This application claims priority to Korean Patent Application No. 10-2021-0088074, filed on Jul. 5, 2021, and all the benefits accruing therefrom under 35 U.S.C. § 119, the content of which in its entirety is herein incorporated by reference.
Embodiments of the invention herein relate to a display device.
An organic light-emitting display device among display devices displays an image by an organic light-emitting diode that generates light by the recombination of electrons and holes. The organic light-emitting display device has a fast response speed and is driven with low power consumption.
The organic light-emitting display device includes pixels connected to data lines and scan lines. In general, the pixels include an organic light-emitting diode and a pixel circuit that controls an amount of current flowing into the organic light-emitting diode. The organic light-emitting diode generates light of a predetermined luminance corresponding to the amount of current transmitted from the pixel circuit.
Embodiments of the invention provide a display device having the improved display quality of an image.
In an embodiment, a display device includes a plurality of scan lines, a data line, a display panel including a pixel connected to the plurality of scan lines and the data line, a scan driving circuit that outputs a plurality of scan signals to the plurality of scan lines, respectively, a data driving circuit that outputs a data signal to the data line during an active period, and a driving controller that controls the scan driving circuit and the data driving circuit. The pixel includes a light-emitting diode including a first electrode and a second electrode and an initialization transistor connected between a first initialization voltage line and the first electrode of the light-emitting diode and including a gate electrode connected to a first scan line among the plurality of scan lines. A first scan signal among the plurality of scan signals provided to the first scan line during a blank period has an active level during a predetermined initialization time duration, and the predetermined initialization time duration is set to a time duration corresponding to a luminance characteristic of the display panel.
In an embodiment, when the luminance characteristic of the display panel has a first value, the predetermined initialization time duration of the first scan signal may have a first time duration during the blank period. When the luminance characteristic of the display panel has a second value different from the first value, the predetermined initialization time duration of the first scan signal may have a second time duration different from the first time duration during the blank period.
In an embodiment, an initialization voltage provided to the first initialization voltage line may have a voltage level corresponding to the luminance characteristic of the display panel.
In an embodiment, when the luminance characteristic of the display panel has a first value, the initialization voltage may have a first voltage level. When the luminance characteristic of the display panel has a second value different from the first value, the initialization voltage may have a second voltage level different from the first voltage level.
In an embodiment, the pixel may further include a first transistor including a first electrode, a second electrode electrically connected to the first electrode of the light-emitting diode, and a gate electrode and a switching transistor including a first electrode connected to a bias voltage line, a second electrode connected to the first electrode of the first transistor, and a gate electrode connected to the first scan line.
In an embodiment, the pixel may further include a second transistor including a first electrode connected to the data line, a second electrode connected to the first electrode of the first transistor, and a gate electrode connected to a second scan line among the plurality of scan lines, a third transistor including a first electrode connected to the second electrode of the first transistor, a second electrode connected to the gate electrode of the first transistor, and a gate electrode connected to a third scan line among the plurality of scan lines, a fourth transistor including a first electrode connected to the gate electrode of the first transistor, a second electrode connected to a second initialization voltage line, and a gate electrode connected to a fourth scan line among the plurality of scan lines, a fifth transistor including a first electrode connected to a voltage line, a second electrode connected to the first electrode of the first transistor, and a gate electrode for receiving a light-emitting control signal, a sixth transistor including a first electrode connected to the second electrode of the first transistor, a second electrode connected to the first electrode of the light-emitting diode, and a gate electrode for receiving the light-emitting control signal, and a capacitor including a first terminal connected to the voltage line and a second terminal connected to the gate electrode of the first transistor.
In an embodiment, at least one of the first transistor, the second transistor, the third transistor, the fourth transistor, the fifth transistor, the sixth transistor, the initialization transistor, and the switching transistor may be an N-type transistor, and remaining transistors of the first transistor, the second transistor, the third transistor, the fourth transistor, the fifth transistor, the sixth transistor, the initialization transistor, and the switching transistor may be P-type transistors.
