This application claims priority from Japanese Application No. 2014-101755, filed on May 15, 2014, the contents of which are incorporated by reference herein in its entirety.
1. Technical Field
The present invention relates to a display device.
2. Description of the Related Art
In recent years, demand has been increased for display devices for a mobile apparatus and the like such as a cellular telephone and electronic paper. In such display devices, one pixel includes a plurality of sub-pixels that output different colors. Such display devices allow one pixel to display various colors by switching ON/OFF the display of the sub-pixels. Display characteristics such as resolution and luminance have been improved year after year in such display devices. However, an aperture ratio is reduced as the resolution increases, so that luminance of a backlight needs to increase to achieve high luminance, which leads to increase in power consumption of the backlight. To solve this problem, techniques have been developed for adding a white pixel serving as a fourth sub-pixel to red, green, and blue sub-pixels known in the art (for example, refer to Japanese Patent Application Laid-open Publication No. 2012-108518). According to these techniques, the white pixel enhances the luminance to lower a current value of the backlight and reduce the power consumption.
In a case in which the current value of the backlight is not lowered, the luminance enhanced by the white pixel can be utilized to improve visibility under outdoor external light (for example, refer to Japanese Patent Application Laid-open Publication No. 2012-22217 (JP-A-2012-22217)). According to the technique of JP-A-2012-22217, an expansion coefficient for expanding an input signal is varied according to brightness of the input signal. Accordingly, the expansion coefficient increases as the brightness decreases, that is, as the gradation level decreases, and the expansion coefficient decreases as the brightness increases, that is, as the gradation level increases. As a result, the luminance on the low gradation side increases, and the visibility of the display device in the outdoors is improved.
The display device is desired to be lower in power consumption, or desired to be improved in visibility in the outdoors.
For the foregoing reasons, there is a need for a display device whose power consumption is suppressed or whose visibility in outdoors is improved.
According to an aspect, a display device includes: a display unit including pixels arranged in a matrix therein, each of the pixels including a first sub-pixel that displays a first color component, a second sub-pixel that displays a second color component, a third sub-pixel that displays a third color component, and a fourth sub-pixel that displays a fourth color component different from the first sub-pixel, the second sub-pixel, and the third sub-pixel; and a signal processing unit that receives input signals that are capable of being displayed with the first sub-pixel, the second sub-pixel, and the third sub-pixel, and calculates output signals to the first sub-pixel, the second sub-pixel, the third sub-pixel, and the fourth sub-pixel. The signal processing unit generates converted input signals with changed saturation among the input signals. The signal processing unit calculates output signals to the first sub-pixel, the second sub-pixel, and the third sub-pixel based on the converted input signals and an amount of increase in brightness caused by the fourth sub-pixel.
The following describes a preferred embodiment in detail with reference to the drawings. The present invention is not limited to the embodiment described below. Components described below include a component that is easily conceivable by those skilled in the art and substantially the same component. The components described below can be appropriately combined. The disclosure is merely an example, and the present invention naturally encompasses an appropriate modification maintaining the gist of the invention that is easily conceivable by those skilled in the art. To further clarify the description, a width, a thickness, a shape, and the like of each component may be schematically illustrated in the drawings as compared with an actual aspect. However, this is merely an example and interpretation of the invention is not limited thereto. The same element as that described in the drawing that has already been discussed is denoted by the same reference numeral through the description and the drawings, and detailed description thereof will not be repeated in some cases.
As illustrated in
The signal processing unit 20 is a calculation processing unit that controls operations of the image display panel 30 and the surface light source device 50. The signal processing unit 20 is coupled to the image display panel drive circuit 40 for driving the image display panel 30, and the surface light source device control circuit 60 for driving the surface light source device 50. The signal processing unit 20 processes the input signal input from the outside to generate the output signal and a surface light source device control signal. That is, the signal processing unit 20 converts an input value (input signal) of an input signal in an input HSV color space into an extended value (output signal) in an extended HSV color space extended with a first color, a second color, a third color, and a fourth color components to be generated, and outputs the generated output signal to the image display panel 30. The signal processing unit 20 then outputs the generated output signal to the image display panel drive circuit 40 and outputs the generated surface light source device control signal to the surface light source device control circuit 60.
As illustrated in
Each of the pixels 48 includes a first sub-pixel 49R, a second sub-pixel 49G, a third sub-pixel 49B, and a fourth sub-pixel 49W. The first sub-pixel 49R displays a first color component (for example, red as a first primary color). The second sub-pixel 49G displays a second color component (for example, green as a second primary color). The third sub-pixel 49B displays a third color component (for example, blue as a third primary color). The fourth sub-pixel 49W displays a fourth color component (for example, white). In the following description, the first sub-pixel 49R, the second sub-pixel 49G, the third sub-pixel 49B, and the fourth sub-pixel 49W may be collectively referred to as a sub-pixel 49 when they are not required to be distinguished from each other. The image output unit 12 described above outputs RGB data that can be displayed with the first color component, the second color component, and the third color component in the pixel 48 as the input signal to the signal processing unit 20.
