This Non-provisional application claims priority under 35 U.S.C. §119(a) on Patent Application No(s). 100145614 filed in Taiwan, Republic of China on Dec. 9, 2011, the entire contents of which are hereby incorporated by reference.
1. Field of Invention
The invention relates to a display driving method, a driving module, and a display apparatus and, in particular, to a display driving method, a driving module, and a display apparatus of an active matrix type.
2. Related Art
The flat display apparatuses, which have advantages such as low power consumption, less heat, light weight and non-radiation, have been widely applied to various electronic products and gradually take the place of the cathode ray tube (CRT) display apparatus.
The flat display apparatus can be divided into a passive matrix type and an active matrix type according to the driving method thereof. However, the passive matrix display apparatus is confined to such driving method that it has drawbacks such as short lifecycle and can not be manufactured as large size. Although the active matrix display apparatus has a higher cost and a more complicated manufacturing process, it can be manufactured as large size and full color with high definition, already becoming a mainstream of the flat display apparatuses.
A scan time of each scan line is mainly determined by the number of the scan lines and the display frequency. However, some parasitic capacitances are formed by the crossover of the data lines, and besides, parasitic capacitances (e.g. Cgd, Cgs, Csd) of the transistors and the loading impedance exist in the pixel array of the display panel 11. Hence, an ideal scan signal waveform A as shown in
Therefore, it is an important subject to provide a display driving method, a driving module, and a display apparatus that can solve the scan signal delay problem, and decrease the power consumption and the stress effect of the pixel switch devices.
In view of the foregoing subject, an objective of the invention is to provide a display driving method, a driving module, and a display apparatus that can solve the scan signal delay problem, and decrease the power consumption and the stress effect of the pixel switch devices.
To achieve the above objective, the invention discloses a display driving method for driving a display panel by at least one scan line. The display driving method comprises the steps of: determining a first target-level voltage and a second target-level voltage of a signal of the scan line; determining a first switch time and a second switch time according to an RC loading of the scan line; determining at least one first precharge-level voltage and at least one second precharge-level voltage according to the first target-level voltage, the second target-level voltage, the first switch time, and the second switch time; and outputting the first precharge-level voltage, the first target-level voltage, the second precharge-level voltage, and the second target-level voltage to drive the display panel, wherein the first precharge-level voltage is switched to the first target-level voltage after the first switch time, and the second precharge-level voltage is switched to the second target-level voltage after the second switch time.
In one embodiment, the first target-level voltage and the second target-level voltage are determined according to gray level voltages driving the pixels of the display panel, the first target-level voltage is higher than the highest gray level voltage by at least one threshold voltage, and the second target-level voltage is lower than the lowest gray level voltage by at least one threshold voltage.
In one embodiment, the first precharge-level voltage is higher than the first target-level voltage, and the second precharge-level voltage is lower than the second target-level voltage.
In one embodiment, the time constant of the scan line is generated according to the RC loading of the scan line, to determine the first switch time and the second switch time.
In one embodiment, one of the first precharge-level voltage, the first target-level voltage, the second precharge-level voltage, and the second target-level voltage is output at one time.
To achieve the above objective, the invention also discloses a driving module for driving a display panel by at least one scan line, which comprises a scan driving circuit, a detection circuit, and a scan signal generating circuit. The scan driving circuit outputs a scan driving signal to drive the display panel, wherein the scan driving signal has at least one first precharge-level voltage and a first target-level voltage, and the first precharge-level voltage is switched to the first target-level voltage after a first switch time. The detection circuit detects an RC loading of the scan line to determine the first switch time. The scan signal generating circuit is electrically connected with the scan driving circuit and the detection circuit and controls the scan driving circuit to output the scan driving signal, wherein the scan signal generating circuit determines the first precharge-level voltage according to the first target-level voltage and the first switch time.
In one embodiment, the first target-level voltage is determined according to gray level voltages driving the pixels of the display panel, and the first target-level voltage is higher than the highest gray level voltage by at least one threshold voltage.
In one embodiment, the detection circuit generates the time constant of the scan line according to the RC loading of the scan line, to determine the first switch time.
In one embodiment, the scan driving signal further includes at least one second precharge-level voltage and a second target-level voltage, and the second precharge-level voltage is switched to the second target-level voltage after a second switch time.
In one embodiment, the scan signal generating circuit determines the second precharge-level voltage according to the second target-level voltage and the second switch time.