In an embodiment, each of the first transistor, the second transistor, the fifth transistor, the sixth transistor, the initialization transistor, and the switching transistor may be a P-type transistor, and each of the third transistor and the fourth transistor may be an N-type transistor.
In an embodiment, each of a second scan signal, a third scan signal, and a fourth scan signal among the plurality of scan signals, which are respectively provided to the second scan line, the third scan line, and the fourth scan line, may be at an inactive level during the blank period.
In an embodiment, the second scan signal provided to the second scan line is at an active level during one horizontal period in the active period. The predetermined initialization time duration of the first scan signal provided to the first scan line during the blank period may be longer than the one horizontal period.
In an embodiment, when an operating frequency of the second scan signal is a first frequency, one frame may include the active period. When the operating frequency of the second scan signal is a second frequency lower than the first frequency, one frame may include the active period and the blank period.
In an embodiment, a display device includes a plurality of scan lines, a data line, a display panel including a pixel connected to the plurality of scan lines and the data line, a scan driving circuit that outputs a plurality of scan signals to the plurality of scan lines, respectively, a data driving circuit that outputs a data signal to the data line, and a driving controller that controls the scan driving circuit and the data driving circuit. The pixel includes a light-emitting diode including a first electrode and a second electrode, an initialization transistor connected between a first initialization voltage line and the first electrode of the light-emitting diode and including a gate electrode connected to a first scan line among the plurality of scan lines, a first transistor including a first electrode, a second electrode electrically connected to the first electrode of the light-emitting diode, and a gate electrode, and a second transistor including a first electrode connected to the data line, a second electrode connected to the first electrode of the first transistor, and a gate electrode connected to a second scan line among the plurality of scan lines. One frame includes an active period and a blank period. A first scan signal among the plurality of scan signals provided to the first scan line during the blank period has an active level during a predetermined initialization time duration, and the predetermined initialization time duration is set to a time duration corresponding to a luminance characteristic of the display panel.
In an embodiment, when the luminance characteristic of the display panel has a first value, the predetermined initialization time duration of the first scan signal may have a first time duration during the blank period. When the luminance characteristic of the display panel has a second value different from the first value, the predetermined initialization time duration of the first scan signal may have a second time duration different from the first time duration during the blank period.
In an embodiment, an initialization voltage provided to the first initialization voltage line may have a voltage level corresponding to the luminance characteristic of the display panel.
In an embodiment, when the luminance characteristic of the display panel has a first value, the initialization voltage may have a first voltage level. When the luminance characteristic of the display panel has a second value different from the first value, the initialization voltage may have a second voltage level different from the first voltage level.
In an embodiment, the pixel may further include a switching transistor including a first electrode connected to a bias voltage line, a second electrode connected to the first electrode of the first transistor, and a gate electrode connected to the first scan line.
In an embodiment, the pixel may further include a third transistor including a first electrode connected to the second electrode of the first transistor, a second electrode connected to the gate electrode of the first transistor, and a gate electrode connected to a third scan line among the plurality of scan lines, a fourth transistor including a first electrode connected to the gate electrode of the first transistor, a second electrode connected to a second initialization voltage line, and a gate electrode connected to a fourth scan line among the plurality of scan lines, a fifth transistor including a first electrode connected to a voltage line, a second electrode connected to the first electrode of the first transistor, and a gate electrode for receiving a light-emitting control signal, a sixth transistor including a first electrode connected to the second electrode of the first transistor, a second electrode connected to the first electrode of the light-emitting diode, and a gate electrode for receiving the light-emitting control signal, and a capacitor including a first terminal connected to the voltage line and a second terminal connected to the gate electrode of the first transistor.