More specifically, the display device 10 is a transmissive color liquid crystal display device. The image display panel 30 is a color liquid crystal display panel in which a first color filter that allows the first primary color to pass through is arranged between the first sub-pixel 49R and an image observer, a second color filter that allows the second primary color to pass through is arranged between the second sub-pixel 49G and the image observer, and a third color filter that allows the third primary color to pass through is arranged between the third sub-pixel 49B and the image observer. In the image display panel 30, there is no color filter between the fourth sub-pixel 49W and the image observer. A transparent resin layer may be provided for the fourth sub-pixel 49W instead of the color filter. In this way, by arranging the transparent resin layer, the image display panel 30 can suppress occurrence of a large level difference in the fourth sub-pixel 49W, otherwise the large level difference occurs because of arranging no color filter for the fourth sub-pixel 49W. While the embodiment has been described with the example in which the fourth sub-pixel displays white, the embodiment is not limited to this example. Another color such as yellow may be displayed instead of white. To display, for example, yellow with the fourth sub-pixel, a color filter transmitting yellow may be arranged.
In the example illustrated in
Generally, the arrangement similar to the stripe array is preferable for displaying data or character strings on a personal computer and the like. In contrast, the arrangement similar to the mosaic array is preferable for displaying a natural image on a video camera recorder, a digital still camera, or the like.
The image display panel drive circuit 40 includes a signal output circuit 41 and a scanning circuit 42. In the image display panel drive circuit 40, the signal output circuit 41 holds video signals to be sequentially output to the image display panel 30. The signal output circuit 41 is electrically coupled to the image display panel 30 via wiring DTL. In the image display panel drive circuit 40, the scanning circuit 42 controls ON/OFF of a switching element (for example, a thin film transistor (TFT)) for controlling an operation of the sub-pixel (light transmittance) in the image display panel 30. The scanning circuit 42 is electrically coupled to the image display panel 30 via wiring SCL.
The surface light source device 50 is arranged on a back surface of the image display panel 30, and illuminates the image display panel 30 by irradiating the image display panel 30 with light. The surface light source device 50 irradiates the entire surface of the image display panel 30 with light to illuminate the image display panel 30. The surface light source device control circuit 60 controls irradiation light quantity and the like of the light output from the surface light source device 50. Specifically, the surface light source device control circuit 60 adjusts a value or a duty ratio of a voltage to be supplied to the surface light source device 50 based on the surface light source device control signal output from the signal processing unit 20 to control the light quantity (light intensity) of the light with which the image display panel 30 is irradiated. The following describes a processing operation executed by the display device 10, more specifically, the signal processing unit 20.
The data conversion unit 24 determines output intermediate signals Srgbw of the sub-pixels 49 in all the pixels 48 based on the input values from the saturation conversion unit 22 and the information Sα on the expansion coefficient α, and outputs the output intermediate signals Srgbw. The reverse gamma conversion unit 25 supplies output signals Sout that have been subjected to reverse gamma conversion based on the output intermediate signals Srgbw to the image display panel drive circuit 40.
The saturation conversion unit 22 includes an HSV conversion unit 221, a saturation conversion processing unit 222, a saturation conversion setting unit 223, and an RGB conversion unit 224. In
The saturation conversion processing unit 222 multiplies a gain value Sgain by the saturation S based on a set value set by the saturation conversion setting unit 223. The RGB conversion unit 224 converts the hue H, the brightness V(S), and the saturation S that has been processed by the saturation conversion processing unit 222 into a converted input signal Ra of the first sub-pixel 49R the signal value of which is x1-(p, q), a converted input signal Ga of the second sub-pixel 49G the signal value of which is x2-(p, q), and a converted input signal Ba of the third sub-pixel 49B the signal value of which is x3-(p, q).
The data conversion unit 24 of the signal processing unit 20 processes the input signals thereto, that is, the converted input signal Ra of the first sub-pixel 49R the signal value of which is x1-(p, q), the converted input signal Ga of the second sub-pixel 49G the signal value of which is x2-(p, q), and the converted input signal Ba of the third sub-pixel 49B the signal value of which is x3-(p, q). The data conversion unit 24 performs the processing to generate an output signal of the first sub-pixel for determining display gradation of the first sub-pixel 49R (signal value X1-(p, q)), an output signal of the second sub-pixel for determining the display gradation of the second sub-pixel 49G (signal value X2-(p, q)), an output signal of the third sub-pixel for determining the display gradation of the third sub-pixel 49B (signal value X3-(p, q)), and an output signal of the fourth sub-pixel for determining the display gradation of the fourth sub-pixel 49W (signal value X4-(p, q)). The data conversion unit 24 outputs the generated output signals of the first to fourth sub-pixels to the image display panel drive circuit 40.