In one embodiment, the second target-level voltage is lower than the lowest gray level voltage by at least one threshold voltage, the highest gray level voltage is the highest gray level voltage of a frame, and the lowest gray level voltage is the lowest gray level voltage of the frame.
In one embodiment, the first precharge-level voltage is higher than the first target-level voltage, and the second precharge-level voltage is lower than the second target-level voltage.
To achieve the above objective, the invention further discloses a display apparatus, which comprises a display panel and a driving module. The driving module drives the display panel by at least one scan line and comprises a scan driving circuit, a detection circuit, and a scan signal generating circuit. The scan driving circuit outputs a scan driving signal to drive the display panel, wherein the scan driving signal has at least one first precharge-level voltage and a first target-level voltage, and the first precharge-level voltage is switched to the first target-level voltage after a first switch time. The detection circuit detects an RC loading of the scan line to determine the first switch time. The scan signal generating circuit is electrically connected with the scan driving circuit and the detection circuit and controls the scan driving circuit to output the scan driving signal, wherein the scan signal generating circuit determines the first precharge-level voltage according to the first target-level voltage and the first switch time.
In one embodiment, the first target-level voltage is determined according to gray level voltages driving the pixels of the display panel, and the first target-level voltage is higher than the highest gray level voltage by at least one threshold voltage.
In one embodiment, the detection circuit generates the time constant of the scan line according to the RC loading of the scan line, to determine the first switch time.
In one embodiment, the scan driving signal further includes at least one second precharge-level voltage and a second target-level voltage, and the second precharge-level voltage is switched to the second target-level voltage after a second switch time.
In one embodiment, the scan signal generating circuit determines the second precharge-level voltage according to the second target-level voltage and the second switch time.
In one embodiment, the second target-level voltage is lower than the lowest gray level voltage by at least one threshold voltage, the highest gray level voltage is the highest gray level voltage of a frame, and the lowest gray level voltage is the lowest gray level voltage of the frame.
In one embodiment, the scan driving circuit outputs one of the first precharge-level voltage, the first target-level voltage, the second precharge-level voltage, and the second target-level voltage at one time.
In one embodiment, the first precharge-level voltage is higher than the first target-level voltage, and the second precharge-level voltage is lower than the second target-level voltage.
As mentioned above, in the display driving method, the driving module and the display apparatus of the invention, a first switch time and a second switch time are determined according to the RC loading of the scan line. Besides, a first precharge-level voltage and a second precharge-level voltage are determined according to the first target-level voltage, the second target-level voltage, the first switch time, and the second switch time. Then, the first precharge-level voltage, the first target-level voltage, the second precharge-level voltage, and the second target-level voltage are output to drive the display panel. The first precharge-level voltage is switched to the first target-level voltage after the first switch time, and the second precharge-level voltage is switched to the second target-level voltage after the second switch time. Accordingly, the scan driving signal can be driven rapidly to the target-level voltage, thereby reducing the charging and discharging time of the scan line's loading and diminishing the scan line's signal delay. Besides, because the scan driving signals for driving the pixels of the display panel are not fixed to a level as high as the prior art, the power consumption and the stress effect of the pixel switch devices (such as transistors) can be decreased in the display apparatus of the invention.
The invention will become more fully understood from the detailed description and accompanying drawings, which are given for illustration only, and thus are not limitative of the present invention, and wherein:
The present invention will be apparent from the following detailed description, which proceeds with reference to the accompanying drawings, wherein the same references relate to the same elements.
Thereinafter, the display apparatus 4 and the driving module 2 of the invention will be first illustrated, and then the display driving method of the invention will be illustrated.
As shown in
The display panel 3 includes at least one pixel. The driving module 2 drives the display panel 3 by at least one scan line and at least one data line. In the embodiment, the display apparatus 4 is instanced as having a plurality of pixels (not shown in
The driving module 2 includes a scan driving circuit 21, a detection circuit 22, and a scan signal generating circuit 23. The driving module 2 can further include a data driving circuit 24. The scan driving circuit 21 is electrically connected with the display panel 3 through the scan lines Sm, and the data driving circuit 24 is electrically connected with the display panel 3 through the data lines Dn. As shown in
The scan driving signal SD includes at least one first precharge-level voltage P1 and a first target-level voltage T1. The first precharge-level voltage P1 is higher than the first target-level voltage T1, and the first precharge-level voltage P1 is switched to the first target-level voltage T1 after a first switch time t1. Furthermore, the scan driving signal SD includes at least one second precharge-level voltage P2 and a second target-level voltage T2. The second precharge-level voltage P2 is lower than the second target-level voltage T2, and the second precharge-level voltage P2 is switched to the second target-level voltage T2 after a second switch time t2. In the embodiment, the first target-level voltage T1 can serve as the high level voltage of the scan driving signal SD for turning on, and the second target-level voltage T2 can serve as the low level voltage of the scan driving signal SD for turning off. In the embodiment as shown in
The following is the clear illustration of how to determine the first precharge-level voltage P1, the second precharge-level voltage P2, the first target-level voltage T1, the second target-level voltage T2, the first switch time t1, and the second switch time t2.