In an embodiment, at least one of the first transistor, the second transistor, the third transistor, the fourth transistor, the fifth transistor, the sixth transistor, the initialization transistor, and the switching transistor may be an N-type transistor, and remaining transistors of the first transistor, the second transistor, the third transistor, the fourth transistor, the fifth transistor, the sixth transistor, the initialization transistor, and the switching transistor may be P-type transistors.
In an embodiment, each of a second scan signal, a third scan signal, and a fourth scan signal among the plurality of scan signals, which are respectively provided to the second scan line, the third scan line, and the fourth scan line, may be at an inactive level during the blank period.
In an embodiment, the second scan signal provided to the second scan line is at an active level during one horizontal period in the active period. The predetermined initialization time duration of the first scan signal provided to the first scan line during the blank period may be longer than the one horizontal period.
The above and other objects and features of the invention will become apparent by describing in detail embodiments thereof with reference to the accompanying drawings.
In the specification, the expression that a first component (or region, layer, part, etc.) is “on”, “connected with”, or “coupled with” a second component means that the first component is directly on, connected with, or coupled with the second component or means that a third component is interposed therebetween.
Like reference numerals refer to like components. Also, in drawings, the thickness, ratio, and dimension of components may be exaggerated for effectiveness of description of technical contents. The term “and/or” includes one or more combinations of the associated listed items.
The terms “first”, “second”, etc. are used to describe various components, but the components are not limited by the terms. The terms are used only to differentiate one component from another component. For example, a first component may be named as a second component, and vice versa, without departing from the spirit or scope of the invention. A singular form, unless otherwise stated, includes a plural form.
Also, the terms “under”, “beneath”, “on”, “above”, etc. are used to describe a relationship between components illustrated in a drawing. The terms are relative and are described with reference to a direction indicated in the drawing.
It will be understood that the terms “include”, “comprise”, “have”, etc. specify the presence of features, numbers, steps, operations, elements, or components, described in the specification, or a combination thereof, not precluding the presence or additional possibility of one or more other features, numbers, steps, operations, elements, or components or a combination thereof.
“About” or “approximately” as used herein is inclusive of the stated value and means within an acceptable range of deviation for the particular value as determined by one of ordinary skill in the art, considering the measurement in question and the error associated with measurement of the particular quantity (i.e., the limitations of the measurement system). The term “about” can mean within one or more standard deviations, or within ±30 percent (%), 20%, 10%, or 5% of the stated value, for example.
Unless otherwise defined, all terms (including technical terms and scientific terms) used in this specification have the same meaning as commonly understood by those skilled in the art to which the disclosure belongs. Furthermore, terms such as terms defined in the dictionaries commonly used should be interpreted as having a meaning consistent with their meaning in the context of the related technology, and should not be interpreted in ideal or overly formal meanings unless explicitly defined herein.
Hereinafter, embodiments of the invention will be described with reference to accompanying drawings.
Referring to
The display device DD includes a display panel DP, a driving controller 100, a data driving circuit 200, and a voltage generator 300.
The driving controller 100 receives an image signal RGB and a control signal CTRL. The driving controller 100 generates image data signal DATA by converting a data format of the image signal RGB so as to be suitable for the interface specification of the data driving circuit 200. The driving controller 100 outputs a scan control signal SCS, a data control signal DCS, and a light-emitting driving signal ECS.
The data driving circuit 200 receives the data control signal DCS and the image data signal DATA from the driving controller 100. The data driving circuit 200 converts the image data signal DATA into data signals and then outputs the data signals to a plurality of data lines DL1 to DLm (m is a natural number greater than zero) to be described later. The data signals are analog voltages corresponding to grayscale values of the image data signal DATA.
The voltage generator 300 generates voltages necessary to operate the display panel DP. In an embodiment, the voltage generator 300 generates a first driving voltage ELVDD, a second driving voltage ELVSS, a first initialization voltage VINT1, a second initialization voltage VINT2, and a bias voltage VOBS.
