1. Field of the Invention
The present invention generally relates to a display drive integrated circuit for driving a display panel, and more particularly, the present invention relates to a display drive integrated circuit and method for generating a system clock signal.
A claim of priority is made to Korean Patent Application No. 10-2006-0020395, filed Mar. 3, 2006, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
2. Description of the Related Art
As shown in
The gate driver circuit 140 includes a plurality of gate drivers (not shown), and continuously drives scan lines G1 through GM of the display panel 110, based on the control signals received from the timing controller 130.
The source driver circuit 150 includes a plurality of source drivers (not shown), and drives data lines S1 through SN of the display panel 110, based on the display data received from the memory 131 and the control signals received from the timing controller 130.
The display panel 110 displays the display data based on signals received from the gate driver circuit 140 and signals received from the source driver circuit 150.
The timing controller 130 receives various display data and control signals from the processor 170 via an interface 160, and updates the display data stored in the memory 131.
Examples of the processor 170 include a baseband processor and a graphics processor. When the display device 100 is configured with a baseband processor, a CPU interface establishes an interface between the display device 100 and the baseband processor. When the display device 100 is configured with a graphics processor, an RGB interface (video interface) establishes an interface between the display device 100 and the graphics processor.
In the case where an RGB interface is utilized, the display device 100 receives a vertical synchronization signal, a horizontal synchronization signal, and a dot clock signal from an external source, and generates a corresponding system clock signal. The system clock signal is used to control the display data.
However, when the frequency of the dot clock signal received from the external source changes, the frequency of the system clock signal also changes, thereby degrading the display quality of the display device 100 or increasing its power consumption.
According to an aspect of the present invention, a display drive integrated circuit for driving a display panel is provided. The display drive integrated circuit includes a division rate output unit which outputs as a division rate corresponding to a quotient obtained by dividing by M a total number of clock cycles of a dot clock signal corresponding to a clock cycle of a horizontal synchronization signal, where M is a natural number, and a system clock generating unit which generates a system clock signal by dividing the dot clock signal using the division rate.
According to another aspect of the present invention, a method of generating a system clock signal for a display drive integrated circuit which drives a display panel is provided. The method includes outputting a division rate corresponding to a quotient obtained by dividing by M a total number of clock cycles of a dot clock signal corresponding to a clock cycle of a horizontal synchronization signal, where M is a natural number, and generating the system clock signal by dividing the dot clock signal using the division rate.
The above and other aspects and advantages of the present invention will become readily apparent from the detailed description that follows, with reference to the accompanying drawings, in which:
Exemplary but non-limiting embodiments of the present invention will now be described in detail with reference to the accompanying drawings. Like reference numerals denote like elements throughout the drawings.
Referring to
The division rate output unit 210 may, for example, include a counter 220 and a division rate output device 250. The counter 220 counts the clock cycles CNT_DOTCLK of the dot clock signal DOTCLK which occur during a clock cycle of the horizontal synchronization signal HSYNC. The division rate output device 250 outputs the division rate DIV corresponding to the quotient obtained by dividing by M the total number of clock cycles CNT_DOTCLK of the dot clock signal DOTCLK. Here, M may be 2K (where K is a natural number).
According to an embodiment of the present invention, in the display drive integrated circuit 200, the horizontal synchronization signal HSYNC may have a constant frequency. Also, according to an embodiment of the present invention, in the display drive integrated circuit 200, a vertical synchronization signal VSYNC may have a constant frequency.
The operation of the division rate output unit 210 will now be described with reference to
The counter 220 receives a horizontal synchronization signal HSYNC and a dot clock signal DOTCLK. The counter 220 counts the number of clock cycles of the dot clock signal DOTCLK which occur during a clock cycle of the horizontal synchronization signal HSYNC.
The division rate output device 250 outputs the division rate DIV according to the quotient obtained by dividing by M the total number (n) of clock cycles CNT_DOTCLK of the dot clock signal DOTCLK.
The division rate output device 250 may utilize only a certain number of the total number of division rates. For example, when the quotient obtained by dividing by M the total number of clock cycles CNT_DOTCLK of the dot clock signal DOTCLK is an odd number, the division rate output device 250 may output as the division rate DIV the value obtained by adding 1 to the quotient or subtracting 1 from the quotient. When the quotient obtained by dividing by M the total number of clock cycles CNT_DOTCLK of the dot clock signal DOTCLK is an even number, the division rate output device 250 may output the quotient as the division rate DIV. For example, referring to
Alternatively, if the quotient obtained by dividing by M the total number of clock cycles CNT_DOTCLK of the dot clock signal DOTCLK is an even number, the division rate output device 250 may output as the division rate DIV the value obtained by adding 1 to the quotient or subtracting 1 from the quotient. Also, when the quotient obtained by dividing by M the total number of clock cycles CNT_DOTCLK of the dot clock signal DOTCLK is an odd number, the quotient may be output as the division rate DIV. That is, the division rate output device 250 outputs only odd-numbered division rates, thereby halving the total number of division rates DIV output from the division rate output device 250.
The division rate output device 250 may output as the division rate DIV by excluding the lower K bits (i.e., by output the higher L−K bits) from the total number of clock cycles CNT_DOTCLK of the dot clock signal DOTCLK, which is expressed with L bits (L is a natural number, and K is a natural number less than L). More specifically, in this case, the division rate output device 250 expresses the total number of clock cycles CNT_DOTCLK of the dot clock signal DOTCLK with L bits, and outputs as the division rate DIV the bit value of the upper L−K bits. In this case, the division rate output device 250 outputs as the division rate DIV the quotient obtained by dividing by 2K the total number of clock cycles CNT_DOTCLK of the dot clock signal DOTCLK.
