1. Field of the Invention
The present invention relates to a display device and, more particularly, to a display device provided with a display panel comprising thin-film transistors (TFT) as switching elements for display pixel selection.
2. Description of the Related Art
Liquid-crystal display devices and organic EL display devices, for example, are known as display devices that comprise display panels which comprise thin-film transistors (TFT) as switching elements for display pixel selection. When the display selection of each pixel is performed with TFT's in such display devices, the voltage polarity of the opposing electrode must be inverted line by line and in each frame in order to decrease the residual image phenomenon, for example. Also, in inverted driving, aside from the effect of decreasing the residual image phenomenon, with frame-inversion driving and horizontal-line inversion driving, and so forth, it is possible to achieve the result of being able to halve the voltage amplitude applied to the signal lines by inverting the polarity of the opposing electrode voltage that is applied to the opposing electrode in sync with the inversion timing.
The display devices driven by TFT's may be driven in a cycle period which includes two periods, one of which is a scan period in which display is performed by sequentially scanning selecting, and driving the TFT of each pixel according a gate signal, and another of which is a non-scan period in which the TFT's of each pixel are not driven.
Here, the voltage polarity of the opposing electrode during the scan period is inverted in every subframe.
Japanese Patent Application Laid-open No. 2003-330425 discloses a display device in which the polarity of the voltage of the opposing electrode is inverted in each field in the non-scan period.
In conventional display devices, there is a problem that, when the polarity of the voltage waveform of the opposing electrode is inverted, a leak current is generated and the electrical charge in the pixel will flow out to the source line.
In order to suppress the generation of the leak current, in, for example, the case of N-type TFT elements, it is necessary to raise the absolute value of the gate-drain voltage of the data retention interval (the gate OFF period) above a fixed value by reducing the amplitude of the voltage of either the opposing electrode or the source line. However, when the amplitude of the voltage of either the opposing electrode or the source line is reduced in this manner, the problem that sufficient contrast cannot be obtained arises.
A field sequential color (hereafter abbreviated as ‘FSC’) system, according to which color display is performed as a result of a plurality of different wavelengths of light being sequentially emitted in a predetermined cycle and according to which the liquid crystals are driven in sync with the light source emission timing, is known as a color liquid crystal display system. However, such an FSC system requires a rapid response for the liquid crystals and it is necessary to apply a high voltage for this purpose. Therefore, the problem that an adequate contrast cannot be obtained in cases where the amplitude of the voltage of either the opposing terminal or the source line is reduced in order to suppress the generation of a leak current as mentioned earlier is then more obvious.
Thus, an object of the present invention is to solve the above problems, and, in display devices that are driven by inverting the polarity of the voltage of the opposing electrode and applying the inverted voltage, to suppress the generation of the leak current that accompanies the polarity inversion of the voltage waveform of the opposing electrode.
Also, an object of the present invention is to suppress the generation of the leak current that accompanies the polarity inversion of the voltage waveform of the opposing electrode without reducing the contrast characteristic.
A leak current is generated during the polarity inversion of the voltage waveform of the opposing electrode due to the fact that the pixel voltage potential shifts and approaches the gate OFF potential as a result of the polarity inversion of the voltage waveform of the opposing electrode and the absolute value of the gate-drain voltage of the TFT element grows small.
On that basis, the present invention suppresses the generation of a leak current by ensuring that the absolute value of the gate-drain voltage of the TFT element does not grow small when the polarity of the voltage waveform of the opposing electrode is inverted.
The pixel electrode potential (drain potential) 104 is decided by the source potential 102 of a period in which the gate signal is at the gate ON potential with the opposing electrode potential 103 taken as the base. The source potential 102 is determined by selecting the potential corresponding with the display data from a predetermined range.
Due to the fact that the potential difference between the pixel electrode potential 104 and the opposing electrode potential 103 is maintained in periods when the gate signal is at the gate OFF potential, when the opposing electrode potential 103 is inverted from the high level to the low level, the pixel electrode potential (drain potential) 104 also fluctuates in accordance with this inversion.