In the display device 10, the pixel 48 includes the fourth sub-pixel 49W for outputting the fourth color component (for example, white) to widen a dynamic range of the brightness in the HSV color space (extended HSV color space) as illustrated in
The signal processing unit 20 stores the maximum value Vmax(S) of the brightness using the saturation S as a variable in the HSV color space expanded by adding the fourth color component (for example, white). That is, the signal processing unit 20 stores the maximum value Vmax(S) of the brightness for respective coordinates (value) of the saturation S and the hue H regarding the three-dimensional shape of the HSV color space illustrated in
Next, the signal processing unit 20 calculates the output signal (signal value X1-(p, q)) of the first sub-pixel 49R based on at least the converted input signal Ra (signal value x1-(p, q)) of the first sub-pixel 49R and an expansion coefficient α, and outputs the result to the first sub-pixel 49R. The signal processing unit 20 also calculates the output signal (signal value X2-(p, q)) of the second sub-pixel 49G based on at least the converted input signal Ga (signal value x2-(p, q)) of the second sub-pixel 49G and the expansion coefficient α, and outputs the result to the second sub-pixel 49G. The signal processing unit 20 also calculates the output signal (signal value X3-(p, q)) of the third sub-pixel 49B based on at least the converted input signal Ba (signal value x3-(p, q)) of the third sub-pixel 49B and the expansion coefficient α, and outputs the result to the third sub-pixel 49B. The signal processing unit 20 further calculates the output signal (signal value X4-(p, q)) of the fourth sub-pixel 49W based on the converted input signal Ra (signal value x1-(p, q)) of the first sub-pixel 49R, the converted input signal Ga (signal value x2-(p, q)) of the second sub-pixel 49G, and the converted input signal Ba (signal value x3-(p, q)) of the third sub-pixel 49B, and outputs the result to the fourth sub-pixel 49W.
Specifically, the signal processing unit 20 calculates the output signal of the first sub-pixel 49R based on the expansion coefficient α of the first sub-pixel 49R and the output signal of the fourth sub-pixel 49W, calculates the output signal of the second sub-pixel 49G based on the expansion coefficient α of the second sub-pixel 49G and the output signal of the fourth sub-pixel 49W, and calculates the output signal of the third sub-pixel 49B based on the expansion coefficient α of the third sub-pixel 49B and the output signal of the fourth sub-pixel 49W.
That is, assuming that χ is a constant depending on the display device 10, the signal processing unit 20 obtains, from the following expressions (1) to (3), the signal value X1-(p, q) as the output signal of the first sub-pixel 49R, the signal value X2-(p, q) as the output signal of the second sub-pixel 49G, and the signal value x3-(p, q) as the output signal of the third sub-pixel 49B, each of those signal values being output to the (p, q)-th pixel (or a group of the first sub-pixel 49R, the second sub-pixel 49G, and the third sub-pixel 49B).
X1-(p,q)=α·x1-(p,q)−χ·X4-(p,q) (1)
X2-(p,q)=α·x2-(p,q)−χ·X4-(p,q) (2)
X3-(p,q)=α·x3-(p,q)−χ·X4-(p,q) (3)
The signal processing unit 20 obtains the maximum value Vmax(S) of the brightness using the saturation S as a variable in the HSV color space expanded by adding the fourth color, obtains the saturation S and the brightness V(S) in the pixels based on the input signal values of the sub-pixels in the pixels, and determines the expansion coefficient α so that a ratio of a pixel in which an expanded value of the brightness obtained by multiplying the brightness V(S) by the expansion coefficient α exceeds the maximum value Vmax(S) to all the pixels is equal to or smaller than a limit value β (Limit value). The limit value β is a value (ratio) of the upper limit of the ratio of a width exceeding the maximum value of the brightness in the extended HSV color space to the maximum value in combinations of values of the hue H and the saturation S.
As described above, the saturation S and the brightness V(S) are expressed as follows: S=(Max−Min)/Max, and V(S)=Max. The saturation S may take values of 0 to 1, the brightness V(S) may take values of 0 to (2n−1), and n is a display gradation bit number. Max is the maximum value among the input signal values of three sub-pixels, that is, the input signal value of the first sub-pixel, the input signal value of the second sub-pixel, and the input signal value of the third sub-pixel, each of those signal values being input to the pixel. Min is the minimum value among the input signal values of three sub-pixels, that is, the input signal value of the first sub-pixel, the input signal value of the second sub-pixel, and the input signal value of the third sub-pixel, each of those signal values being input to the pixel. A hue H is represented in a range of 0° to 360° as illustrated in
According to the embodiment, the signal value X4-(p, q) can be obtained based on a product of Min(p, q) and the expansion coefficient α. Specifically, the signal value X4-(p, q) can be obtained based on the following expression (4). In the expression (4), the product of Min(p, q) and the expansion coefficient α is divided by χ. However, the embodiment is not limited thereto. χ will be described later. The expansion coefficient α is determined for each image display frame.