Referring to the table of
Accordingly, the total number of clock cycles of the system clock signal SYSCLK has a constant value regardless of the total number of clock cycles of the dot clock signal DOTCLK. However, the total number of clock cycles of the system clock signal SYSCLK may have an error. The error is calculated by subtracting the first minimum number of clock cycles (SYSCLK) from the first maximum number of clock cycles (SYSCLK), which are listed in the table of
According to an embodiment of the present invention, the display drive integrated circuit 200 changes the division rate DIV when the total number of clock cycles CNT_DOTCLK of the dot clock signal DOTCLK changes. Thus, even if the total number of clock cycles CNT_DOTCLK of the dot clock signal DOTCLK changes, the total number of clock cycles of the system clock signal SYSCLK can be maintained at a constant level. That is, according to an embodiment of the present invention, the display drive integrated circuit 200 is capable of outputting the system clock signal SYSCLK at a constant frequency regardless of the frequency of the dot clock signal DOTCLK.
As listed in
Accordingly, the error of the total number of clock cycles of the system clock signal SYSCLK when the division rate output from the division rate output device 250 is limited to only odd numbers (or only even numbers) is approximately twice the error of the total number of clock cycles of the system clock signal SYSCLK when the division rate output from the division rate output device 250 may be even and odd numbers. That is, in the above case, the total number of clock cycles of the system clock signal SYSCLK has an error of 1.94 (17.94-16).
The outputting of the division rate may include counting the clock cycles of the dot clock signal, which correspond to a clock cycle of the horizontal synchronization signal HSYNC (S510), and outputting as the division rate the quotient obtained by dividing by M the total number of clock cycles of the dot clock signal (S530).
In the method 500, M may be 2K (where K is a natural number). The outputting as the division rate (S530) may include outputting as the division rate the upper L−K bits obtained by excluding the lower K bits from the total number of clock cycles of the dot clock signal, which is expressed with L bits (L is a natural number and K is less than L).
As described above, in a display drive integrated circuit and a method for generating a system clock signal according to the present invention, the system clock signal is generated by dividing a dot clock signal by the quotient that is obtained by dividing the total number of clock cycles of the dot clock signal by a predetermined number. Therefore, it is possible to generate a system clock signal having a constant frequency even if the frequency of the dot clock signal changes.
While this invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0020395 | Mar 2006 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
4573176 | Yeager | Feb 1986 | A |
4633194 | Kikuchi et al. | Dec 1986 | A |
4780759 | Matsushima et al. | Oct 1988 | A |
5142247 | Lada et al. | Aug 1992 | A |
5168360 | Maeshima | Dec 1992 | A |
5432559 | Bruins et al. | Jul 1995 | A |
5479073 | Mamiya et al. | Dec 1995 | A |
5729179 | Sumi | Mar 1998 | A |
5767917 | Gornstein et al. | Jun 1998 | A |
5796391 | Chiu et al. | Aug 1998 | A |
5821910 | Shay | Oct 1998 | A |
5872601 | Seitz | Feb 1999 | A |
5929711 | Ito | Jul 1999 | A |
5945983 | Kanno et al. | Aug 1999 | A |
6008789 | Anai et al. | Dec 1999 | A |
6121950 | Zavracky et al. | Sep 2000 | A |
6185691 | Gandhi et al. | Feb 2001 | B1 |
6275553 | Esaki | Aug 2001 | B1 |
6310618 | Zhang et al. | Oct 2001 | B1 |
6310922 | Canfield et al. | Oct 2001 | B1 |
6392641 | Nishimura et al. | May 2002 | B1 |
6515708 | Kato | Feb 2003 | B1 |
6531903 | Wichman | Mar 2003 | B1 |
6618462 | Ross et al. | Sep 2003 | B1 |
6661846 | Ota | Dec 2003 | B1 |
6667638 | Kramer et al. | Dec 2003 | B1 |
6677786 | Kellgren et al. | Jan 2004 | B2 |
6731343 | Yoneno | May 2004 | B2 |
6738922 | Warwar et al. | May 2004 | B1 |
6779125 | Haban | Aug 2004 | B1 |
6885401 | Nakai et al. | Apr 2005 | B1 |
6950958 | Magen | Sep 2005 | B2 |
20010017659 | Suzuki | Aug 2001 | A1 |
20020054238 | Kunio | May 2002 | A1 |
20030061086 | Chen et al. | Mar 2003 | A1 |
20030090303 | Kimura et al. | May 2003 | A1 |
20030193355 | Leifso et al. | Oct 2003 | A1 |
20030229815 | Fujiwara et al. | Dec 2003 | A1 |
20040012581 | Kurokawa et al. | Jan 2004 | A1 |
20050212570 | Sun et al. | Sep 2005 | A1 |
20060197869 | Wang et al. | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
09186976 | Jul 1997 | JP |
09-297555 | Nov 1997 | JP |
09305158 | Nov 1997 | JP |
10-153989 | Jun 1998 | JP |
1998-079216 | Nov 1998 | KR |
Number | Date | Country | |
---|---|---|---|
20070205971 A1 | Sep 2007 | US |