The Present application claims priority from Japanese application JP 2016-023425 filed on Feb. 10, 2016, the content of which is hereby incorporated by reference into this application.
The present invention relates to a display driver and a display panel module, and a technique applicable to any of COG (Chip On Glass) mounting and COF (Chip On Film) mounting, e.g., a technique useful in application to a display driver operable to perform the display driving of a liquid crystal display panel.
In a display panel such as a liquid crystal display panel, display elements and signal lines for supplying drive signals to the display elements are formed on a glass substrate. The pitch of signal lines can be formed on a glass substrate with high precision and it can be made narrower than the pitch of wiring lines formed on a film such as a flexible printed wiring board (FPC).
Examples of the form of mounting a display driver used for display driving of a display panel, such as liquid crystal display panel, include COG mounting and COF mounting.
The COG mounting is a form of directly mounting a display driver of a bare chip (or a semiconductor chip shape) on a glass substrate on which display elements and transparent electrodes are formed. The mounting form is suitable for a high-speed action because of a smaller wiring load to a display driver. For instance, a semiconductor chip for display driving, which is suitable for COG mounting is shown by example in Japanese Unexamined Patent Publication No. JP-A-2008-145477. In the semiconductor chip, two rows of external output terminals for drive signals are arrayed along a lengthwise direction of the chip, and the two rows are displaced from each other in the lengthwise direction by about one half pitch. Further, the external output terminals of the rear row are led out through between the external output terminals of the front row and then, connected to signal lines of a display panel concerned. As described above, the pitch of an array of output terminals of a display driver to be mounted by COG mounting, i.e. the wiring line pitch of a wiring pattern on a glass substrate, to which the output terminals of the driver are connected, tends to get narrowed.
The COF mounting is a form of mounting a display driver of a semiconductor chip shape to a wiring pattern on a wiring circuit board in, e.g., a polyimide film. The wiring line pitch of a wiring pattern formed on the film inevitably becomes larger than the wiring line pitch of a wiring pattern formed on a glass substrate. A semiconductor chip of display driving use, which is mounted by COF mounting is shown by example in JP-A-2006-13421.
Hence, it is often the case that COG mounting is applied to a display driver of a display panel of high resolution such as FHD (Full High Definition), whereas COF mounting is applied to a display driver of a display panel of low resolution such as VGA (Video Graphics Array), of which the wiring pattern pitch of the display panel electrode is made relatively wide.
One embodiment described herein is a display driver formed as a semiconductor integrated circuit of an elongated shape that includes a plurality of external output terminals regularly disposed along a lengthwise direction of the display driver, an output circuit operable to produce display drive signals to supply to a display panel using required external output terminals, an output mode register on which output mode data are set overwritably, and a control circuit operable to perform control for selecting an array of external output terminals to be used by the output circuit for outputting the display drive signals from more than one kind of arrays different in layout pitch according to the output mode data set on the output mode register.
Another embodiment described herein is a display driver for outputting display drive signals to display elements of a display panel, which is formed as a semiconductor integrated circuit of an elongated shape. The display driver includes a plurality of external output terminals regularly disposed along a lengthwise direction of the display driver, an output circuit operable to produce display drive signals to supply to a display panel from required external output terminals, a host interface circuit, a register circuit to input control data from the host interface circuit, and a control circuit operable to produce control signals based on the control data set on the register circuit. Moreover, the register circuit has an output mode register on which output mode data are set overwritably and the control circuit is configured to perform control for selecting an array of external output terminals to be used by the output circuit for outputting the display drive signals from more than one kind of arrays different in layout pitch according to output mode data set on the output mode register. Further, the more than one kind of arrays which can be selected by the control circuit includes an array of the external output terminals in which the condition of a pitch allocated for spacing between adjacent terminals of external output terminals used for outputting drive signals is changed.
Another embodiment described herein is a display panel module that includes a display panel having display elements arrayed in a matrix form and a display driver formed as a semiconductor integrated circuit of an elongated shape, and supplying display drive signals to the display panel. The display driver includes a plurality of external output terminals regularly disposed along a lengthwise direction of the display driver, an output circuit operable to produce display drive signals to supply to the display panel using required external output terminals, an output mode register on which output mode data are set overwritably, and a control circuit operable to perform control for selecting an array of external output terminals to be used by the output circuit for outputting the display drive signals from more than one kind of arrays different in layout pitch according to the output mode data set on the output mode register. Further, the more than one kind of arrays which can be selected by the control circuit comprise an array of the external output terminals in which the condition of a pitch allocated for spacing between adjacent terminals of external output terminals used for outputting drive signals is changed.