X4-(p,q)=Min(p,q)·α/χ (4)
Generally, in the (p, q)-th pixel, the saturation S(p, q) and the brightness V(S)(p, q) in the cylindrical HSV color space can be obtained from the following expressions (5) and (6) based on the input signal (signal value x1-(p, q)) of the first sub-pixel 49R, the input signal (signal value x2-(p, q)) of the second sub-pixel 49G, and the input signal (signal value x3-(p, q)) of the third sub-pixel 49B.
S(p,q)=(Max(p,q)−Min(p,q))/Max(p,q) (5)
V(S)(p,q)=Max(p,q) (6)
In the above expressions, Max(p, q) represents the maximum value among the input signal values of three sub-pixels 49 (x1-(p, q), x2-(p, q), and x3-(p, q)), and Min(p, q) represents the minimum value among the input signal values of three sub-pixels 49 (x1-(p, q), x2-(p, q), and x3-(p, q)). In the embodiment, n is assumed to be 8. That is, the display gradation bit number is assumed to be 8 bits (a value of the display gradation is assumed to be 256 gradations, that is, 0 to 255).
No color filter is arranged for the fourth sub-pixel 49W that displays white. When a signal having a value corresponding to the maximum signal value of the output signal of the first sub-pixel is input to the first sub-pixel 49R, a signal having a value corresponding to the maximum signal value of the output signal of the second sub-pixel is input to the second sub-pixel 49G, and a signal having a value corresponding to the maximum signal value of the output signal of the third sub-pixel is input to the third sub-pixel 49B, luminance of an aggregate of the first sub-pixel 49R, the second sub-pixel 49G, and the third sub-pixel 49B included in the pixel 48 or a group of pixels 48 is assumed to be BN1-3. When a signal having a value corresponding to the maximum signal value of the output signal of the fourth sub-pixel 49W is input to the fourth sub-pixel 49W included in the pixel 48 or a group of pixels 48, the luminance of the fourth sub-pixel 49W is assumed to be BN4. That is, white (maximum luminance) is displayed by the aggregate of the first sub-pixel 49R, the second sub-pixel 49G, and the third sub-pixel 49B, and the luminance of the white is represented by BN1-3. Assuming that χ is a constant depending on the display device 10, the constant χ is represented by χ=BN4/BN1-3.
Specifically, the luminance BN4 when the input signal having a value of display gradation 255 is assumed to be input to the fourth sub-pixel 49W is 1.5 times the luminance BN1-3 of white when it is assumed that the input signals having values of display gradation such as the signal value x1-(p, q)=255, the signal value x2-(p, q)=255, and the signal value x3-(p, q)=255, are input to the aggregate of the first sub-pixel 49R, the second sub-pixel 49G, and the third sub-pixel 49B. That is, χ is 1.5 in the embodiment.
If the signal value x4-(p, q) is given by the expression (4) above, Vmax(S) can be represented by the following expressions (7) and (8).
When S≦S0,
Vmax(S)=(χ+1)·(2n−1) (7)
When S0<S≦1,
Vmax(S)=(2n−1)·(1/S) (8)
In this case, S0=1/(χ+1) is satisfied.
The thus obtained maximum value Vmax(S) of the brightness using the saturation S as a variable in the HSV color space expanded by adding the fourth color component is stored in the signal processing unit 20 as a kind of look-up table, for example. Alternatively, the signal processing unit 20 obtains the maximum value Vmax(S) of the brightness using the saturation S as a variable in the expanded HSV color space as occasion demands.
Next, the following describes a method of obtaining the signal values X1-(p, q), X2-(p, q), X3-(p, q), and X4-(p, q) as output signals of the (p, q)-th pixel 48 (expansion processing). The following processing is performed to keep a ratio among the luminance of the first primary color displayed by (first sub-pixel 49R+fourth sub-pixel 49W), the luminance of the second primary color displayed by (second sub-pixel 49G+fourth sub-pixel 49W), and the luminance of the third primary color displayed by (third sub-pixel 49B+fourth sub-pixel 49W). The processing is performed to also keep (maintain) color tone. In addition, the processing is performed to keep (maintain) a gradation-luminance characteristic (gamma characteristic, γ characteristic). When all of the input signal values are 0 or smaller values in any one of the pixels 48 or a group of the pixels 48, the expansion coefficient α may be obtained without including such pixel 48 or a group of pixels 48.
