The present invention relates to a flat panel type display device using a display panel; and, more particularly, the invention relates to a display device which obviates the appearance of a display defect by preventing the intrusion of a foreign substance between an upper frame, an intermediate frame or the like, which constitutes a casing of the display device, and a display panel, and/or by suppressing the application of a stress to the display panel attributed to environmental conditions.
As a display device which is capable of producing a high-definition color display for a notebook type computer or a display monitor, a flat panel type display device has been put into practice or has been studied for future practical use. As such a flat panel type display device, various display devices, including a liquid crystal display device which uses a liquid crystal display panel, an organic electroluminescence display device (an organic EL display device) which uses electroluminescence (particularly, organic electroluminescence) elements, or a field emission type display device which uses field emission elements (EFD) and the like, can be named as examples.
This type of display device is configured such that a display panel constituting an image display screen, a drive circuit printed circuit board and other structural members are integrally incorporated into a casing which is constituted of an upper frame and a lower frame. Alternatively, this type of display device is configured such that a display panel constituting an image display screen, a drive circuit printed circuit board and other structural members are integrally incorporated into a casing which is constituted of an upper frame and a lower frame using a mold (a mold frame, an intermediate frame). A rubber cushion or the like is interposed in a contact portion between the upper frame, the lower frame or the intermediate frame, which constitutes a casing, and a display panel, so as to prevent an external impact from being directly applied to the display panel, or to prevent the generation of surface irregularities attributed to the application of a stress to the display panel based on environmental conditions. Further, the rubber cushion serves to prevent a foreign substance from intruding into a gap between the display panel and the other structural members and from exerting various types of damage to the display device.
For example, in the liquid crystal display device, a backlight which illuminates the liquid crystal display panel is housed in an intermediate frame, the liquid crystal display panel is overlapped on the intermediate frame, and another structural member, such as a printed circuit board, is sandwiched between the upper frame and the lower frame, thus forming an integral body. Polarizers are laminated to the liquid crystal display panel, and a printed circuit board for supplying drive signals is connected to the liquid crystal display panel. These structural members tend to warp due to environmental conditions; and, when the warp is rectified using the upper frame, a stress is applied to the liquid crystal display panel, thus giving rise to a display defect, such as the creation of display irregularities. Accordingly, a rubber cushion is interposed between the upper frame and the liquid crystal display panel, thus forming a clearance therebetween.
Further, in the backlight type liquid crystal display device, an illumination device, which is referred to as “a backlight”, is mounted on a back surface of the liquid crystal display panel. The backlight is roughly classified into two types, that is, a so-called sidelight type backlight and a direct type backlight. In the sidelight type backlight, a linear lamp is mounted on at least one side periphery of a light guide plate formed of a transparent plate. The sidelight type backlight is housed in an intermediate frame, which is referred to as a mold frame, and it is stacked between the intermediate frame and the liquid crystal display panel by way of an optical compensation film. Here, the optical compensation film is constituted of a prism sheet and a diffusion sheet which serve to uniformly and efficiently direct the illumination light from the backlight to the whole lower surface of the liquid crystal display panel.
An optical compensation sheet OPS is mounted on an upper surface of the backlight BL, and the liquid crystal display panel PNL is stacked over the optical compensation sheet OPS. A printed circuit board PCB for supplying drive signals is connected to the liquid crystal display panel PNL. The drive circuit chip is omitted from the drawing. The liquid crystal display panel PNL is mounted on the backlight BL, which is held in the mold MDL, and these structural members are integrally fixed using the upper frame SHD and the lower frame MFL, both of which are made of metal, thus constituting the liquid crystal display device. Here, rubber cushions GC3, GC2, GC1 are interposed between the optical compensation sheet OPS and the mold MDL, between the mold MDL and the liquid crystal display panel PNL, and between the liquid crystal display panel PNL and the upper frame SHD. Here, a conductive rubber is usually used to form the rubber cushion GC1 that is interposed between the liquid crystal display panel PNL and the upper frame SHD. Although the lower frame MFL is formed of a metal plate, and a TCON printed circuit board PS is mounted on a portion thereof, the details thereof are omitted. Further, the whole lower frame MFL may be formed of a resin mold.