The display panel DP includes scan lines GIL1 to GILn (n is a natural number greater than zero), GCL1 to GCLn, GWL1 to GWLn, and GBL1 to GBLn, light-emitting control lines EML1 to EMLn, the data lines DL1 to DLm and pixels PX. The display panel DP may further include a scan driving circuit SD and a light-emitting driving circuit EDC.
The display panel DP may be divided into a display area DA and a non-display area NDA surrounding the display area DA. The pixels PX may be disposed in the display area DA. The scan driving circuit SD and the light-emitting driving circuit EDC may be disposed in the non-display area NDA.
In an embodiment, the scan driving circuit SD may be arranged on a first side (e.g., left side in
The light-emitting driving circuit EDC is arranged on a second side (e.g., right side in
The scan lines GIL1 to GILn, GCL1 to GCLn, GWL1 to GWLn, and GBL1 to GBLn and the light-emitting control lines EML1 to EMLn are arranged to be spaced from one another in a second direction DR2. The data lines DL1 to DLm extend from the data driving circuit 200 in a direction opposite to the second direction DR2, and are arranged spaced from one another in the first direction DR1.
In the embodiment shown in
The plurality of pixels PX is electrically connected to corresponding scan lines among the scan lines GIL1 to GILn, GCL1 to GCLn, GWL1 to GWLn, and GBL1 to GBLn, corresponding light-emitting control lines among the light-emitting control lines EML1 to EMLn, and corresponding data lines among the data lines DL1 to DLm. Each of the plurality of pixels PX may be electrically connected to four scan lines and one light-emitting control line. In an embodiment, as shown in
Each of the plurality of pixels PX includes a light-emitting diode ED (refer to
Each of the plurality of pixels PX receives the first driving voltage ELVDD, the second driving voltage ELVSS, the first initialization voltage VINT1, and the second initialization voltage VINT2 from the voltage generator 300.
The scan driving circuit SD receives the scan control signal SCS from the driving controller 100. The scan driving circuit SD may output scan signals to the scan lines GIL1 to GILn, GCL1 to GCLn, GWL1 to GWLn, and GBL1 to GBLn in response to the scan control signal SCS. The circuit configuration and operation of the scan driving circuit SD will be described in detail later.
The driving controller 100 in an embodiment of the invention may determine an operating frequency and may control the data driving circuit 200, the scan driving circuit SD, and the light-emitting driving circuit EDC depending on the determined operating frequency. The driving controller 100 in an embodiment may variously change an operating frequency such as about 240 hertz (Hz), about 120 Hz, about 60 Hz, about 10 Hz, or the like.
Each of the plurality of pixels PX shown in
The pixel PXij of the display device DD in an embodiment includes first to eighth transistors T1, T2, T3, T4, T5, T6, T7, and T8, a capacitor Cst, and at least one light-emitting diode ED. In an embodiment, it is described that the one pixel PXij includes one light-emitting diode ED, but the invention is not limited thereto.
In an embodiment, the third and fourth transistors T3 and T4 among the first to eighth transistors T1 to T8 are N-type transistors using an oxide semiconductor as a semiconductor layer. Each of the first, second, fifth, sixth, seventh, and eighth transistors T1, T2, T5, T6, T7, and T8 is a P-type transistor having a low-temperature polycrystalline silicon (“LTPS”) semiconductor layer. However, the invention is not limited thereto, and all of the first to eighth transistors T1 to T8 may be P-type transistors or N-type transistors. In an embodiment, at least one of the first to eighth transistors T1 to T8 may be an N-type transistor, and the remaining transistors may be P-type transistors. Moreover, the circuit configuration of a pixel PX in an embodiment of the invention is not limited to
Referring to
The first transistor T1 includes a first electrode connected to the first voltage line VL1 via the fifth transistor T5, a second electrode electrically connected to an anode of the light-emitting diode ED via the sixth transistor T6, and a gate electrode connected to one end of the capacitor Cst. The first transistor T1 may receive the data signal Di transmitted by the data line DLi depending on the switching operation of the second transistor T2 and then may supply a driving current Id to the light-emitting diode ED.