First Process
First, the signal processing unit 20 obtains the saturation S and the brightness V(S) in the pixels 48 based on the input signal values of the sub-pixels 49 of the pixels 48. Specifically, S(p, q) and V(S)(p, q) are obtained from the expressions (5) and (6) based on the signal value x1-(p, q) that is the input signal of the first sub-pixel 49R, the signal value x2-(p, q) that is the input signal of the second sub-pixel 49G, and the signal value x3-(p, q) that is the input signal of the third sub-pixel 49B, each of those signal values being input to the (p, q)-th pixel 48. The signal processing unit 20 performs this processing on all of the pixels 48.
Second Process
Next, the signal processing unit 20 obtains the expansion coefficient α(S) based on the Vmax(S)/V(S) obtained in the pixels 48.
α(S)=Vmax(S)/V(S) (9)
Then arranged are values of expansion coefficient α(S) obtained in the pixels (all of P0×Q0 pixels in the embodiment) 48 in ascending order, for example, and it is assumed that the expansion coefficient α(S) corresponding to a range from the minimum value to β×P0×Q0 is the expansion coefficient α among the values of the P0×Q0 expansion coefficients α(S). In this way, the expansion coefficient α can be determined so that a ratio of the pixel in which the expanded value of the brightness obtained by multiplying the brightness V(S) by the expansion coefficient α exceeds the maximum value Vmax(S) to all the pixels is equal to or smaller than a predetermined value (β).
Third Process
Next, the signal processing unit 20 obtains the signal value X4-(p, q) in the (p, q)-th pixel 48 based on at least the signal value x1-(p, q), the signal value x2-(p, q), and the signal value x3-(p, q) of the input signals. In the embodiment, the signal processing unit 20 determines the signal value X4-(p, q) based on Min(p, q), the expansion coefficient α, and the constant χ. More specifically, as described above, the signal processing unit 20 obtains the signal value X4-(p, q) based on the expression (4). The signal processing unit 20 obtains the signal value X4-(p, q) for all of the P0×Q0 pixels 48.
Fourth Process
Subsequently, the signal processing unit 20 obtains the signal value X1-(p, q) in the (p, q)-th pixel 48 based on the signal value x1-(p, q), the expansion coefficient α, and the signal value X4-(p, q), obtains the signal value X2-(p, q), in the (p, q)-th pixel 48 based on the signal value x2-(p, q), the expansion coefficient α, and the signal value X4-(p, q), and obtains the signal value X3-(p, q) in the (p, q)-th pixel 48 based on the signal value x3-(p, q), the expansion coefficient α, and the signal value X4-(p, q). Specifically, the signal processing unit 20 obtains the signal value x1-(p, q), the signal value X2-(p, q), and the signal value X3-(p, q) in the (p, q)-th pixel 48 based on the expressions (1) to (3) described above.
The signal processing unit 20 expands a value of Min(p, q) with α as represented by the expression (4). In this way, the value of Min(p, q) is expanded by α, so that the luminance of the white display sub-pixel (fourth sub-pixel 49W) increases, and the luminance of the red, green and blue display sub-pixels (corresponding to the first, the second, and the third sub-pixels 49R, 49G, and 49B, respectively) also increase as represented by the above expressions. Due to this, dullness of color can be prevented. That is, the luminance of the entire image is multiplied by α because the value of Min(p, q) is expanded by α, compared with the case in which the value of Min(p, q) is not expanded. Accordingly, for example, a static image and the like can be preferably displayed with high luminance.
The luminance displayed by the output signals X1-(p, q), X2-(p, q), X3-(p, q), and X4-(p, q) in the (p, q)-th pixel 48 is expanded α times the luminance formed by the input signals x1-(p, q), x2-(p, q) and x3-(p, q). Accordingly, the display device 10 may reduce the luminance of the surface light source device 50 based on the expansion coefficient α so as to cause the luminance to be the same as that of the pixel 48 that is not expanded. Specifically, the luminance of the surface light source device 50 may be multiplied by (1/α).
As described above, the display device 10 according to the embodiment sets the limit value (Limit value) β for each frame of the input signals so as to set the expansion coefficient to a value that allows power consumption to be reduced while maintaining the display quality.
Saturation Conversion Processing of Input Signals
As described above, the saturation S is represented such that S=(Max−Min)/Max, and a condition for the saturation S to be 1 is represented such that Min=0. When the saturation conversion processing unit 222 performs the conversion processing to reduce the saturation S, the saturation conversion processing unit 222 can suppress the narrowing of the color gamut by setting the gain value Sgain according to the value of Min. The gain value Sgain can be represented by the following expression (10).