The first target-level voltage T1 and the second target-level voltage T2 are determined according to the gray level voltage driving the pixels of the display panel 3, and in other words, according to the gray level voltage of the data driving signal DD driving the display panel 3. The first target-level voltage T1 can be higher than the highest gray level voltage by at least one threshold voltage. The second target-level voltage T2 can be lower than the lowest gray level voltage by at least one threshold voltage. Herein, the highest gray level voltage is the highest gray level voltage of a frame, and the lowest gray level voltage is the lowest gray level voltage of a frame.
In detail, the first target-level voltage T1 and the second target-level voltage T2 are changeable, determined according to the data driving signals DD corresponding to each row of the pixels, or a certain area's pixels, or the whole pixels. For example, in a certain frame, the data driving signal DD corresponding to a certain row of pixels includes the highest gray level voltage 5V and the lowest gray level voltage −3V among the whole gray level voltages. Hence, the scan driving signal SD driving the certain row of pixels can have the first target-level voltage T1 determined as higher than the highest gray level voltage (5V for example) by at least one threshold voltage, and have the second target-level voltage T2 determined as lower than the lowest gray level voltage (−3V for example) by at least one threshold voltage. So, the first target-level voltage T1 can be determined as 7V for example, and the second target-level voltage T2 can be determined as −5V for example. To be noted, the first target-level voltage T1 and the second target-level voltage T2 can be varied and determined according to the practical requirement. Besides, because the data driving signals DD for driving the pixels corresponding to the different scan lines maybe have the same or different highest gray level voltage, the scan driving signals SD of the different scan lines thus have the same or different first target-level voltage T1 and second target-level voltage T2. Accordingly, because the scan driving signals SD for driving the pixels of the display panel 3 is not fixed to a level as high as the prior art, the power consumption and the stress effect of the pixel switch devices (such as transistors) can be decreased in the invention.
The detection circuit 22 can detect the RC loading of the scan line to determine the first switch time t1 and the second switch time t2. The detection circuit 22 will generate a time constant τ corresponding to the scan line according to its RC loading to determine the first switch time t1 and the second switch time t2. Herein, the time constant τ equals the product of the equivalent resistance and the equivalent capacitance of the scan line, i.e. “τ=R×C”.
Because the scan line can be regarded as the combination of an equivalent resistor R and an equivalent capacitor C, and besides, each scan line of the display apparatus 4 is connected to the same loading (pixels of the display panel 3), the detection circuit 22 can detect the RC loading of any scan line. During the detection, the detection circuit 22 can transmits at least one detection signal Ts to a scan line to detect the time constant τ of the scan line. As shown in
In other words, in order to determine the first switch time t1 and the second switch time t2, the detection circuit 22 transmits a detection signal Ts to a scan line at one or more times, such as the time ts1 or ts2 as shown in
V(t)=Vi+ΔV(1−e(−t/τ)), ΔV=Vf−Vi=20V, τ=RC
The dotted lines on the right side of
For example, it is assumed that one scan line has an RC loading conforming to the RC loading curve 1 as shown in
For another example, it is assumed that another scan line has an RC loading conforming to the RC loading curve 2 as shown in
After the time constant τ of the scan line is derived, the first switch time t1 and the second switch time t2 can be set to a multiple of the time constant τ, and the multiple can be varied according to the size of the display panel 3. Besides, the first switch time t1 and the second switch time t2 can be determined according to the requirement of the amount of the charging time.
As shown in
As shown in
The scan signal generating circuit 23 determines the first precharge-level voltage P1 and the second precharge-level voltage P2 according to the first target-level voltage T1, the second target-level voltage T2, and the first switch time t1 (and the second switch time t2) and based on a look up table. The look up table can be built in the scan signal generating circuit 23.