In
The leak current flows more readily when the pixel potential (drain potential) is a potential close to the gate OFF potential and, therefore, here, the pixel potential (drain potential) 104H that is indicated by the thick broken line is observed as the gate-drain voltage Vgd pertaining to the leak current, and the potential difference between this pixel potential (drain potential) 104H and the gate signal 101 should be considered.
Because the pixel potential (drain potential) 104 approaches the gate OFF potential as a result of the opposing electrode potential 103 inverting from the high level to the low level, the gate-drain voltage Vgd approaches zero. Because the gate-drain voltage Vgd approaches zero, the current between the drain and source terminals of the TFT flows readily and charge that has accumulated in the pixel electrode flows out to the source line via the TFT.
Therefore, the present inventor discovered that, based on the aforementioned relationship between the gate-drain voltage Vgd and source-drain current Isd, the generation of a leak current can be suppressed by ensuring that the gate-drain voltage Vgd deviates from close to zero in the non-scan periods, and more precisely, by making sure that the gate-drain voltage Vgd increased in the negative direction in the case of an N-type TFT element.
The display device of the present invention is a display device that performs display by sequentially scanning a plurality of scan signal lines in a single cycle period, comprising: a plurality of data signal lines that intersect the scan signal lines; a pixel electrode that is connected to the data signal lines; and an opposing electrode that is disposed opposite the pixel electrode and for which the polarity of an application voltage is inverted in each of the cycle periods. Here, the cycle period includes a scan period in which one full scan of the scan signal lines is performed and a non-scan period in which the scan signal lines are not scanned.
With the display device of the present invention, in the non-scan period, the absolute value of the gate-drain voltage is held at or above a predetermined voltage. As a result, the proximity of the potential difference between the pixel electrode potential and the gate OFF potential caused by the polarity inversion of the application voltage to the opposing electrode is reduced.
Here, as an aspect that holds the absolute value of the gate-drain voltage at or above a predetermined voltage, the display device of the present invention has an aspect wherein, in the non-scan period, the polarity of the voltage applied to the opposing electrode is fixed at either polarity irrespective of the polarity inversion of the voltage of the opposing electrode for each cycle period of a scan period.
In this aspect, provisions are taken so that the gate-drain voltage does not approach the gate OFF potential in accordance with the change in the polarity of the application voltage of the opposing electrode when switching from a scan period to a non-scan period by fixing the polarity of the application voltage of the opposing electrode. More specifically, in the case of an N-type TFT element, the polarity of the voltage waveform of the opposing electrode is fixed at a polarity at which the gate-drain voltage Vgd increases in a negative direction. As a result, the generation of a leak current is suppressed in a non-scan period irrespective of the polarity inversion of the voltage waveform of the opposing electrode in the scan period.
In addition, in an aspect in which the polarity of the voltage applied to the opposing electrode is fixed at either polarity, a potential which is either a low level potential or a high level potential is, more precisely, applied to the opposing electrode in non-scan periods.
Here, in cases where the display device is a liquid-crystal display device comprising a liquid-crystal layer between a pixel electrode and an opposing electrode, a high level potential is applied to the opposing electrode in all the non-scan periods. In addition, in cases where the display device is an organic EL display device comprising an organic layer between the pixel electrode and the opposing electrode, a low level potential is applied to all of the non-opposing electrodes.
With the display device of the present invention, the absolute value of the gate-drain voltage can also be held at or above a predetermined voltage by means of another aspect. This other aspect is such that, by changing the voltage applied to the gate electrode in accordance with the inversion of the polarity of the voltage applied to the opposing electrode in the non-scan periods, the potential of the gate electrode is changed in response to the change in the potential of the pixel electrode that accompanies the change in the polarity of the application voltage of the opposing electrode when switching from a scan period to a non-scan period and, accordingly, the potential of the pixel electrode never approaches the gate OFF potential in the non-scan periods.
