Many displays include an array of pixels organized in rows and columns. Selecting a row and selecting a column enables addressing of a pixel in the array. There are two categories of addressing schemes. One is referred to as a passive matrix addressing scheme in which the row and column drivers are multiplexed to turn pixels on and off in the array. Another addressing is referred to as an active matrix addressing scheme in which one or more thin film transistors (“TFT”) is associated with each of the pixels in the display to turn the pixel on and off. Generally, the displays that use a passive addressing scheme are referred to as passive displays and the displays that use an active addressing scheme are referred to as active displays.
Currently, both passive and active displays have data reside in an external memory. In other words, the memory is remote from the pixel. The data is sent to the pixels via rows and columns in the form of voltage pulses. As a result, the pixels are refreshed for both the passive displays and the active displays. The refresh rates are high and expected to increase as displays become more complex. For example, high definition television (“HDTV”) uses a display having an array of pixels of 1080×1920. The refresh rate of the entire image is generally between 60-90 frames per second. As the number of rows increase, the amount of time that may be spent addressing each row becomes shorter because memory is remote from the pixel. Static or quasi-static display applications even have high refresh rates.
Although in principal passive displays appear to be easier to fabricate, complex schemes are implemented in order to address each pixel. In a large display, such as an HDTV display, as the number of rows and number of columns increase, the time available to address each pixel becomes shorter. If a display is a liquid crystal display, the response time for such programming is slow enough so that, eventually, the pixel does not respond well and contrast between on and off pixels is poor. If a display is an OLED display, the brightness of each pixel is increased in proportion to the number of rows in the display, since rows are activated one at a time. Consequently, large current densities are used in passive OLED displays, leading to high power consumption.
Active displays include one or more TFTs to address each pixel and generally are much more difficult to fabricate. The difficulty in fabrication translates to expense passed on to consumers. In some instances, the cost may be prohibitive for many consumers. The active displays also use a glass substrate. Complex processes are also generally used to fabricate an active matrix display.
In the following description, the drawings illustrate specific embodiments of the invention sufficiently to enable those skilled in the art to practice it. Other embodiments may incorporate structural, logical, electrical, process, and other changes. Examples merely typify possible variations. Individual components and functions are optional, and the sequence of operations may vary. Portions and features of some embodiments may be included in or substituted for those of others. The scope of the invention encompasses the full ambit of the claims and all available equivalents. The following description is, therefore, not to be taken in a limited sense, and the scope of the embodiments of the present invention is defined by the appended claims.
A decoder and logic 230 is positioned on one side of the array 200. A controller 240 is also electrically coupled to the array 200. The controller controls the application of voltage to the various columns of conductors 210, 212 and rows of conductors 220, 222, 224 in response to image data received by the decoder and logic 230. The controller 240 programs the programmable resistances 320 to enable or disable individual optical elements 310 in the array 200 to form images. Of course, the array 200 shown here is only illustrative in that it shows six display elements 300. An array 200 may have any number of display elements, including many more display elements and form a much larger array.
It should be noted that in some embodiments of the invention the programmable resistance 320 does not have a definite electrolyte portion 322 or a definite material 324 that is the source of ions and electrons. In some embodiments, the material changes structure so as to form more conductive or more resistive states based on direction of current flow or bias.
Other embodiments of the programmable resistance may include different materials. The solid electrolyte may include germanium selenide, germanium sulphide, copper sulphide, silver sulphide, copper selenide, or any other solid electrolyte. The cathode may include any type of metal that supply electrons. The anode may include silver, copper or the like.
In operation, the array 200 is programmed during a programming cycle and viewed during a viewing cycle. During the programming cycle, current may be driven in the direction of the arrow 340 (a first direction) to program the programmable resistor 320 to a resistive state. Current flowing in the direction of arrow 340 causes the optical element or light emitting diode 310 to emit light. When current is driven in a direction opposite the arrow 340 (a second direction), the programmable resistor is programmed to a conductive state. In order to drive current in a direction opposite the arrow 340, the light emitting diode 310 is reversed biased. In some instances, the light emitting diode is not to be reverse biased.