The second transistor T2 includes a first electrode connected to the data line DLi, a second electrode connected to the first electrode of the first transistor T1, and a gate electrode connected to the scan line GWLj. The second transistor T2 may be turned on depending on the scan signal GWj received through the scan line GWLj and then may transmit the data signal Di transmitted from the data line DLi to the first electrode of the first transistor T1.
The third transistor T3 includes a first electrode connected to the gate electrode of the first transistor T1, a second electrode connected to the second electrode of the first transistor T1, and a gate electrode connected to the scan line GCLj. The third transistor T3 may be turned on depending on the scan signal GCj received through the scan line GCLj, and thus, the gate electrode and the second electrode of the first transistor T1 may be connected, that is, the first transistor T1 may be diode-connected.
The fourth transistor T4 includes a first electrode connected to the gate electrode of the first transistor T1, a second electrode connected to the third voltage line (also referred to as a second initialization voltage line) VL3 through which the first initialization voltage VINT′ is supplied, and a gate electrode connected to the scan line GILj. The fourth transistor T4 may be turned on depending on the scan signal GIj received through the scan line GILj and then may perform an initialization operation of initializing a voltage of the gate electrode of the first transistor T1 by supplying the first initialization voltage VINT′ to the gate electrode of the first transistor T1.
The fifth transistor T5 includes a first electrode connected to the first voltage line VL1, a second electrode connected to the first electrode of the first transistor T1, and a gate electrode connected to the light-emitting control line EMLj.
The sixth transistor T6 includes a first electrode connected to the second electrode of the first transistor T1, a second electrode connected to the anode of the light-emitting diode ED, and a gate electrode connected to the light-emitting control line EMLj.
The fifth transistor T5 and sixth transistor T6 are simultaneously turned on depending on the light-emitting control signal EMj received through the light-emitting control line EMLj. Accordingly, a current path may be defined between the first voltage line VL1 and the light-emitting diode ED through the fifth transistor T5, the first transistor T1, and the sixth transistor T6.
The seventh transistor T7 includes a first electrode connected to the anode of the light-emitting diode ED, a second electrode connected to the fourth voltage line (also referred to as a first initialization voltage line) VL4, and a gate electrode connected to the scan line GBLj. The seventh transistor T7 is turned on depending on the scan signal GBj received through the scan line GBLj, and bypasses a bypass current Ibp of the anode of the light-emitting diode ED to the fourth voltage line VL4. The seventh transistor T7 may be an initialization transistor that initializes the anode of the light-emitting diode ED in response to the scan signal GBj. The second initialization voltage VINT2 supplied to the fourth voltage line VL4 may be set to a voltage level suitable for initializing the anode of the light-emitting diode ED.
The eighth transistor T8 (also referred to as a switching transistor) includes a first electrode connected to a fifth voltage line VL5 (also referred to as a bias voltage line), a second electrode connected to the first electrode of the first transistor T1, and a gate electrode connected to the scan line GBLj. The eighth transistor T8 may transmit the bias voltage VOBS to the first electrode of the first transistor T1 in response to the scan signal GBj received through the scan line GBLj. The bias voltage VOBS may be set to a voltage level (e.g., about 4 volts (V) to about 5V) suitable for compensating for the hysteresis characteristic of the first transistor T1.
A first terminal of the capacitor Cst is connected to the first voltage line VL1, and a second terminal of the capacitor Cst is connected to the gate electrode of the first transistor T1. The cathode of the light-emitting diode ED may be connected to the second voltage line VL2 that transmits the second driving voltage ELVSS.
Referring to
The driving controller 100 provides the scan control signal SCS to the scan driving circuit SD. The scan control signal SCS may include information about the operating frequency of the display device DD. The scan driving circuit SD may output the scan signals GI1 to GIn, GC1 to GCn, GW1 to GWn, and GB1 to GBn corresponding to operating frequencies in response to the scan control signal SCS.