A display driver optimized for a high-resolution display panel of which the electrode wiring pattern pitch is made relatively narrow is hard to adapt to a low-resolution display panel of which the electrode wiring pattern pitch is made relatively wide and vice versa. This is because the pitch of mounting bumps which are external output terminals of a display driver to which COF mounting is applied is, e.g., 20 μm or more, whereas the pitch of mounting bumps of a display driver to which COG mounting is applied is, e.g., 18 μm or less. Today's display panels including a liquid crystal display panel vary in size from FHD size of a compact and high definition display panel as utilized for a smart phone or the like to a size of a low-resolution display panel as utilized for a timepiece, a panel face of a dashboard panel provided as “INPANE” (i.e. instrument panel) of a motor vehicle, etc. So, using display drivers for exclusive use for such display panels respectively makes no contribution to the cutting of the cost of display panel modules.
Therefore, it is an object of the invention to provide a display driver which can be used commonly with display panels that have different pitches of signal lines serving to receive drive signals, and which can adapt to any of COF mounting and COG mounting. Further, the embodiments here may reduce the cost of display panel modules.
The above and other objects of the invention, and novel features thereof will become apparent from the description hereof and the accompanying diagrams.
Of the embodiments disclosed in the present application, the representative embodiments will be briefly outlined below. It is noted that the reference numerals and others in parentheses for reference to the diagrams are only examples for easier understanding.
[1] Array of External Output Terminals which can be Selected According to the Layout Pitch of an Electrode Pad Array of a Display Panel
The display driver (1) formed as a semiconductor integrated circuit of an elongated shape includes: a plurality of external output terminals (S1-Sn) regularly disposed along a lengthwise direction of the display driver; an output circuit (46) operable to produce display drive signals to supply to a display panel (6, 7) from required external output terminals; an output mode register (60) on which output mode data (Mdata) are set overwritably; and a control circuit (43) operable to perform control for selecting an array of external output terminals to be used by the output circuit for outputting the display drive signals from more than one kind of arrays different in layout pitch according to the output mode data set on the output mode register. From another perspective, the control circuit is arranged to be able to change a position (or write/output position) of display data output by the output circuit along a direction of an external output terminal array, thereby making possible to select the array of the external output terminals used for output from more than one kind of arrays different in layout pitch.
According to this embodiment, one array can be selected from more than one kind of arrays different in layout pitch, as an array of external output terminals to use for outputting display drive signals when driving a display panel. So, an array of external output terminals to use for outputting display drive signals may be selected from more than one kind of arrays different in layout pitch so as to fit the pitch of pads to which the display driver is to be mounted. Therefore, the display driver can be used in display panels with signal lines having different pitches serving to receive drive signals and in addition, used in common in any of COF mounting and COG mounting which are different from each other in the pitch of mounting bumps.
[2] Line Latch Circuit and Drive Circuit
In the display driver as described in [1], the output circuit includes: a line latch circuit (44) having data registers (REG) arranged in parallel for holding pixel data; and a drive circuit (45) operable to produce, in units of pixel data, display drive signals from pixel data output by the line latch circuit and then provide the display drive signals to the external output terminals.
The control circuit performs write address control for sequentially writing pixel data into the line latch circuit according to the output mode data, and output control for outputting, in parallel, outputs of the data registers with pixel data written therein to the drive circuit.
According to this embodiment, the control for selecting an array of the external output terminals from more than one kind of arrays different in layout pitch can be easily realized by the address control and the output control by the control circuit.
[3] Sharing One External Output Terminal for Driving More than One Pixel
In the display driver as described in [2], the data registers each hold pixel data (Di_Pn r, Di_Pn g, Di_Pn b, Di_Pn+1 r, Pn+1 g, Pn+1 b,) of more than one pixel as one unit. The drive circuit outputs drive signals corresponding to pixel data of more than one pixel output by the data registers in a time-sharing manner in the units of pixel data.
According to this embodiment, one external output terminal is shared to supply n pixels with display drive signals in a time sharing manner in case that one data register is holding pixel data of the n pixels, for example. This way enables the arrangement for leading out, in units of more than one line, signal lines of display elements of a high-resolution display panel to one piece of wiring pattern through a selector to connect to the corresponding external output terminal of the display driver. Thus, an array of external output terminals of the display driver can be arranged to have a pitch which enables the mounting of the display driver on a display panel with higher resolution.
[4] Sequence Control Logic
In the display driver as described in [2], the control circuit has program sequence control logics (61, 62) which decrypt output mode data set on the output mode register and produce control signals for the write address control and output control.
Unlike a hard wired logic, this embodiment enables the reduction in the circuit scale of the control circuit, and facilitates the setting and change of a control function.