The programmable resistance 320 of each of the display elements 300 may be programmed to a conductive state or to a resistive state, as described above. In one example embodiment, programming may be done one display element at a time. In another example embodiment, a multiplicity of display elements on a row may be programmed simultaneously by independent control of column voltages. In one example embodiment, the bias of a row or group of rows is set. Then groups of columns may be programmed. The groupings of columns may be of any size. Once each programmable resistance 320 of each of the display elements 300 is programmed during the programming cycle, the rows are connected to a supply voltage and the columns are connected to ground during a viewing cycle. This results in powering substantially the entire array 200 of display elements 300 without having to refresh the display elements 300. The optical state of each display element 300 is determined by the resistance of programmable resistance 320. In one example embodiment, the display element 300 may be programmed to one of a plurality of resistance levels. At higher levels of resistance, less current flows through the display element 300. Thus, the programmable resistor 320 may be programmed to control a light output from a variable optical element 310, such as an OLED to provide a gray scale capability for the various display elements.
A display including a variable optical element that changes appearance in response to changes in current, and a programmable resistance in series with the variable optical element. The resistance of the programmable resistance increases in response to a current in a first direction. The resistance of the programmable resistance decreases in response to a current in a second direction. The current in the second direction is opposite the current in the first direction. In some embodiments, the variable optical element includes a light emitting diode. In other embodiments, the variable optical element includes an organic light emitting diode. The programmable resistor includes an electrolyte, and a source of ions that diffuses out of the electrolyte in response to current in the first direction and a source of ions that diffuses into the electrolyte in response to current in the second direction. It should be noted that in some embodiments of the invention the programmable resistance 320 does not leave a definite electrolyte portion 322 or a definite material 324 that is the source of ions and electrons. In some embodiments, the material changes structure so as to form more conductive or more resistive states based on direction of current flow or bias. In some embodiments, the display also includes a diode connected in parallel to the optical element such that the diode passes current in one of the first and second direction without having to pass current through the optical element. The light emitting diode has a first polarity in a first direction and the diode has a second polarity in a second direction. The diode is connected in parallel to the light emitting diode such that the diode passes programming current without having to pass programming current through the optical element. The diode is connected in parallel to the light emitting diode such that the polarity of the diode opposes the polarity of the light emitting diode.
A display includes a plurality of display variable optical elements arranged in an array. It should be noted, pixels may not be identical as some may emit different colors of light or may be programmed using different biases to cause current flow. The resistance of the programmable resistance increases in response to a current in a first direction, and decreases in response to a current in a second direction. The display also includes a plurality of rows of conductors and a plurality of columns of conductors. At least a portion of the display elements are connected between one of the plurality of rows of conductors and one of the plurality of columns of conductors. The display also includes a source of current for selectively increasing or decreasing the resistance of the programmable resistance. The optical element includes a light emitting diode, in one embodiment, and includes an organic light emitting diode in another embodiment. The programmable resistor includes an electrolyte, and a source of ions that diffuses out of the electrolyte in response to current in the first direction and that diffuses into the electrolyte in response to current in the second direction. In some embodiments, a diode is connected in parallel to the optical element such that the diode passes current in one of the first and second direction without having to pass current through the optical element. The light emitting diode has a polarity in a first direction and the diode has a polarity in a second direction. The diode is connected in parallel to the light emitting diode such that the diode passes programming current without having to pass programming current through the optical element. The diode is connected in parallel to the light emitting diode such that the polarity of the diode opposes the polarity of the light emitting diode.
In one example embodiment, an array 200 (see
In operation, the array 901 is programmed during a programming cycle and viewed during a viewing cycle. During the programming cycle, current may be driven in the direction of an arrow 950 (a first direction) to program the programmable resistor 930 to a resistive state. When programming the programmable resistance 930 to a resistive state, the row conductor 940 is at a high voltage and the primary column conductor 942 is at a low voltage state. Aa small amount of current flows through the diode 920 since current flow in the direction of the arrow 950 through the diode 920 is in a reverse bias direction of the diode 920. The majority of the current also flows in the direction of arrow 960 through the variable optical element 910. Current flowing in the direction of an arrow 960 causes the variable optical element or light emitting diode 910 to emit light.
When current is driven in a direction opposite the arrow 950 (a second direction), the programmable resistance 930 is programmed to a conductive state. In order to drive current in a direction opposite the arrow 950, current is driven from the auxiliary column conductor 944, through the diode 920 and to the row conductor 940. The voltage of the auxiliary column conductor is in a high state and the voltage of the row conductor 940 is in a low state. The voltage of the primary conductor 942 is also placed in the high state (or at a voltage near the voltage of the auxiliary conductor 944). This prevents substantial amounts of current flowing through the variable optical element 910. As a result, current flows through the programmable resistance in a direction opposite the arrow 950 and programs to programmable resistance 930 to a conductive state.