Referring to
Only the scan signals GI1 to GIn and the scan signals GW1 to GWn are shown in
Referring to
The scan driving circuit SD maintains the scan signals GI1 to GIn and the scan signals GW1 to GWn at inactive levels during the blank period BP. The blank period BP may be also referred to as a “self-scan period”.
Although not shown in
In the embodiment shown in
Referring to
The frame F31 may include one active period AP and three blank periods BP. During the active period AP, the scan driving circuit SD sequentially activates the scan signals GI1 to GIn, the scan signals GC1 to GCn, the scan signals GW1 to GWn, the scan signals GB1 to GBn, and the light-emitting control signals EM1 to EMn in a preset order.
The scan driving circuit SD maintains the scan signals GI1 to GIn and the scan signals GW1 to GWn at inactive levels during each of the three blank periods BP.
Although not shown in
Referring to
When the scan signal GBj having a low level is input through the scan line GBLj, the seventh transistor T7 is turned on. The anode of the light-emitting diode ED is electrically connected to the fourth voltage line VL4 by the seventh transistor T7. A part of the driving current Id may be drained through the seventh transistor T7 as the bypass current Ibp.
Next, the scan signal GIj having a high level is provided through the scan line GILj. When the fourth transistor T4 is turned on in response to the scan signal GIj having a high level, the first initialization voltage VINT1 is supplied to the gate electrode of the first transistor T1 through the fourth transistor T4 so as to initialize the first transistor T1.
When the scan signal GCj having a high level is supplied again through the scan line GCLj, the third transistor T3 is turned on. The first transistor T1 is diode-connected by the third transistor T3 turned on and is forward-biased. At this time, the second transistor T2 is turned on by the scan signal GWj having a low level. In the case, a compensation voltage, which is obtained by reducing the voltage of the data signal Di supplied from the data line DLi by a threshold voltage of the first transistor T1, is applied to the gate electrode of the first transistor T1. That is, a gate voltage applied to the gate electrode of the first transistor T1 may be a compensation voltage.
As the first driving voltage ELVDD and the compensation voltage are respectively applied to opposite ends of the capacitor Cst, a charge corresponding to a difference in voltage between the opposite ends of the capacitor Cst may be stored in the capacitor Cst.
In the meantime, when the scan signal GBj having the low level is transmitted through the scan line GBLj, the seventh transistor T7 is turned on. As the seventh transistor T7 is turned on, the voltage of the anode of the light-emitting diode ED may be initialized to the second initialization voltage VINT2.
When the light-emitting diode ED emits light under the condition that a minimum current of the first transistor T1 flows as a driving current for the purpose of displaying a black image, the black image may not be normally displayed. Accordingly, the seventh transistor T7 in the pixel PXij in an embodiment of the invention may drain (or disperse) a part of the minimum current of the first transistor T1 to a current path, which is different from a current path to the light-emitting diode ED, as the bypass current Ibp. Herein, the minimum current of the first transistor T1 means a current flowing under the condition that a gate-source voltage of the first transistor T1 is smaller than the threshold voltage, that is, the first transistor T1 is turned off. As a minimum driving current (e.g., a current of about 10 picoamperes (pA) or less) is transmitted to the light-emitting diode ED, with the first transistor T1 turned off, an image of black luminance is expressed. When the minimum driving current displaying a black image flows, the influence of a bypass transfer of the bypass current Ibp may be great. When a large driving current displaying an image such as a normal image or a white image flows, there may be almost no influence of the bypass current Ibp. Accordingly, when a driving current displaying a black image flows, a light-emitting current Ted of the light-emitting diode ED, which corresponds to a result of subtracting the bypass current Ibp drained through the seventh transistor T7 from the driving current Id, may have a minimum current amount to such an extent as to accurately express a black image. Accordingly, a contrast ratio may be improved by implementing an accurate black luminance image by the seventh transistor T7. In an embodiment, the bypass signal is the scan signal GBj having a low level, but is not necessarily limited thereto.