In an aspect in which the voltage applied to the gate electrode is changed, the display device of the present invention is a display device that performs display by sequentially scanning a plurality of scan signal lines in a single cycle period, comprising: a plurality of data signal lines that intersect the scan signal lines; a pixel electrode that is connected to the data signal lines; an opposing electrode that is disposed opposite the pixel electrode; and a TFT element that is connected to each pixel electrode, wherein the gate terminal of the TFT element is connected to the scan signal lines; the source terminal is connected to the data signal lines; and the drain terminal is connected to the pixel electrode.
Here, the single cycle period includes a scan period in which one full scan of the scan signal lines is performed and a non-scan period in which the scan signal lines are not scanned; and a potential that is alternately inverted between a low level potential and a high level potential is applied to the opposing electrode in the scan period and non-scan period in each of the single cycle periods. Here, in a non-scan period in which a high level potential is applied to the opposing electrode, a first gate OFF potential is applied to the gate terminal; and, in a non-scan period in which a low level potential is applied to the opposing electrode, a second gate OFF potential of a lower potential than the first gate OFF potential is applied to the gate terminal.
Thus, in a non-scan period, by switching the gate OFF potential from the first gate OFF potential to a second gate OFF potential of a lower voltage than the first gate OFF potential depending on whether the potential applied to the opposing electrode is at the high level or low level, the potential of the pixel electrode never approaches the gate OFF potential in the non-scan periods.
The single cycle period may also comprise a plurality of frames. In field-sequential liquid-crystal driving, a single cycle period can comprise three subframes and can have field periods or frame periods for displaying one image. Data signals that correspond to the subframes are sequentially applied to the plurality of data signal lines in the scan period of the cycle period.
According to the display device of the present invention, in the driving of the display device that applies the voltage of the opposing electrode after inverting the polarity, the generation of a leak current that accompanies the polarity inversion of the voltage waveform of the opposing electrode can be suppressed.
In addition, the generation of a leak current that accompanies the polarity inversion of the voltage waveform of the opposing electrode can be suppressed without reducing the contrast characteristic.
The liquid-crystal display device according to the present invention will be described hereinbelow in detail using the drawings.
The display device 1 of the present invention comprises a display panel 2 that performs display, a scan signal driver 4 that supplies a scan signal to scan lines that the display panel 2 comprises, a data signal driver 5 that supplies a data signal to data signal lines that the display panel 2 comprises, an opposing electrode 3 that is disposed opposite the pixel electrodes that the display panel 2 comprises, and an opposing electrode driver 6 that drives the opposing electrode 3.
Here, an active-matrix-type liquid-crystal panel is described by way of example as the display panel 2 but an organic EL panel may also be used.
The display panel 2 comprises a plurality of scan signal lines that correspond to the horizontal scan lines of an image, a plurality of data signal lines (image signal lines) that intersect the scan signal lines, and a plurality of pixels (not shown in
An external signal source such as a CPU supplies an image signal, which comprises image data of an RGB signal or the like and display control data such as the display clock frequency that determines the timing of the display operation, and so forth, to a display control circuit 7 via an RGB interface 8. The display control circuit 7 generates a display clock signal, a horizontal synchronization signal, a vertical synchronization signal, a start pulse signal, and a latch strobe signal and so forth on the basis of the image signal thus supplied.
In addition, the display control circuit 7 subjects the image data to signal processing to generate image signals representing the grayscales of the respective colors red R, green G, and blue B and outputs the image signals to the data signal driver 5. The display control circuit 7 also outputs the clock signal, start pulse signal, latch strobe signal, and image signals to the data signal driver 5 and outputs the horizontal synchronization signal and vertical synchronization signal to a scan driver 4.
In addition to being supplied with image data that are displayed on the display panel 2 in pixel units, the data signal driver 5 is supplied with the clock signal, the start pulse signal, and the latch strobe signal as timing signals. The data signal driver 5 generates image signals for driving the display panel 2 on the basis of each of these signals and outputs the image signals to the respective image signal lines of the display panel 2.