As literatures which disclose this type of liquid crystal display device, JP-A-10-039280 (Patent Document 1) is, one example. Patent Document 1 discloses a liquid crystal display panel in which four corners of the liquid crystal display panel are supported using relatively soft members, and center portions of respective sides are supported by rigid members, thus protecting the liquid crystal display panel from rupture attributed to an external force. JP-A-7-281183 (Patent Document 2) discloses a structure in which a liquid crystal display panel is fixed to a casing using rubber cushions.
The rubber cushion used in the above-mentioned structure is formed of a solid rubber member having a quadrangular (rectangular or square) cross section; and, hence, although the material per se has elasticity, the rubber cushion does not have an elastic structure which depends on the cross-sectional shape thereof (hereinafter, such an elastic structure will be referred to as a “shaped elastic cushion”).
As seen in
Further, rubber cushions GC2, GC3 are mounted on the mold frame MDL side using an adhesive agent or an adhesive tape. The rubber cushion GC2, which is interposed between the glass substrate SUB1 of the liquid crystal display panel PNL and the mold MDL, and the rubber cushion GC3, which is interposed between the mold MDL and the optical compensation sheet OPS, do not have the above-mentioned gap (clearance) and are brought into close contact with these structural parts without particularly generating a compression deformation of the rubber cushions GC2, GC3. Accordingly, when the liquid crystal display panel PNL is warped in a direction such that the liquid crystal display panel PNL is brought into contact with the rubber cushion GC1 of the upper frame SHD, there may be a case in which a gap is generated between the rubber cushion GC2 and the liquid crystal display panel PNL. In this case, a foreign substance enter through the gap and intrude onto a light radiation surface of the backlight BL or onto the optical compensation sheet OPS. As a result, dotted black shades will appear in the illumination light, thus causing a defective display. Further, a foreign substance may also intrudethrough a gap between the liquid crystal display panel PNL and the rubber cushion GC1 of the upper frame SHD, and this foreign substance remains in the inside of the casing, thus giving rise to various drawbacks.
Although the drawback attributed to the intrusion of a foreign substance in the liquid crystal display device has been described above, another display device, for example, a display device having no backlight, such as an organic EL display device, a FED display device and the like, also has the following drawback. That is, also with respect to a display panel of the display device having no backlight, periphery of the display panel is covered with a mold, and the display panel and the mold are integrally formed into the display device using an upper mold and a lower mold. Further, by interposing a rubber cushion similar to the rubber cushions shown in
In view of the above-mentioned circumstances, the display device according to the present invention is characterized in that a shape elastic member (also referred to as a shape elastic cushion) is interposed in a given portion between opposed facing peripheral sides, thus always ensuring adequate sealing between a plurality of plate-like members, including a display panel, which are arranged in a stacked manner, or between frame-like members such as a sheet-like member or an intermediate mold (a mold frame or simply referred to as a mold) or the like, using an elastic function of the shape elastic member, and, at the same time, imparting a sealing function such that, even when the distance between the members is widened due to the generation of a deformation, such as warping of the members, a foreign substance is prevented from intruding into a gap between the members from the position where the shape elastic member is arranged.
The shape elastic member according to the present invention is substantially manufactured by forming an elastic material into a shape which has a restoring force against a bending stress. Here, although it is a principal object of the present invention to prevent the intrusion of a foreign substance into a gap defined between stacked members (including a clearance which is intentionally formed) from outside by interposing the shape elastic member in the gap, it is also another object of the present invention to alleviate the effects of an external impact.
When the display device of the present invention is a liquid crystal display device, it is desirable to always install the shape elastic member used in the display device in the periphery between the liquid crystal display panel and the backlight device. This is because, with respect to the liquid crystal display device, when a foreign substance intrudes between the backlight device and the liquid crystal display panel, the illumination light suffers from irregularities, and these irregularities may impart an adverse influence on the display quality. Here, since the display device of the present invention has the function of preventing the intrusion of a foreign substance, as well as the function of protecting the constitutional members from the effects of external impact, the shape elastic member is provided not only between the liquid crystal display panel and the backlight, but also between other constitutional members in place of the usual rubber cushion. Further, the shape elastic cushion may be interposed between the optical compensation sheet mounted on the backlight device and the liquid crystal display panel.