[5] Array Forms Different in the Pitch Between Adjacent Terminals of External Output Terminals Used for Output
In the display driver as described in [1], the more than one kind of arrays which can be selected by the control circuit include an array of the external output terminals in which the condition of a pitch allocated for spacing between adjacent terminals of external output terminals used for outputting drive signals is changed, and the external output terminals used for outputting drive signals are arrayed from both ends toward the center thereof along a lengthwise direction of the array.
In this embodiment, selectable arrays being different in the condition of a pitch allocated for spacing between adjacent terminals of the external output terminals implies that an array which can be selected even if the array pitch of a wiring pattern of a mounting target to which the display driver 1 is to be mounted is other than an integer multiple of the physical layout pitch of the external output terminals can be arranged. The selectable array variations are increased. Further, using a required number of external output terminals from both ends of an array of the external output terminals works to enlarge the inclination of a wiring pattern of a mounting target to which the display driver is to be mounted with respect to the array direction of the external output terminals, thereby preventing the wiring line pitch of the wiring pattern from being made extremely small.
[6] Array Forms Different in the Number of External Output Terminals Used for Outputting Drive Signals
In the display driver as described in [5], the more than one kind of arrays which can be selected by the control circuit include an array of the external output terminals in which the number of external output terminals used for outputting drive signals is changed, and the external output terminals used for outputting drive signals are arrayed from both ends toward the center thereof along a lengthwise direction of the array.
This embodiment further increases the selectable array variations.
[7] Array of External Output Terminals which can be Selected According to the Layout Pitch of an Electrode Pad Array of a Display Panel
A display driver (1) for outputting display drive signals to display elements of a display panel, which is formed as a semiconductor integrated circuit of an elongated shape includes: a plurality of external output terminals (S1-Sn) regularly disposed along a lengthwise direction of the display driver; an output circuit (46) operable to produce display drive signals to supply to a display panel from required external output terminals; a host interface circuit (40); and a register circuit (41) to input control data from the host interface circuit to; and a control circuit (43) operable to produce control signals based on the control data set on the register circuit. The register circuit has an output mode register (60) on which output mode data (Mdata) are set overwritably. The control circuit performs control for selecting an array of external output terminals to be used by the output circuit for outputting the display drive signals from more than one kind of arrays different in layout pitch according to output mode data set on the output mode register. The more than one kind of arrays which can be selected by the control circuit include an array of the external output terminals in which the condition of a pitch allocated for spacing between adjacent terminals of external output terminals used for outputting drive signals is changed.
According to this embodiment, one array can be selected from more than one kind of arrays different in layout pitch, as an array of external output terminals to use for outputting display drive signals when driving a display panel. So, an array of external output terminals to use for outputting display drive signals may be selected from more than one kind of arrays different in layout pitch so as to fit the pitch of pads to which the display driver is to be mounted. Therefore, the display driver can be used in display panels with signal lines having different pitches serving to receive drive signals and in addition, used in common in any of COF mounting and COG mounting which are different from each other in the pitch of mounting bumps. Further, selectable arrays being different in the condition of a pitch allocated for spacing between adjacent terminals of the external output terminals implies that a selectable array can be arranged even if the array pitch of a wiring pattern of a mounting target to which the display driver is to be mounted is other than an integer multiple of the physical layout pitch of the external output terminals. Consequently, the selectable array variations are increased.
[8] Array Forms Different in the Number of External Output Terminals Used for Outputting Drive Signals
In the display driver as described in [7], the more than one kind of arrays which can be selected by the control circuit further include an array of the external output terminals in which the number of external output terminals used for outputting drive signals is changed.
This embodiment further increases the selectable array variations.
[9] Using a Required Number of External Output Terminals from Both Ends of the External Output Terminal Array
In the display driver as described in [7], the more than one kind of arrays which can be selected by the control circuit include an array in which the external output terminals used for outputting drive signals are arrayed from both ends toward the center thereof along a lengthwise direction of the array.
According to this embodiment, using a required number of external output terminals from both ends of an array of the external output terminals works to enlarge the inclination of a wiring pattern of a mounting target to which the display driver is mounted with respect to the array direction of the external output terminals, which prevents the wiring line pitch of the wiring pattern from being made extremely small.
[10] Line Latch Circuit and Drive Circuit
In the display driver as described in [7], the output circuit includes: a line latch circuit (44) having data registers arranged in parallel for holding pixel data; and a drive circuit (45) operable to produce, in units of pixel data, display drive signals from pixel data output by the line latch circuit and then provide the display drive signals to the external output terminals. The control circuit performs write address control for sequentially writing pixel data into the line latch circuit according to the output mode data and output control for outputting, in parallel, outputs of the data registers with pixel data written therein to the drive circuit.