The scan signal driver 4 generates a scan signal and outputs same to the respective scan signal lines on the basis of the horizontal synchronization signal and vertical synchronization signal. The scan signal sequentially selects the scan signal lines of the display panel 2 one horizontal scan period at a time. The application of an active scan signal for the ordered selection of all of the respective scan signal lines to each scan signal line is repeated by taking one vertical scan period as the cycle.
In addition, an FRP signal for inverting the polarity of the application voltage of the opposing electrode to the opposing electrode driver 6 is supplied by the display control circuit 7. The opposing electrode driver 6 controls the polarity inversion of the voltage applied to the opposing electrode on the basis of the FRP signal.
Further, the display control circuit 7 is able to display all the image data by repeating the driving using predetermined cycle periods, sequentially emit a plurality of light of different wavelengths in predetermined cycles, perform color display using field sequencing that drives liquid crystals in sync with the light emission timing of the light source, and the predetermined cycle periods can be a field period or frame period in which one image is displayed, for example.
The plurality of data signal lines and plurality of scan signal lines are disposed in the form of a grating with the plurality of data signal lines and plurality of scan signal lines intersecting one another. A plurality of pixels 10 are provided in correspondence with the intersections therebetween. As shown in
An aspect in which the absolute value of the voltage across the gate and drain of the display device of the present invention is equal to or more than a predetermined voltage will be described hereinbelow. This aspect is an aspect in which the polarity of the voltage applied to the opposing electrode is fixed at either polarity irrespective of the polarity inversion of the voltage of the opposing electrode in each cycle period of the scan period in a non-scan period.
With the display device of the present invention, although, for the polarity inversion of the opposing electrode potential, the polarity is inverted for each subframe of a scan period, in a non-scan period, the polarity is not inverted for each subframe in a non-scan cycle; the polarity is always fixed at one polarity. In a liquid-crystal display device, the polarity of the voltage waveform of the opposing electrode is always fixed at the high level in a non-scan period.
Accordingly, the generation of a leak current is suppressed so that the gate-drain voltage Vgd is not close to zero.
In addition,
With the display device of the present invention, although the polarity is inverted for each subframe in the scan period in the polarity inversion of the opposing electrode potential, in the non-scan period, the opposing electrode potential is always fixed at the low level without inverting the polarity for each subframe. This is because, in liquid-crystal panels, the gate has an N-type characteristic that tends toward a positive bias whereas, in an organic EL panel, the gate has a P-type characteristic that tends toward a negative bias.
As a result, the generation of a leak current is suppressed so that the gate-drain voltage Vgd does not approach zero.
The case where the display device of the present invention is a liquid-crystal display device will be described in more detail hereinbelow by using the relationship diagrams that show the relationship between the gate-drain voltage Vgd and the common potential Vcom of the opposing electrode in
The gate signal 101 is a signal that is input to the gate terminal of the TFT. The TFT is set to the ON state by applying a gate ON potential in non-scan periods, during which time current flows from the source line to the pixel electrode and the capacitor between the pixel electrode and opposing electrode is charged. The application of the gate ON potential is carried out by sequentially scanning the respective pixel electrodes that the display panel comprises in scan periods. The gate signal shown in
The source potential 102 is determined by selecting the potential that corresponds with the display data from a predetermined range and is applied from the source lines to the pixel electrode as a result of the TFT being in the ON state in the scan periods.
The opposing electrode potential (Vcom) 103 is a potential for inverting the potential (drain potential) 104 of the pixel electrode charged by the source potential 102 in each cycle period. The display device of the present invention performs switching between the low level and high level alternately in the scan periods in each cycle period and is always fixed at the high level in the non-scan periods. Accordingly, the opposing electrode potential (Vcom) 103 is at the low level in at least every other scan period while inversion is carried out in the previous cycle period.
In the non-scan periods in
The above description is also true for a case where there is an inversion characteristic as in the case of an organic EL display device, for example, which is illustrated with respect to an example where, for a liquid-crystal display device, the potential of the opposing electrode is fixed at the high level in the non-scan periods. Here, by fixing the potential of the opposing electrode at the low level in the non-scan periods, the gate-drain voltage Vgd is separated from zero and, accordingly, the leak current can be reduced. Here, an example where the potential of the opposing electrode is fixed at a low level is not described.