Next, the light-emitting control signal EMj supplied from the light-emitting control line EMLj is changed from a high level to a low level. The fifth transistor T5 and the sixth transistor T6 are turned on by the light-emitting control signal EMj having a low level. In this case, the driving current Id is generated depending on a voltage difference between the gate voltage of the gate electrode of the first transistor T1 and the first driving voltage ELVDD and is supplied to the light-emitting diode ED through the sixth transistor T6, and the light-emitting current led flows through the light-emitting diode ED.
During the blank period BP, each of the scan signals GIj, GCj, and GWj may be maintained at an inactive level. In an embodiment, during the blank period BP, the scan signals GIj and GCj may have a low level, and the scan signal GWj may have a high level, for example.
In the blank period BP, the scan signal GBj has an active level (e.g., a low level) during a preset initialization time duration It. While the scan signal GBj is at an active level, each of the seventh transistor T7 and the eighth transistor T8 are turned on. As the seventh transistor T7 is turned on, the anode of the light-emitting diode ED may be initialized with the second initialization voltage VINT2. As the eighth transistor T8 is turned on, the first electrode of the first transistor T1 may be initialized with the bias voltage VOBS.
Assuming that a time duration in which the scan signal GWj is maintained at an active level (e.g., a low level) during the active period AP is one horizontal period (1H), the initialization time duration It, in which the scan signal GBj is maintained at a low level during the blank period BP, may be several to several tens of horizontal periods.
Referring to
In
When the anode of the light-emitting diode ED is initialized during the blank period BP, a change in luminance during the active period AP is similar to a change in luminance during the blank period BP. However, when the anode of the light-emitting diode ED is not initialized during the blank period BP, the change in luminance during the active period AP is different from the change in luminance during the blank period BP.
As shown in
As shown in
When the luminance of the display device DD varies depending on the operating frequency F even though the same image is displayed, a user perceives that flicker occurs.
Moreover, the luminance of the display device DD may be affected by the voltage level of the second initialization voltage VINT2 and the initialization time duration It in which the scan signal GBj is maintained at an active level during the blank period BP.
Specifically,
In
As may be seen from
It is proper that the luminance ratio VRR of the luminance of the display device DD in a case that an operating frequency F is the second frequency to the luminance of the display device DD in a case that the operating frequency F is the first frequency is between about +1.5% and about −1.5%.
That is, it is proper that the initialization time duration in which the luminance ratio VRR satisfies a criterion of a range VRR_S from about +1.5% to about −1.5% is set to the initialization time duration It of the scan signal GBj.
Specifically,
In
It is proper that the chromaticity deviation DUV of the display device DD is not greater than about 0.004.
That is, it is proper that the initialization time duration in which the chromaticity deviation DUV satisfies a criterion of a range DUV_S from about 0 to about 0.004 is set to the initialization time duration It of the scan signal GBj.
Furthermore, to set the initialization time duration It of the scan signal GBj to an optimal value, it is necessary to search for the initialization time duration It of the scan signal GBj in which the luminance ratio VRR shown in
In detail, it is necessary to search for the initialization time duration It of the scan signal GBj suitable for a luminance characteristic of the display panel DP when the luminance characteristic of the display device DD are different for each display panel DP.
The luminance characteristic DBV means the light emission luminance of the display panel DP (refer to
As described In
As shown in
As described in
Referring to
As shown in
Furthermore, it is necessary to search for corresponding points (a21, a22, a23) having the same horizontal period (H) and the same voltage difference VAR as the points (a11, a12, a13) at each of which the chromaticity deviation DUV is closest to 0.
In the embodiment shown in
The voltage difference VAR may have a relationship of “d1>d3>d2”. In this case, the initialization time duration It of the scan signal GBj may be set to twenty four horizontal periods (24H) having the smallest voltage difference VAR.