When the display device of the present invention is a display device which includes organic EL elements or FED elements, by interposing a shape elastic cushion between the display panel on which these elements are formed and another constitutional member, such as an upper frame, a mold frame, a lower frame or the like, it is possible to obviate the display irregularities attributed to warping of the display panel caused by a change of environmental conditions, or it is possible to protect the display device by alleviating an external impact.
According to the present invention, by always ensuring sealing between a plurality of plate-like members, including the display panel, which are arranged in a stacked manner, or between sheet-like members or frame-like members, by using the elastic function of the shape elastic member, even when the members suffer from deformation, such as warping or the like, it is possible to prevent the intrusion of a foreign substance at the position where the shape elastic member is arranged. Further, according to the present invention, due to the interposition of the shape elastic member, the application of a local stress can be obviated, thus also alleviating damage caused by external impact.
The present invention is not limited to the above-mentioned the constitution and constitution of embodiments to be explained later, and various modifications can be made without departing from the technical concept of the present invention.
Here, preferred embodiments of the display device of the present invention will be explained in detail in conjunction with the drawings. Here, although the embodiments described hereinafter will be explained by taking a liquid crystal display device as an example, it is needless to say that the present invention is applicable to other types of display device, such as an organic EL display device or a FED.
The upper frame SHD is usually provided as a molded member which is formed by blanking a metal sheet using a press, wherein the upper frame SHD faces an end periphery of the liquid crystal display panel PNL in the inside of the window by way of a rubber cushion GC1. Between the upper frame SHD and the liquid crystal display panel PNL, a conductive rubber cushion GC1 similar to the rubber cushion GC1 in
As shown in
It is desirable to manufacture the shaped elastic member GS by extrusion molding of a rubber material from the part of view of productivity. With respect to the mounting portion of the shaped elastic member GS which comes in contact with the liquid crystal display device, the mounting portion is not limited to the whole region of the above-mentioned upper side. For example, the shaped elastic member GS may be formed only on a portion of the upper side and a rubber cushion having a rectangular cross section which has been conventionally used may be mounted on other portions of the upper side. The liquid crystal display panel PNL is connected with the upper frame SHD in a conductive manner using the conductive rubber cushion GC1 at a portion on four sides thereof. In a lateral electric field type (IPS type) liquid crystal display device, when a local stress is applied to the liquid crystal display panel, leaking of light is generated in a black display. Accordingly, by taking into consideration the warping of the liquid crystal display panel PNL, the upper frame SHD or the light guide plate constituting the backlight device, it is necessary to provide a clearance of approximately 0.4 mm to 1.0 mm. Accordingly, the height S of the space RM of the shaped elastic member GS according to this embodiment is set to 0.5mm to 1.5mm in a state in which a load is not applied to the shaped elastic member GS, that is, in a state in which the liquid crystal display panel PNL is not mounted on the shaped elastic member GS. Here, these numeral values merely constitute an example and the above-mentioned clearance should be determined based on the size of the liquid crystal display panel PNL.
According to the constitution of this embodiment, due to the elastic function of the shaped elastic member GS, the free end of the shaped elastic member GS acts to enlarge the space RM so that the shaped elastic member GS maintains a sealed state in which the shaped elastic member GS is always brought into contact with the liquid crystal display panel PNL. Accordingly, even when warping is generated in the laminated member, such as the liquid crystal display panel PNL, there is no possibility that a foreign substance will intrude between the laminated constitutional members in which the shaped elastic member GS is arranged. Here, it is also possible to achieve substantially the same advantageous effects by fixing the shaped elastic member GS to the liquid crystal display panel side by adhesion or the like and by bringing the side which is brought into contact with a mold MDL into a non-fixed state.