The programmable resistance 930 of each of the display elements 900 may be programmed to a conductive state or to a resistive state, as described above. In one example embodiment, programming may be done one display element at a time. In another example embodiment, a multiplicity of display elements on a row may be programmed simultaneously by independent control of column voltages. In one example embodiment, the bias of a row or group of rows is set. Then groups of columns may be programmed. The groupings of columns may be of any size.
Once each programmable resistance 930 of each of the display elements 900 is programmed during the programming cycle, the row conductors, such as row conductor 940, are connected to a supply voltage and the primary columns, such as primary column 942, are connected to ground during a viewing cycle. This results in powering substantially the entire array 901 of display elements 900 without having to refresh the display elements 900. The optical state of each display element 900 is determined by the resistance of programmable resistance 930. In one example embodiment, the display element 900 may be programmed to one of a plurality of resistance levels. At higher levels of resistance, less current will flow through the display element 900. Thus, the programmable resistor 930 may be programmed to control a light output from a variable optical element 910, such as an OLED to provide a gray scale capability for the various display elements. During the viewing cycle, the auxiliary column 944 may be held at the supply voltage, a fixed voltage, or allowed to float.
In operation, the array 1001 is programmed during a programming cycle and viewed during a viewing cycle. During the programming cycle, current may be driven in the direction of an arrow 1050 (a first direction) to program the second programmable resistance 1030 to a resistive state. Current is also driven through the variable optical element 1010 in the direction of an arrow 1060. The direction of the arrow 1060 is a forward bias direction of an LED or an OLED.
When programming the second programmable resistance 1030 to a resistive state, the row conductor 1040 is at a high voltage and the primary column conductor 1042 is at a low voltage state. Generally, the first programmable resistance 1020 is maintained in a high resistive state. Therefore, when programming begins, the first programmable resistance 1020 is in a resistive state to prevent substantial amounts of current flow through the first programmable resistance 1020 to the auxiliary column conductor 1044. The auxiliary column conductor 1044 is then set to have a voltage similar to the row conductor 1040. In another embodiment, the voltage of the auxiliary column conductor 1044 is then allowed to float. The second programmable resistance is then programmed to a resistive state by pulsing current through the second programmable resistance 1030 and the variable optical element 1010. When the second programmable resistance 1030 is programmed to a resistive state, this turns the variable optical element 1010 off. As a result, the variable optical element 1010 does not light during a viewing cycle.
The second programmable resistance 1030 is programmed to a conductive state by passing current through the second programmable resistance 1030 in a direction opposite the arrow 1050 (a second direction). Programming the second programmable resistance 1030 to a conductive state allows the variable optical element 1010 to be enabled during the viewing cycle. When programming the second programmable resistance 1030 to a conductive state, the auxiliary column conductor 1044 is set to a high voltage while the row conductor 1040 is set to a low voltage. This allows programming of the second programmable resistance 1030 without having to pass current through the variable optical element 1010 in a direction opposite the arrow 1060. If the variable optical element 1010 is an LED or an OLED, the direction opposite the arrow 1060 corresponds to a reverse bias direction with respect to an LED or OLED. Once the second programmable resistance 1030 is programmed to a conductive state, the variable optical element may be viewed during the viewing cycle with current passing through the second programmable resistance 1030 and through the variable optical element 1010 in the direction of arrows 1050 and 1060, respectively.
Programming the second programmable resistance 1030 to a conductive state simultaneously programs the first programmable resistance 1020 to a resistive state because the first and second programmable resistors are oppositely oriented. Therefore, the same programming sequence described in the preceding paragraph to set the second programmable resistance 1030 to a conductive state may be used to program the first programmable resistance 1020 to a resistive state. When viewing the display or when programming the second programmable resistance 1030 to a high resistance state, the first programmable resistance is in a high resistance state.
In one example of the programming cycle, each of the first programmable resistances 1020 initially are set to a high resistance state (each of the second programmable resistances 1030 are simultaneously set to a conductive state). This programming step sets each of the pixels into the “on” state. Next, those pixels that are chosen to be off are programmed into the “off” state. This programming sequence ensures that each of the first programmable resistances 1020 are in the high resistance state both when programming second programmable resistances 1030 to the high resistance (off) state and when viewing the display.
The second programmable resistance 1030 of each of the display elements 1000 may be programmed to a conductive state or to a resistive state, as described above. In one example embodiment, programming may be done one display element at a time. In another example embodiment, a multiplicity of display elements on a row may be programmed simultaneously by independent control of column voltages. In one example embodiment, the bias of a row or group of rows is set. The group's columns may be programmed. The groupings of columns may be of any size.