According to this embodiment, the control for selecting an array of external output terminals from more than one kind of arrays different in layout pitch can be easily realized by the address control and output control by the control circuit.
[11] Sharing One External Output Terminal for Driving More than One Pixel
In the display driver as described in [10], the data registers each hold pixel data of more than one pixel as one unit. The drive circuit outputs drive signals corresponding to pixel data of more than one pixel output by the data registers in a time-sharing manner in the units of pixel data.
According to this embodiment, one external output terminal is shared to supply n pixels with display drive signals in a time sharing manner in case that one data register is holding pixel data of the n pixels, for example. This way enables the arrangement for leading out, in units of more than one line, signal lines of display elements of a high-resolution display panel to one piece of wiring pattern through a selector to connect to the corresponding external output terminal of the display driver. Thus, an array of external output terminals of the display driver can be arranged to have a pitch which enables the mounting of the display driver on a display panel with higher resolution.
[12] Array of External Output Terminals which can be Selected According to the Layout Pitch of an Electrode Pad Array of a Display Panel
The display panel module (2, 3) has a display panel (6, 7) having display elements arrayed in a matrix form; and a display driver (1) formed as a semiconductor integrated circuit of an elongated shape, and supplying display drive signals to the display panel. The display driver includes: a plurality of external output terminals (S1-Sn) regularly disposed along a lengthwise direction of the display driver; an output circuit (46) operable to produce display drive signals to supply to the display panel from required external output terminals; an output mode register (60) on which output mode data (Mdata) are set overwritably; and a control circuit (43) operable to perform control for selecting an array of external output terminals to be used by the output circuit for outputting the display drive signals from more than one kind of arrays different in layout pitch according to the output mode data set on the output mode register. The more than one kind of arrays which can be selected by the control circuit include an array of the external output terminals in which the condition of a pitch allocated for spacing between adjacent terminals of external output terminals used for outputting drive signals is changed.
According to this embodiment, a display panel module is formed by use of the display driver which can be used in common to display panels different in the pitch of signal lines serving to receive drive signals from the display driver and in addition, used in common in any of COF mounting and COG mounting which are different from each other in the pitch of mounting bumps. So, the cutting of the cost of a display panel module can be achieved.
[13] Array Forms Different in the Number of External Output Terminals Used for Outputting Drive Signals
In the display panel module as described in [12], the more than one kind of arrays which can be selected by the control circuit further include an array of the external output terminals in which the number of external output terminals used for outputting drive signals is changed.
This embodiment can further enlarge the scope in which the display driver can be shared and further increase the kind of display panel modules of which the cost can be cut.
[14] Using a Required Number of External Output Terminals from Both Ends of the External Output Terminal Array
In the display panel module as described in [12], the more than one kind of arrays which can be selected by the control circuit include an array in which the external output terminals used for outputting drive signals are arrayed from both ends toward the center thereof along a lengthwise direction of the array.
According to this embodiment, using a required number of external output terminals from both ends of an array of the external output terminals works to enlarge the inclination of a wiring pattern of a mounting target to which the display driver is mounted with respect to the array direction of the external output terminals, which prevents the wiring line pitch of the wiring pattern from being made extremely small.
[15] Mounting of the Display Driver According to COG Form
In the display panel module as described in [12], the display driver is mounted on a glass substrate (9) of the display panel (6) according to a chip-on-glass (COG) form, and the external output terminals are directly bonded to a wiring pattern (12) on the glass substrate of the display panel.
According to this embodiment, the display driver can be mounted on a high-resolution display panel in COG form to constitute a high-resolution display panel module.
[16] Mounting of the Display Driver According to COF Form
In the display panel module as described in [12], the display driver is mounted on a flexible wiring board (5) connected to the display panel (7) according to a chip-on-film (COF) form, and the external output terminals are directly bonded to wiring lines (13) of the flexible wiring board, and connected to a wiring pattern on a glass substrate of the display panel.
According to this embodiment, the display driver can be mounted on a flexible wiring board connected to a low-resolution display panel according to COF form to constitute a low-resolution display panel module.
[17] Line Latch Circuit and Drive Circuit
In the display panel module as described in [12], the output circuit includes: a line latch circuit (44) having data registers arranged in parallel for holding pixel data; and a drive circuit (45) operable to produce, in units of pixel data, display drive signals from pixel data output by the line latch circuit and then provide the display drive signals to the external output terminals. The control circuit performs write address control for sequentially writing pixel data into the line latch circuit according to the output mode data and output control for outputting, in parallel, outputs of the data registers with pixel data written therein to the drive circuit.