Besides, the second initialization voltage VINT2 may be set based on a voltage difference VAR between points (a12, a22) and points (b12, b22) when the initialization time duration It is twenty four horizontal periods (24H). In the embodiment shown in
The luminance characteristic DBV means the light emission luminance of the display panel DP (refer to
As described In
As shown in
As described in
As illustrated in
Referring to
Furthermore, it is necessary to search for corresponding points (a41, a42, a43) having the same horizontal period (H) and the same voltage difference VAR as the points (a31, a32, a33) at each of which the chromaticity deviation DUV is closest to 0.
In the embodiment shown in
The voltage difference VAR may have a relationship of “d4>d5>d6”. In this case, the initialization time duration It of the scan signal GBj may be set to twenty eight horizontal periods (28H) having the smallest voltage difference VAR.
Besides, the second initialization voltage VINT2 may be set based on a voltage difference VAR between points (a33, a43) and points (b33, b43) when the initialization time duration It is twenty eight horizontal periods (28H). In the embodiment shown in
The timing diagram shown in
Referring to
Referring to
That is, the initialization time duration It in which the scan signal GBj is maintained at an active level (e.g., a low level) during the blank period BP may be determined depending on the luminance characteristic DBV, the luminance ratio VRR, and the chromaticity deviation DUV of the display panel DP (refer to
In
When the initialization time duration It of the scan signal GBj is twenty four horizontal periods (24H), a display device DD having the luminance characteristic DBV of 100 may satisfy a criterion that the luminance ratio VRR has the range VRR_S from about +1.5% to about −1.5% at all grayscale levels (15G, 31G, 63G, 255G).
When the initialization time duration It of the scan signal GBj is twenty eight horizontal periods (28H), a display device DD having the luminance characteristic DBV of 4 may satisfy a criterion that the luminance ratio VRR has the range VRR_S from about +1.5% to about −1.5% at all grayscale levels (63G, 255G).
In
When the initialization time duration It of the scan signal GBj is twenty four horizontal periods (24H), a display device DD having the luminance characteristic DBV of 100 has a lower flicker index than twenty horizontal periods (20H) and twenty eight horizontal periods (28H) at each of grayscale levels (15G, 31G, 63G).
When the initialization time duration It of the scan signal GBj is twenty eight horizontal periods (28H), a display device DD having the luminance characteristic DBV of 4 has a lower flicker index than twenty horizontal periods (20H) and twenty four horizontal periods (24H) at a grayscale level (255G).
Although described above with reference to a preferred embodiment of the invention, it will be understood by those skilled in the art that various modifications and changes may be made in the invention without departing from the spirit and scope of the invention as set forth in the appended claims. Accordingly, the technical scope of the invention should not be limited to the contents described in the detailed description of the specification, but should be defined by the claims.
A display device having such a configuration periodically initializes the voltage of an anode of a light-emitting diode at a low operating frequency. Accordingly, a difference in luminance of a display image may be prevented from being perceived by a user at a low operating frequency and a high operating frequency.
In detail, the quality of the display image may be improved by optimizing a time duration to initialize a voltage of the anode of the light-emitting diode at a low operating frequency depending on a feature of a display panel.
While the invention has been described with reference to embodiments thereof, it will be apparent to those of ordinary skill in the art that various changes and modifications may be made thereto without departing from the spirit and scope of the invention as set forth in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2021-0088074 | Jul 2021 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
10916198 | Lin et al. | Feb 2021 | B2 |
10930724 | Ka et al. | Feb 2021 | B2 |
20200226978 | Lin | Jul 2020 | A1 |
20210241687 | Xie | Aug 2021 | A1 |
Number | Date | Country |
---|---|---|
1020180004369 | Jan 2018 | KR |
1020200087711 | Jul 2020 | KR |
Number | Date | Country | |
---|---|---|---|
20230005431 A1 | Jan 2023 | US |