The embodiment shown in
Also, according to the constitution of this embodiment, due to the elastic function of the shaped elastic member GS, the free end of the shaped elastic member GS acts to enlarge the space RM, so that the shaped elastic member GS maintains the state in which the shape elastic member GS is always brought into contact with the liquid crystal display panel PNL. Accordingly, even when warping is generated in the laminated member, such as the liquid crystal display panel PNL, there is no possibility that a foreign substance will intrude between the laminated constitutional members in which the shaped elastic member GS is arranged. Here, it is also possible to achieve substantially the same advantageous effects by fixing the shaped elastic member GS to the liquid crystal display panel side by adhesion or the like and bringing the side which is brought into contact with a mold MDL into a non-fixed state.
The shaped elastic member GS of this embodiment has a circular cross section, thus forming a circular tubular body, wherein one longitudinal side surface (lower side surface) of the shaped elastic member GS is fixedly mounted on an optical compensation sheet OPS that is mounted on a backlight device using an adhesive agent or an adhesive tape. On the other hand, the other longitudinal side surface (upper side surface) is brought into contact with and is mounted on the liquid crystal display panel PNL (glass substrate SUB1 of the liquid crystal display panel PNL) in a non-fixed manner, thus forming a free end. By mounting the shaped elastic member GS, which is formed of a tubular body having the circular cross section as shown in
Also, according to the constitution of this embodiment, due to the elastic function of the shaped elastic member GS, the free end of the shaped elastic member GS acts to enlarge the space RM so that the shaped elastic member GS maintains a state in which the shaped elastic member GS is always brought into contact with the liquid crystal display panel PNL. Accordingly, even when warping is generated in the laminated member, such as the liquid crystal display panel PNL, there is no possibility that a foreign substance will intrude between the laminated constitutional members in which the shaped elastic member GS is arranged. Here, it is also possible to achieve substantially the same advantageous effects by fixing the shaped elastic member GS to the liquid crystal display panel side by adhesion or the like and by bringing the side which is brought into contact with the optical compensation sheet OPS into a non-fixed state.
Here, the structural principle, the manner of operation and advantageous effects of the shaped elastic member will be explained in conjunction with the shaped elastic member shown in
It is assumed that the width of the member is AX and the height (sum of the height S of the space RM of the shaped elastic member and the thickness of shape elastic member per se×2) is AY, as seen in
When the usual rubber is to be compressed at a compression ratio of approximately 40%, a load of approximately 65 kPa becomes necessary (in case of rubber having a diameter of 50 mm). Compared to this case, the shaped elastic member used in this embodiment can obtain a compression ratio of 40% with a load of approximately {fraction (1/40)}of the load applied to the usual rubber. That is, it is possible to absorb a delicate force applied to the display panel, and, hence, it is possible to prevent the intrusion of a foreign substance.
Here, it is effective to use a member in which the load, which brings the compression ratio of the height to 40%, is set to 4 gf/cm or less. However, it is also possible to obtain the advantageous effect of the present invention even with the use of a member which obtains the compression ratio of 40% with approximately {fraction (1/10)}of the load of the usual rubber, that is, with 16 gf/cm or less.
In this constitutional example, as in the case of the embodiments explained in conjunction with
The shaped elastic member GS is arranged on the whole inner periphery (four sides) of the mold MDL. The liquid crystal display panel (not shown in the drawing) is mounted on the mold MDL with the shaped elastic member GS interposed therebetween. Further, the liquid crystal display panel is covered with the upper frame (not shown in the drawing) from above, and the upper frame SHD is connected with the lower frame MFL, thus integrally forming the liquid crystal display device.
The display device of the present invention is not limited to a liquid crystal display device, and it is also applicable to an organic EL display device or a FED display device having a foreign substance intrusion prevention structure or an impact resistance structure. Further, the display device is applicable not only to a miniaturized display device of a personal digital assistant or a mobile phone, but also to an intermediate-sized display device, such as that used in a desktop type personal computer and a notebook type personal computer, as well as to a large-sized display device, such as a television receiver set or monitor equipment for other types of digital assistant.
Number | Date | Country | Kind |
---|---|---|---|
2003-327274 | Sep 2003 | JP | national |