Sgain=(Sparam−1)×Min+1 (10)
Sparam is a set value set by the saturation conversion setting unit 223. The set value Sparam is given such that 0≦Sparam<1, and is, for example, stored in the saturation conversion setting unit 223.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
The signal processing unit 20 calculates the expansion coefficient α based on the input signals, that is, the converted input signal Ra of the first sub-pixel 49R the signal value of which is x1-(p, q), the converted input signal Ga of the second sub-pixel 49G the signal value of which is x2-(p, q), and the converted input signal Ba of the third sub-pixel 49B the signal value of which is x3-(p, q), and on the limit value β (Limit value) (Step S15). The signal processing unit 20 then determines the output signals of the sub-pixels 49 in all the pixels 48 based on the input signals and the expansion coefficient, and outputs the output signals (Step S16). As a result, the signal processing unit 20 can widen the dynamic range of the brightness in the HSV color space (extended HSV color space) as described above.
Subsequently, the signal processing unit 20 further determines an output from the light source (Step S17). That is, the signal processing unit 20 outputs the expanded output signal to the image display panel drive circuit 40, and outputs an output condition of a surface light source (surface light source device 50) that is calculated corresponding to an expansion result to the surface light source device control circuit 60 as a surface light source device control signal.
As has been described above, the signal processing unit 20 according to the embodiment generates the converted input signals (such as the converted input signals Ra, Ga, and Ba) that have been changed so as to reduce the saturation S among the input signals, and calculates the output signals of the first sub-pixel 49R, the second sub-pixel 49G, and the third sub-pixel 49B based on the converted input signals (such as the converted input signals Ra, Ga, and Ba) and the expansion coefficient α that is a function of the amount of increase in brightness caused by the fourth sub-pixel. As a result, the expansion coefficient α can be increased by an amount corresponding to the reduction in the saturation S, so that the power consumption of the display device 10 is suppressed.
As described above, the converted input signals (such as the converted input signals Ra, Ga, and Ba) are signals obtained by multiplying the saturation S of the input signals by the gain value Sgain, and the gain value Sgain is represented by the above expression (10) when the minimum value of the brightness of the input signals is denoted as Min and the set value is given such that 0≦Sparam<1. As a result, the gain value Sgain comes closer to 1 as the saturation S of the input signals comes closer to 1, so that, even in the case of a color component such as a single color with a display gradation value of 255, the reduction in the saturation is suppressed, and the color gamut is maintained. The gain value Sgain decreases as the saturation S of the input signals comes closer to 0, so that the saturation S of the converted input signals (such as the converted input signals Ra, Ga, and Ba) decreases to be lower than the saturation S of the input signals. As a result, in the second process described above, the expansion coefficient α(S) can be increased, and the value of Min(p, q) is expanded by α as represented by the expression (4). In this way, the value of Min(p, q) is expanded by α, so that the luminance of the white display sub-pixel (fourth sub-pixel 49W) increases, and the luminance of the red display sub-pixel, the green display sub-pixel, and the blue display sub-pixel (corresponding to the first sub-pixel 49R, the second sub-pixel 49G, and the third sub-pixel 49B, respectively) also increase as represented by the above expressions. The luminance is expanded to a times the luminance formed from the converted input signals. Consequently, the display device 10 only needs to reduce the luminance of the surface light source device 50 based on the expansion coefficient α so as to cause the luminance to be the same as that of the pixel 48 that is not expanded. Specifically, the luminance of the surface light source device 50 only needs to be multiplied by (1/α), so that the power consumption is further suppressed.
As described above, the gain value Sgain obtained by the above expression (10) is also influenced by the value of Max because the value of Min does not exceed the value of Max. The saturation S results in 0 when Max−Min=0. Hence, the saturation conversion processing unit 222 may calculate the gain value Sgain using the following expression (11) instead of the above expression (10).
Sgain=Sparam×[1−(Max−Min)] (11)
As illustrated in
As described above, the converted input signals (such as the converted input signals Ra, Ga, and Ba) are signals obtained by multiplying the saturation S of the input signals by the gain value Sgain, and the gain value Sgain is represented by the above expression (11) when the minimum value of the brightness of the input signals is denoted as Min and the set value is given such that 0≦Sparam<1. As a result, the gain value Sgain comes closer to 1 as the saturation S of the input signals comes closer to 1, so that, even in the case of a color component such as a single color with a display gradation value of 255, the reduction in the saturation is suppressed, and the color gamut is maintained. The gain value Sgain decreases as the saturation S of the input signals comes closer to 0, so that the saturation S of the converted input signals (such as the converted input signals Ra, Ga, and Ba) decreases to be lower than the saturation S of the input signals. As a result, in the second process described above, the expansion coefficient α(S) can be increased, and the value of Min(p, q) is expanded by α as represented by the expression (4). In this way, the value of Min(p, q) is expanded by α, so that the luminance of the white display sub-pixel (fourth sub-pixel 49W) increases, and the luminance of the red display sub-pixel, the green display sub-pixel, and the blue display sub-pixel (corresponding to the first sub-pixel 49R, the second sub-pixel 49G, and the third sub-pixel 49B, respectively) also increase as represented by the above expressions. The luminance is expanded to α times the luminance formed from the converted input signals. Consequently, the display device 10 only needs to reduce the luminance of the surface light source device 50 based on the expansion coefficient α so as to cause the luminance to be the same as that of the pixel 48 that is not expanded. Specifically, the luminance of the surface light source device 50 only needs to be multiplied by (1/α), so that the power consumption is further suppressed.