According to this embodiment, the control for selecting an array of external output terminals from more than one kind of arrays different in layout pitch can be easily realized by the address control and output control by the control circuit.
[18] Sharing One External Output Terminal for Driving More than One Pixel
In the display panel module as described in [17], the data registers each hold pixel data (Di_Pn r, Di_Pn g, Di_Pn b, Di_Pn+1 r, Pn+1 g, Pn+1 b,) of more than one pixel as one unit. The drive circuit outputs, in a time-sharing manner, drive signals corresponding to pixel data of more than one pixel output by the data registers in the units of pixel data. The display panel has select circuits (72) for supplying drive signals, sequentially output by the drive circuit in a time sharing manner, to signal lines of corresponding display elements in units of pixel data of corresponding pixels. The control circuit performs selective control for causing the select circuits to select the signal lines of the display elements corresponding to drive signals output in the time sharing manner in synchronization with the drive signal output by the drive circuit in the time sharing manner.
According to this embodiment, the signal line pitch of the display elements of the display panel can be made smaller than the smallest array pitch of the external output terminals of the display driver, whereby contribution can be made to the facilitation of the rise in resolution in regard to a display panel provided on a compact device such as a smart phone.
The effect achieved by the representative embodiment of the invention disclosed in the present application will be briefly described below.
It is possible to provide a display driver which can be used in common to display panels different in the pitch of external signal electrodes for drive signals and in addition, used in common in any of COF mounting and COG mounting. Further, it is possible to cut the cost of a display panel module.
The display driver 1 can be used in common for driving display panels PNL of a smart phone 20 of
The typical resolutions of display panels used for a smart phone 20, a smart watch 21, a free-form display 22 and the like include those shown in
The forms of mounting the display driver 1 on display panels of various resolutions are roughly classified into COG mounting of
H1 to Hi of the display driver 1. On the flexible wiring board 5, the panel interface FPC lines 13 and host interface FPC lines 16 are formed by a method including lamination of a piece of aluminum or copper foil to a thin film of a resin such as polyimide. The display driver 1 is mounted by: training the external output terminals S1 to Sn and the host interface terminals H1 to Hi downward; putting them on base end portions of the corresponding panel interface FPC lines 13 and one end portions of the corresponding host interface FPC lines 16; and then fixing this state by press fitting with, e.g., an anisotropically conductive film. The display driver 1 is allowed to connect to a host device through the host interface FPC lines 16. The panel interface FPC lines 13 of the flexible wiring board 5 are connected to the driving ITO lines 17 formed on the array substrate 11 by press fitting with, e.g., an anisotropically conductive film. The driving ITO lines 17 are wiring lines for connecting the source electrodes of the display panel to all or part of the external output terminals S1 to Sn of the display driver 1 according to the resolution of the display panel. The driving ITO line 17 may be arranged to be in a one-to-one correspondence with the source electrodes. But, in one embodiment, with a high-resolution display panel with an increased number of source electrodes, it may be arranged so that more than one source electrode can be connected to each driving ITO line 17 through a selector, which can prevent the display driver 1 from being excessively elongated in size.
Now, the circuit structure of the display panel 6, 7 will be described below. As shown in
According to a comparison made between COG mounting and COF mounting, there are differences therebetween chiefly as follows. As shown in
The display drivers 1 which are used for COG mounting and COF mounting in
The form of utilizing the external output terminals S1 to S540 according to the resolution of a display panel using the display driver 1 can be changed between COG mounting and COF mounting as shown in
With the resolution of HD, the external output terminals S1 to s180 in the left-end portions of arrays of the external output terminals S1 to S540, and the external output terminals S360 to S540 in the right-end portions are used for COG mounting. In the case of partially using the external output terminals S1 to S540, a required number of external output terminals at positions ranging from the two opposing ends of the terminal arrays toward the centers thereof should be used. Using a required number of external output terminals from the two opposing ends of the external output terminal arrays like this increases the inclination of the wiring lines 12 and 13 of a mounting target, to which the display driver 1 is to be mounted, with respect to the array direction of the external output terminals, thereby preventing the wiring line pitch of the wiring lines 12 and 13 from being made extremely small.
With the resolution of WVGA or lower, the number of external output terminals to be used for COG mounting is different from that in the case of the HD resolution.
