The present invention relates to the field of display elements, in particular to elements making use of the electrowetting principle.
There is a need to make low cost displays. One way to make displays inexpensive is to make them roll-to-roll. This implies that displays can be made on a large scale using traditional methods of coating and not requiring vacuum evaporation steps or the like. Some displays rely on the use of expensive liquid crystals, perhaps with a number of additional filter members such as polarizers and light coupling films. Avoiding the use of liquid crystal might be seen to be advantageous. One technology that might give means of roll-to roll manufacturing and without the need for liquid crystals is a display based on electrowetting on a flexible support.
A basic electrowetting optical element is described in EP1069450, “Optical element and optical device having it”. A further refinement to this concept using said element to create a pixel as part of an electrowetting display device is described in WO2004104670 “Display Device”. These devices switch when a potential is applied that causes a conducting solution to push aside a non-conducting oil that is usually coloured with a dye or pigment. When the voltage is removed the liquids relax and the oil covers the whole pixel again.
The manufacture of a low cost electrowetting display on a support requires air-tight sealing of the two-phase liquid system between two electrodes. The seal not only confines the liquids within the display, but is also required to prevent evaporative loss of the two liquid phases, particularly the water phase, since this has the larger volume and surrounds the oil phase. The water phase is required to have a large electrical conductance. This is normally achieved by the addition of salt such as KCl.
According to the present invention there is provided a device comprising one or more dielectric layers, one side of the layer or layers being conductive, a hydrophobic layer on the opposing side of the dielectric layer, a first and a second fluid located on the surface of the hydrophobic layer, the fluids being immiscible with each other, the first fluid comprising at least one ionic liquid, and means for electrically connecting the conductive layer and the first fluid.
Preferably the support is flexible. However it will be understood by those skilled in the art that it is not necessary for the support to be flexible.
Using an ionic liquid to replace the water phase solves the problem of requiring an airtight seal, due to the extremely low volatility of the ionic liquid. The ionic liquid does not evaporate. The seal need only be sufficient to confine the two liquid phases within the display. A further advantage of the invention is that the ionic liquid by its nature is intrinsically highly conductive. The ionic liquid has higher conductivity than using water with added ions. Therefore no additional salt need be added. In addition, the molecular structure can be tuned to optimise other properties such as viscosity, interfacial tension and immiscibility. Furthermore, the device construction is simplified and avoids problems such as crystallisation of any dissolved salt.
The invention will now be described with reference to the accompanying drawing in which:
The basic minimum requirements to create an electrowetting pixel element or device on a support are shown in
where θ0 is contact angle in the absence of applied voltage and θ the voltage dependent contact angle, ∈ the dielectric constant of the layers of thickness d, and γLV is the interfacial tension between the oil and water solutions.
An experiment using the arrangement as described above was used. In accordance with the invention the conductive water phase was replaced by an ionic liquid, in this example Ethyl Methylimidazole dicyanamid (EMIM DCA). It will be understood by those skilled in the art that any suitable ionic liquid may be used. The ionic liquid used has a low viscosity, is highly conductive and is non-volatile. The change in area of the decane drop with applied DC voltage is shown in
In a preferred embodiment the support layer is flexible. However this is not an essential feature of the invention. The support layer may equally be rigid. Possible rigid supports include glass and silica, metal, silicon or any other semiconductor material. It will be understood by those skilled in the art that any suitable material may be used for the support layer.
The dye in the oil may be a liquid or a pigment.
Using the ionic liquid on top of the decane+dye drop meant that the system was not destroyed by evaporation and was stable for several days. In contrast, a similar experiment using water+0.1M KCL as the conductive liquid top layer was only stable for a period of order tens of minutes, due to evaporation of the water.
The invention has been described in detail with reference to preferred embodiments thereof. It will be understood by those skilled in the art that variations and modifications can be effected within the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
0621635.2 | Oct 2006 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB07/03883 | 10/15/2007 | WO | 00 | 3/24/2009 |