In order to determine the first precharge-level voltage P1 and the second precharge-level voltage P2, the first target-level voltage T1 and the second target-level voltage T2 can be determined and a multiple of the time constant τ can be determined according to the panel size and requirement. For example, as shown in the below Table 1, if the first target-level voltage T1 and the second target-level voltage T2 are respectively determined as 15V and −5V by referring to the gray level voltage, and the two times of the time constant τ is selected, the first precharge-level voltage P1 and the second precharge-level voltage P2 can be derived as 18.13V and −8.13V respectively. To be noted, when the multiple of the time constant τ is decreased, the first precharge-level voltage P1 becomes higher and the second precharge-level voltage P2 becomes lower. Therefore, the first target-level voltage T1, the second target-level voltage T2, the first switch time t1, and the second switch time t2 can be properly selected according to the design requirement, and then the first precharge-level voltage P1 and the second precharge-level voltage P2 can be derived by referring to the look up table.
As shown in
The scan signal generating circuit 23 can output the first precharge-level voltage P1, the second precharge-level voltage P2, the first target-level voltage T1, the second target-level voltage T2, the first switch time t1, and the second switch time t2 to the scan driving circuit 21. For the clear illustration, the output buffer circuit 213 as shown in
As shown in
As shown in
As mentioned above, the scan line is pre-charged by the higher first precharge-level voltage P1 and then switched to the first target-level voltage T1 after the first switch time t1, and shut off by the lower second precharge-level voltage P2 and then switched to the second target-level voltage T2 after the second switch time t2. Therefore, the scan driving signal can be driven rapidly to the target-level voltage, reducing the charging and discharging time of the scan line's loading and diminishing the scan line's signal delay. Besides, because the scan driving signals SD for driving the pixels of the display panel 3 is not fixed to a level as high as the prior art, the power consumption and the stress effect of the pixel switch devices (such as transistors) can be decreased in the display apparatus 4 of the embodiment.
The step S01 is to determine a first target-level voltage T1 and a second target-level voltage T2 of a signal of a scan line. Herein, the first target-level voltage T1 and the second target-level voltage T2 are determined according to the gray level voltages driving the pixels of the display panel 3.
The step S02 is to determine a first switch time t1 and a second switch time t2 according to an RC loading of the scan line.
As shown in
The step S03 is to determine at least one first precharge-level voltage P1 and at least one second precharge-level voltage P2 according to the first target-level voltage T1, the second target-level voltage T2, the first switch time t1, and the second switch time t2.
As shown in
The step S04 is to output the first precharge-level voltage P1, the first target-level voltage T1, the second precharge-level voltage P2, and the second target-level voltage T2 to drive the display panel, wherein the first precharge-level voltage P1 is switched to the first target-level voltage T1 after the first switch time t1, and the second precharge-level voltage P2 is switched to the second target-level voltage T2 after the second switch time t2.
As shown in
Because the features of the display driving method of the embodiment have been clearly illustrated as the above embodiments, the detailed descriptions are omitted here.
In summary, in the display driving method, the driving module and the display apparatus of the invention, a first switch time and a second switch time are determined according to the RC loading of the scan line. Besides, a first precharge-level voltage and a second precharge-level voltage are determined according to the first target-level voltage, the second target-level voltage, the first switch time, and the second switch time. Then, the first precharge-level voltage, the first target-level voltage, the second precharge-level voltage, and the second target-level voltage are output to drive the display panel. The first precharge-level voltage is switched to the first target-level voltage after the first switch time, and the second precharge-level voltage is switched to the second target-level voltage after the second switch time. Accordingly, the scan driving signal can be driven rapidly to the target-level voltage, reducing the charging and discharging time of the scan line's loading and diminishing the scan line's signal delay. Besides, because the scan driving signals for driving the pixels of the display panel are not fixed to a level as high as the prior art, the power consumption and the stress effect of the pixel switch devices (such as transistors) can be decreased in the display apparatus of the invention.
Although the invention has been described with reference to specific embodiments, this description is not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments, will be apparent to persons skilled in the art. It is, therefore, contemplated that the appended claims will cover all modifications that fall within the true scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
100145614 A | Dec 2011 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
20020024486 | Aoki | Feb 2002 | A1 |
20090009498 | Nishimura | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
200933568 | Aug 2009 | TW |
201037675 | Oct 2010 | TW |
Number | Date | Country | |
---|---|---|---|
20130147856 A1 | Jun 2013 | US |