In COF mounting of the display driver 1, the pitch of the panel interface FPC lines 13 is 20 μm, which is twice the pitch in COG mounting and therefore, of the external output terminals S1 to S540, the external output terminals S1, S3, . . . , S537, s539 of the front row, each having an odd terminal number are used. For instance, in the case of WVGA, the consecutive external terminals Si starting on the left end of the external terminal array are used, provided that the subscript “i” represents a terminal number and satisfies i=2n+1 (where n is 0 to 119); and the consecutive external terminals Si starting on the left end of the external terminal array are used, provided that the terminal number “i” satisfies i=539-2n (where n is 119 to 0). The same thing applies to the cases of lower resolutions. In the case of 540×540 resolution, the terminal number of the external output terminals Si to be used is in a range of i=2n+1 (where n is 0 to 269). In the case of 420×420 resolution, the terminal number “i” of the external output terminal Si to be used, starting on the left end is in a range of i=2n+1 (where n is 0 to 104), and the terminal number “i” of the external output terminal Si to be used, starting on the right end is in a range of i=2n+1 (where n is 104 to 0). In the case of 360×360 resolution, the terminal number “i” of the external output terminal Si to be used, starting on the left end is in a range of i=2n+1 (where n is 0 to 89), and the terminal number “i” of the external output terminals Si to be used, starting on the right end is in a range of i=2n+1 (where n is 89 to 0).
In the description presented with reference to
Further, the wiring line pitch per se can be expected not to be 10 or 20 μm as well. In such cases, the display driver 1 may be mounted while utilizing the external output terminals which can be put on the wiring lines of a mounting target. For instance, the display driver may be mounted in such a way that the external output terminals in an external output terminal array are put out of use at a rate of one in “m” terminals.
The display driver 1 has the function of variably controlling what drive signal to output from which external output terminal according to its mounting form, in order to adapt to both of COG mounting and COF mounting and further to flexibly adapt to mountable wiring line pitches. The configuration of the display driver 1 which enables the materialization of the function will be described below.
The display driver 1 receives a command for instructing a display action and display data from a host processor 31. The display driver 1 operates according to the received command, and performs control for displaying an image on the display panel 6 or 7 based on the display data and others. The display driver 1 accepts the input of image data from the host processor 31, and performs control to output timing signals for sequentially scanning the pixels in units of the display line by gate electrode lines Gtd_1 to Gtd_m and to supply the pixels of each scan-driven display line with drive signals as gradation signals according to the display data in such a way that the drive signals are supplied to source electrode lines Src_1 to Src_n in parallel in synchronization with the display timing. While not particularly shown in the diagram, a gate driver operable to drive the gate electrode lines Gtd_1 to Gtd_m is provided on the display panel separately from the display driver 1; the display driver outputs a drive timing signal for driving the gate electrode lines to the gate driver. The drive timing signal is part of the timing signals Stm_1 to Stm_j.
Although no special restriction is intended, the display driver 1 has: a host interface circuit 40; a register circuit 41; a display data processing circuit 42; a timing control circuit 43; a line latch circuit 44; a source output circuit 45; a built-in oscillator 50; a display RAM 51; a display drive voltage generating circuit 52; a panel interface circuit 53; and a gradation voltage-producing circuit 54.
The host interface circuit 40 receives display data, a command, control data and various kind external timing signals from the host processor 31. The host interface circuit produces, based on received external timing signals, clock signals CLK serving as internal timing signals, vertical synchronizing signals VSYNC and horizontal synchronizing signals HSYNC and supplies them to the timing control circuit 43. The host interface circuit 40 stores the command and control data received from the host processor 31 in the register circuit 41. Some control data including initial set data are loaded from a nonvolatile memory circuit (NVM) 47 in the host interface circuit 40. The timing control circuit 43 performs display control based on timing signals given from the host interface circuit 40, and the command and control data transmitted from the register circuit 41. The clock signals CLK are dot clock signals which are matched with dot clocks.
The display data can be supplied as video stream data, or supplied in units of the word according to a bus access cycle. The supplied data are subjected to, e.g., a filter operation in a display data processing part 42 on an as-needed basis. The display data supplied according to the bus access cycle are stored in the display RAM 51, e.g., in units of the display frame. The display data stored in the display RAM S1 are read out therefrom in synchronization with a display timing. The read display data are latched by the line latch circuit 44 for each display line in series. Display data supplied in the form of video stream data are latched by the line latch circuit 44 in synchronization with the display timing in series. The timing control circuit 43 performs the latch address control on the line latch circuit 41. The source output circuit 45 accepts inputs of display data latched by the line latch circuit 44 in parallel, and then outputs drive signals of gradation voltages according to the display data to the display panel 6 or 7. In parallel, the drive signals may be output to the driving ITO lines 12 on condition that the display driver 1 is mounted by COG mounting, whereas the drive signals are output to the panel interface FPC lines 13 on condition that the display driver is mounted by COF mounting. The gradation voltages are produced by the gradation voltage-producing circuit 54, which are then passed to the source output circuit 45. The line latch circuit 44 and the source output circuit 45 constitute an embodiment of an output circuit 46 for producing display drive signals to supply to the display panel 6, 7 from required terminals of the external output terminals S1 to S540.