Outdoor Mode
To improve visibility of the display device 10 in the outdoors, the signal processing unit 20 varies the expansion coefficient α for expanding the signals according to the brightness V of the input signals. Accordingly, the expansion coefficient α increases as the brightness V decreases, that is, as the gradation level decreases, and the expansion coefficient α decreases as the brightness V increases, that is, as the gradation level increases. As a result, the luminance on the low gradation side increases, and the visibility of the display device 10 in the outdoors is improved. The signal processing unit 20 performs the irradiation based on the expansion coefficient α without reducing the luminance of the surface light source device 50, and increases the luminance of the white display sub-pixel (fourth sub-pixel 49W). Regarding the signal processing unit 20 according to the embodiment, a case will be studied in which the expansion coefficient α is larger than 1, and is constant with respect to the saturation S.
As illustrated in
As illustrated in
As illustrated in
Next, the signal processing unit 20 calculates the expansion coefficient α based on the input signals, that is, the converted input signal Ra of the first sub-pixel 49R the signal value of which is x1-(p, q), the converted input signal Ga of the second sub-pixel 49G the signal value of which is x2-(p, q), and the converted input signal Ba of the third sub-pixel 49B the signal value of which is x3-(p, q), and on the limit value β (Limit value) (Step S25). The signal processing unit 20 then determines the output signals of the sub-pixels 49 in all the pixels 48 based on the input signals and the expansion coefficient, and outputs the output signals (Step S26).
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As has been described above, in the case of the outdoor mode (second display mode) in which the expansion coefficient α exceeds 1, the signal processing unit 20 generates the converted input signals (such as the converted input signals Ra, Ga, and Ba) that have been changed so as to increase the saturation S among the input signals, and calculates the output signals of the first sub-pixel 49R, the second sub-pixel 49G, and the third sub-pixel 49B based on the converted input signals (such as the converted input signals Ra, Ga, and Ba) and the expansion coefficient α that is the function of the amount of increase in brightness caused by the fourth sub-pixel. Even if the signal processing unit 20 expands the converted input values at the expansion coefficient α having a constant value exceeding 1, the brightness less often exceeds the upper limit value thereof, so that the loss of the gradation information decreases, and the occurrence of the gradation loss is suppressed.
If, for example, the surrounding area of the display device 10 is very bright, that is, if illuminance thereof is very high, the converted input signals (such as the converted input signals Ra, Ga, and Ba) differ from the input signals, but deterioration in display quality of the image display panel 30 included in the display device 10 is less visible. Accordingly, when the surrounding area of the display device 10 is very bright, the display device 10 can achieve high luminance display by using the outdoor mode (second display mode). As a result, the display device 10 can display images at high luminance when it is used at a very bright place, so that the visibility can be improved.
As described above, the converted input signals (such as the converted input signals Ra, Ga, and Ba) are signals obtained by multiplying the saturation S of the input signals by the gain value Sgain, and the gain value Sgain is represented by the above expression (10) when the minimum value of the brightness of the input signals is denoted as Min and the set value is given such that 1<Sparam. As a result, the gain value Sgain decreases to be closer to 1 as the saturation S of the input signals comes closer to 1, so that, even in the case of a color component such as a single color with a display gradation value of 255, the increase in the saturation is suppressed. The gain value Sgain increases as the saturation S of the input signals comes closer to 0, so that the saturation S of the converted input signals (such as the converted input signals Ra, Ga, and Ba) increases to be higher than the saturation S of the input signals. Even if the signal processing unit 20 expands the converted input values at the expansion coefficient α having a constant value exceeding 1, the increase in the saturation S less often causes the brightness to exceed the upper limit value thereof, so that the loss of the gradation information decreases, and the occurrence of the gradation loss is suppressed. A sufficient effect is provided if Sparam is given such that 1<Sparam≦3.5.
