forth herein. The above and other effects of the invention will become more apparent to persons of ordinary skill in the art to which the inventive concept pertains by referencing the claims
Number | Date | Country | Kind |
---|---|---|---|
10-2017-0020594 | Feb 2017 | KR | national |
This application is a divisional of U.S. Pat. Application No. 17/132,936, filed on Dec. 23, 2020, which is a divisional of U.S. Pat. Application No. 15/786,118, filed on Oct. 17, 2017, which claims priority to Korean Patent Application No. 10-2017-0020594, filed on Feb. 15, 2017, and all the benefits accruing therefrom under 35 U.S.C. §119, the content of which in its entirety is herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 17132936 | Dec 2020 | US |
Child | 18100971 | US | |
Parent | 15786118 | Oct 2017 | US |
Child | 17132936 | US |