The built-in oscillator circuit 50 outputs clock signals for to define the internal timing of the display driver 1. The display drive voltage generating circuit 52 outputs gate drive voltages and voltages of the common voltage signal lines, which are required in the display panel. The panel interface circuit outputs timing signals Stm_1 to Stm_j.
In the case of mounting the display driver on the display panel 6 of FHD resolution by COG mounting, the external output terminals S1 to S540 will be connected to the corresponding driving ITO lines 12 to perform the COG mounting, as described on connection forms with reference to
The source drive circuit 45 has drivers DRV which are in one-to-one correspondence with the external output terminals S1 to S540. While not particularly shown in the diagram, each driver DRV is a circuit which receives display data in units of more than one bit, e.g., eight bits representing gradations and then, outputs gradation voltages corresponding to them from an output buffer.
The line latch circuit 44 is configured to have two stages including an input-stage line latch circuit 44B and an output-stage line latch circuit 44A. The input-stage line latch circuit 44B and the output-stage line latch circuit 44A each have 540 32-bit registers REG which hold three kinds, RGB of unit display data in pixels, i.e. groups of three sub-pixels. Each register REG is assigned addresses A0 to A539.
Although no special restriction is intended, display data DATdisp are supplied to the data input terminal of each register REG of the input-stage line latch circuit 44B through a 32-bit internal bus in units of 32 bits. The display data DATdisp supplied through the internal bus are written into the register REG specified by a write address ADRw. The write timing thereof is controlled by a write enable signal CNTw. The display data DATdisp arranged in units of 32 bits are made D0, D1, D2, . . . in turn as shown by example in
The display data DATdisp are transmitted to each register REG of the output-stage line latch circuit 44A from the corresponding register REG of the input-stage line latch circuit 44B in units of 32 bits. In the output-stage line latch circuit 44A, the register REG specified by a read address ADRr is targeted for readout. The read action is performed for each unit display data, namely in units of 8 bits; the read timing thereof is controlled by a read enable signal CNTr.
The outputs of a pair of adjacent registers REG of the output-stage line latch circuit 44A are connected to an input terminal of the driver DRV of the subsequent stage through a wired OR or selector.
The write action of one display line of display data DATdisp on the registers REG of the input-stage line latch circuit 44B is performed in a horizontal synchronization period, and the read action of one display line of display data on the registers REG of the output-stage line latch circuit 44A is performed in the subsequent horizontal synchronization period. Although no special restriction is intended, it is appropriate to arrange the read action on the registers REG of the output-stage line latch circuit 44A so as to sequentially select the registers REG of the output-stage line latch circuit 44A, and sequentially read therefrom three kinds, RGB of unit display data of the selected register REG during one display period. In this case, it is appropriate to sequentially select the source electrodes by the selector 72 at a speed which represents three times the cycle of selecting the registers REG of the output-stage line latch circuit 44A. Alternatively, it is possible to perform the read in such a way that three kinds, RGB of unit display data of the registers REG of odd numbers are selected in turn during the first half period of one display period, and three kinds, RGB of unit display data of the registers REG of even numbers are selected in turn during the second half period, provided that the display quality becomes low.
The timing control circuit 43 has a control logic serving to variably select which register REG to write display data into from the registers of the input-stage line latch circuit 44B and accordingly, which register REG of the output-stage line latch circuit 44A to read display data from. Specifically, the control logic includes: a write register address creating logic (WRSLgc) 62 which controls the position to write display data on the input-stage line latch circuit 44B according to output mode data Mdata set in an output mode register 60 of the register circuit 41; and a read register address creating logic (RRSLgc) 61 which controls the position to read display data on the output-stage line latch circuit 44A. The write register address creating logic 62 creates a write address ADRw according to the mode data Mdata, whereas the read register address creating logic 61 creates a read address according to the mode data Mdata. Although no special restriction is intended, the register address creating logics 61 and 62 are each configured by a program sequence control logic, which does not intend that the register address creating logic be prohibited from being formed by a hard wired logic.