Once each second programmable resistance 1030 of each of the display elements 1000 is programmed during the programming cycle, the row conductors, such as row conductor 1040, are connected to a supply voltage and the primary columns, such as primary column 1042, are connected to ground during a viewing cycle. This results in powering substantially the entire array 1001 of display elements 1000 without having to refresh the display elements 1000. The optical state of each display element 1000 is determined by the resistance of second programmable resistance 1030. In one example embodiment, the display element 1000 may be programmed to one of a plurality of resistance levels. At higher levels of resistance, less current flows through the display element 1000 and specifically through the variable optical element 1010. Thus, the second programmable resistance 1030 may be programmed to control a light output from a variable optical element 1010, such as an OLED or LED, to provide a gray scale capability for the various display elements. During the viewing cycle, the auxiliary column 1044 may be held at the supply voltage or allowed to float.
In operation, the array 1101 is programmed during a programming cycle and viewed during a viewing cycle. During the programming cycle, current may be driven in the direction of an arrow 1150 (a first direction) to program the programmable resistance 1130 to a resistive state. Current is also driven through the variable optical element 1110 in the direction of an arrow 1160. The direction of the arrow 1160 is a forward bias direction of an LED or an OLED.
When programming the programmable resistance 1130 to a resistive state, the row conductor 1140 is at a high voltage and the primary column conductor 1142 is at a low voltage state. When programming the programmable resistance 1130 to a resistive state, the fixed resistance 1120 prevents substantial amounts of current flow through the fixed resistance 1120 to the auxiliary column conductor 1144. The auxiliary column conductor 1144 then is set to have a voltage similar to the row conductor 1140. In another embodiment, the voltage of the auxiliary column conductor 1144 then is allowed to float. The programmable resistance 1130 is then programmed to a resistive state by pulsing current through the programmable resistance 1130 and the variable optical element 1110. When the programmable resistance 1130 is programmed to a resistive state, this turns the variable optical element 1110 off. As a result, the variable optical element 1110 does not light during a viewing cycle.
The programmable resistance 1130 is programmed to a conductive state by passing current through the programmable resistance 1130 in a direction opposite the arrow 1150 (a second direction). Programming the programmable resistance 1130 to a conductive state allows the variable optical element 1110 to be enabled during the viewing cycle. When programming the programmable resistance 1130 to a conductive state, the auxiliary column conductor 1144 is set to a high voltage while the row conductor 1140 is set to a low voltage. This allows programming of the programmable resistance 1130 without having to pass current through the variable optical element 1110 in a direction opposite the arrow 1160. If the variable optical element 1110 is an LED or an OLED, the direction opposite the arrow 1160 corresponds to a reverse bias direction with respect to an LED or OLED. Once the programmable resistance 1130 is programmed to a conductive state, the variable optical element may be viewed during the viewing cycle with current passing through the programmable resistance 1130 and through the variable optical element 1110 in the direction of arrows 1150 and 1160, respectively.
The programmable resistance 1130 of each of the display elements 1100 may be programmed to a conductive state or to a resistive state, as described above. In one example embodiment, programming may be done one display element at a time. In another example embodiment, a multiplicity of display elements on a row may be programmed simultaneously by independent control of column voltages. In one example embodiment, the bias of a row or group of rows is set. Then single columns are programmed. The groupings of columns may be of any size.
Once each programmable resistance 1130 of each of the display elements 1100 is programmed during the programming cycle, the row conductors, such as row conductor 1140, are connected to a supply voltage and the primary columns, such as primary column 1142, are connected to ground during a viewing cycle. This results in powering substantially the entire array 1101 of display elements 1100 without having to refresh the display elements 1100. The optical state of each display element 1100 is determined by the resistance of programmable resistance 1130. In one example embodiment, the display element 1100 may be programmed to one of a plurality of resistance levels. At higher levels of resistance, less current will flow through the display element 1100 and specifically through the variable optical element 1110. Thus, the programmable resistance 1130 may be programmed to control a light output from a variable optical element 1110, such as an OLED or LED, to provide a gray scale capability for the various display elements. During the viewing cycle, the auxiliary column 1144 may be held at the supply voltage or allowed to float.
Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments of the invention. It is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combinations of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description. The scope of various embodiments of the invention includes any other applications in which the above structures and methods are used. Therefore, the scope of various embodiments of the invention should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.