Another aspect in which the absolute value of the gate-drain voltage of the display device of the present invention is equal to or more than a predetermined voltage will be described next. This aspect is such that, by changing the voltage applied to the gate electrode in accordance with the inversion of the polarity of the voltage applied to the opposing electrode in the non-scan periods, the potential of the gate electrode is changed in response to the change in the potential of the pixel electrode that accompanies the change in the polarity of the application voltage of the opposing electrode when switching from a scan period to a non-scan period and, accordingly, the potential of the pixel electrode never approaches the gate OFF potential in the non-scan periods.
Therefore, this aspect can also be applied to an aspect where the polarity of the voltage applied to the opposing electrode is inverted as in the scan period without the polarity of the voltage applied to the opposing electrode being fixed at either polarity in the non-scan period as per the aforementioned aspect.
Here, the polarity of the voltage waveform of the opposing electrode is inverted in each subframe. In the display device of this aspect, the polarity of the potential of the opposing electrode is inverted for each subframe in the scan period and non-scan period that the cycle period contains. Here, in cases where the voltage of the opposing electrode is at the low level, the voltage applied to the gate electrode is changed (lowered here), whereby the generation of a leak current is suppressed so that the gate-drain voltage Vgd does not approach zero.
The case where the display device of the present invention is a liquid-crystal display device will be described in more detail hereinbelow by using the diagrams that show the relationship between the gate-drain voltage Vgd and the gate potential Vgate in
The source potential 102 is determined by selecting the potential that corresponds with the display data from a predetermined range and is applied from the source lines to the pixel electrode as a result of the TFT being in the ON state in the scan periods.
The opposing electrode common potential (Vcom) 103 is a potential for inverting the pixel potential (drain potential) 104 of the pixel electrode charged by the source potential 102 in each cycle period. The display device of the present invention performs switching between the low level and high level alternately in the scan periods and non-scan cycle periods. Inversion is accordingly carried out in each cycle period.
The gate signal 101 is a voltage that is input to the gate terminal of the TFT. The TFT is set to the ON state by applying a gate ON potential in scan periods, during which time current flows from the source line to the pixel electrode and the capacitor between the pixel electrode and opposing electrode is charged. The application of the gate ON potential is carried out by sequentially scanning the respective pixel electrodes that the display panel comprises in scan periods. The gate signal shown in
In addition, the gate signal 101 of this aspect changes to a lower potential than the high level potential when the opposing electrode potential (Vcom) 103 switches from the high level to the low level. Accordingly, the gate-drain voltage Vgd between the pixel potential (drain potential) 104 indicated by the broken line in
According to the aspect of the present invention, because the generation of a leak current can be reduced so that the pixel potential does not approach the gate OFF potential without reducing the amplitude of the voltage applied to the source line or the voltage of the opposing electrode, a display of high contrast and a high-speed response is possible.
In addition, according to an aspect of the present invention, a display in which the potential of the opposing electrode undergoes polarity inversion can be maintained and, therefore, the polarity inversion effects afforded by a reduction in the residual image phenomenon, a reduction in the drive voltage, and simplification of the drive circuit can be continued.
Preferred embodiments of the liquid-crystal display device of the present invention were described hereinabove. However, the liquid-crystal display device according to the present invention are not limited to the above embodiments alone. Rather, it is understood that a variety of modified embodiments are possible within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2006-269299 | Sep 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6118421 | Kawaguchi et al. | Sep 2000 | A |
20020175889 | Tokonami et al. | Nov 2002 | A1 |
20050212745 | Ishiyama | Sep 2005 | A1 |
20050253829 | Mamba et al. | Nov 2005 | A1 |
20070040772 | Kim | Feb 2007 | A1 |
20080246721 | Kumada et al. | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
07-248483 | Sep 1995 | JP |
2003-330425 | Nov 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20080084379 A1 | Apr 2008 | US |