In the control by the register address creating logics 61 and 62, the creation of the write address ADRw and the read address ADRr is controlled according to the output mode data Mdata set in the output mode register 60 so as to select an array of the external output terminals S1 to S540 which the output circuit 46 should use to output display drive signals from more than one kind of arrays different in layout pitch. In other words, the register address creating logics 61 and 62 variably control the register position (input position) to write display data into the input-stage line latch circuit 44B along an array direction of the external output terminals S1 to S540, and the register position (output position) to read display data from the output-stage line latch circuit 44A, according to the mode data Mdata, thereby making possible to select the array of the external output terminals S1 to S540 to use to output display data from more than one kind of arrays different in layout pitch.
The forms of arrays of the external output terminals S1 to S540 which the register address creating logics 61 and 62 can select according to the mode data Mdata include, e.g., the array forms shown in
The connection form of the external output terminals S1 to S540 when the combination of COG mounting and FHD is specified is as shown in
The connection form of the external output terminals S1 to S540 when the combination of COF mounting and WVGA is specified is as shown in
With the display driver 1 as described above, one array can be selected from more than one kind of arrays different in layout pitch as the array of the external output terminals S1 to S540 used for outputting display drive signals when driving the display panel based on the mode data Mdata. Specifically, the control circuit 43 is arranged to be able to change a write register position for writing pixel data into the line latch circuit 44B, and a read register position for reading pixel data from the line latch circuit 44A according to an array direction of the external output terminals S1 to S540. Therefore, it is appropriate to set the mode data Mdata on the mode register 60 so as to fit the pitch of the driving ITO lines 12 or panel interface FPC lines 13 to which the display driver 1 is mounted, and select the array of the external output terminals to use for outputting display drive signals from more than one kind of arrays different in layout pitch. Hence, the display driver 1 can be used in common to display panels different in the pitch of signal lines serving to receive drive signals from the display driver 1 and in addition, used in common in any of COF mounting and COG mounting which are different from each other in the pitch of wiring lines, such as the driving ITO lines 12 or panel interface FPC lines 13, on which the display driver is to be mounted. This contributes to the cutting of the cost of display panel modules as shown in
In addition, the more than one kind of arrays which can be selected by the control circuit 43 according to the mode data Mdata include an array of the external output terminals Si to S540 in which the condition of a pitch allocated for spacing between adjacent terminals of external output terminals used for outputting drive signals is changed, and the external output terminals used for outputting drive signals are arrayed from both ends toward the center thereof along a lengthwise direction of the array. Examples of such arrays are the array described with reference to
Further, the more than one kind of arrays which the control circuit 43 can select based on the mode data Mdata include an array of the external output terminals S1 to S540 in which the number of external output terminals used for outputting drive signals is changed, and the external output terminals used for outputting drive signals are arrayed from both ends toward the center thereof along a lengthwise direction of the array, as described with reference to
In addition, as described based on
Although no special restriction is intended, the host processor 31 is configured as a base band application processor (BB/APP) which controls a communication protocol process and other application software program processes. Although no special restriction is intended, the BB/APP 31 has: DSP (Digital Signal Processor) 80 which performs signal processes which audio signals and transmit and receive signals are involved in; ASIC (Application Specific Integrated Circuits) 81 which provides a custom function (user logic); a microprocessor or microcomputer (also, abbreviated as “MICOM”) 82 which serves as a data processing device operable to control the whole; and an MIPI interface circuit 83 which interfaces with the display driver 1 and the like. Although no special restriction is intended, a voice/audio interface 84 which performs the input/output of signals on a speaker 89 and a microphone 88, a communication part 85, such as a high frequency interface, which performs the signal input from an antenna 86 and the signal output thereto, and a nonvolatile file memory 87 are connected to the host processor 31 in addition to the display panel module 2A.
While the invention made by the inventor has been described above based on the embodiments concretely, the invention is not limited to the embodiments. It is obvious that various changes and modifications may be made without departing subject matter thereof.
For instance, the form of connecting an array of the external output terminals of the display driver to mounting wiring lines, the method for connecting the external output terminals of the display driver to the mounting wiring lines, the wiring structure of electrodes on a glass substrate of a display panel and the material thereof, and the wiring structure of FPC substrate and its material are not limited to the above embodiments, and they may be changed or modified appropriately. Further, the resolution of a display panel to be driven is not limited to those listed in
In the case of the display driver which does not utilize the selector 72, the display driver may directly output gate drive signals to the gate electrode lines Gtd_1 to Gtd_m of the display panel. Further, the display driver may have a touch panel controller.
In addition, the order of writing unit display data into the array of the registers REG of the input-stage line latch circuit 44B, and the order of reading unit display data from the array of the registers REG of the output-stage line latch circuit 44A are not limited to the above embodiments. They may be changed or modified appropriately within a range which does not interfere with an essential display function.
Number | Date | Country | Kind |
---|---|---|---|
2016023425 | Feb 2016 | JP | national |