As described above, the gain value Sgain obtained by the above expression (10) is also influenced by the value of Max because the value of Min does not exceed the value of Max. The saturation S results in 0 when Max−Min=0. Hence, the saturation conversion processing unit 222 may calculate the gain value Sgain using the above expression (11) instead of the above expression (10), as illustrated in
As described above, the converted input signals (such as the converted input signals Ra, Ga, and Ba) are signals obtained by multiplying the saturation S of the input signals by the gain value Sgain, and the gain value Sgain is represented by the above expression (11) when the minimum value of the brightness of the input signals is denoted as Min and the set value is given such that 1<Sparam. As a result, the gain value Sgain decreases to be closer to 1 as the saturation S of the input signals comes closer to 1, so that, even in the case of a color component such as a single color with a display gradation value of 255, the increase in the saturation is suppressed. The gain value Sgain increases as the saturation S of the input signals comes closer to 0, so that the saturation S of the converted input signals (such as the converted input signals Ra, Ga, and Ba) increases to be higher than the saturation S of the input signals. Even if the signal processing unit 20 expands the converted input values at the expansion coefficient α having a constant value exceeding 1, the increase in the saturation S less often causes the brightness to exceed the upper limit value thereof, so that the loss of the gradation information decreases, and the occurrence of the gradation loss is suppressed.
Next, the following describes an application example of the display device 10 described in the embodiment and the modification thereof with reference to
The electronic apparatus illustrated in
The electronic apparatus illustrated in
The embodiment is not limited to the above description. The components according to the embodiment described above include a component that is easily conceivable by those skilled in the art, substantially the same component, and what is called an equivalent. The components can be variously omitted, replaced, and modified without departing from the gist of the embodiment described above.
According to the embodiment, the present disclosure includes the following aspects.
(X1) A display device including:
a display unit including pixels arranged in a matrix therein, each of the pixels including a first sub-pixel that displays a first color component, a second sub-pixel that displays a second color component, a third sub-pixel that displays a third color component, and a fourth sub-pixel that displays a fourth color component different from the first sub-pixel, the second sub-pixel, and the third sub-pixel; and
a signal processing unit that receives input signals that are capable of being displayed with the first sub-pixel, the second sub-pixel, and the third sub-pixel, and calculates output signals to the first sub-pixel, the second sub-pixel, the third sub-pixel, and the fourth sub-pixel, wherein
the signal processing unit generates converted input signals with changed saturation among the input signals, and
the signal processing unit calculates output signals to the first sub-pixel, the second sub-pixel, and the third sub-pixel based on the converted input signals and an amount of increase in brightness caused by the fourth sub-pixel.
(X2) The display device according to (X1), wherein
the converted input signals are signals obtained by multiplying a saturation S of the input signals by a gain value Sgain, and
when a minimum value of the brightness of the input signals is denoted as Min and a set value Sparam is given such that 0≦Sparam<1, the gain value Sgain is given by the following expression (1):
Sgain=(Sparam−1)×Min+1 (1).
(X3) The display device according to (X1), wherein
the converted input signals are signals obtained by multiplying a saturation S of the input signals by a gain value Sgain, and
when a maximum value of the brightness of the input signals is denoted as Max, a minimum value of the brightness of the input signals is denoted as Min, and a set value Sparam is given such that 0≦Sparam<1, the gain value Sgain is given by the following expression (2):
Sgain=Sparam×[1−(Max−Min)] (2).
(X4) The display device according to (X1), wherein
the converted input signals are obtained by multiplying a saturation S of the input signals by a gain value Sgain, and
when a minimum value of the brightness of the input signals is denoted as Min and a set value Sparam is given such that 1<Sparam, the gain value Sgain is given by the following expression (1):
Sgain=(Sparam−1)×Min+1 (1).
(X5) The display device according to (X1), wherein
the converted input signals are obtained by multiplying a saturation S of the input signals by a gain value Sgain, and
when a maximum value of the brightness of the input signals is denoted as Max, a minimum value of the brightness of the input signals is denoted as Min, and a set value Sparam is given such that 1<Sparam, the gain value Sgain is given by the following expression (2):
Sgain=Sparam×[1−(Max−Min)] (2).
Number | Date | Country | Kind |
---|---|---|---|
2014-101755 | May 2014 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7542601 | Jin | Jun 2009 | B2 |
8194094 | Sakaigawa | Jun 2012 | B2 |
9324283 | Kabe | Apr 2016 | B2 |
20070081177 | Um | Apr 2007 | A1 |
20090315921 | Sakaigawa et al. | Dec 2009 | A1 |
20120013649 | Higashi et al. | Jan 2012 | A1 |
20120050345 | Higashi et al. | Mar 2012 | A1 |
20140168284 | Kabe et al. | Jun 2014 | A1 |
20140285539 | Kurokawa et al. | Sep 2014 | A1 |
20140320534 | Kimura | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
2012-22217 | Feb 2012 | JP |
2012-053256 | Mar 2012 | JP |
5568074 | Jun 2014 | JP |
2014-139647 | Jul 2014 | JP |
2014-186245 | Oct 2014 | JP |
Number | Date | Country | |
---|---|---|---|
20150332642 A1 | Nov 2015 | US |