The invention disclosed here generally relates to the retail display of hand-held electronic devices. More particularly, the invention relates to an improved way to manage device power and alarm functions when one device is swapped with another from a display.
Retailers commonly sell hand-held electronic devices (i.e., video cameras, digital cameras, cell phones, etc.) via in-store countertop displays. These displays often have a number of “post” positions where product models are mounted to a countertop.
The most common type of display uses a mounting piece or “puck” that is connected to the underside of the hand-held. The puck typically rests on a base piece on the countertop. The puck is lifted from the base piece and put back when a consumer wishes to handle the product. The puck is physically and electrically tethered to the display by a conventional, “multi-conductor” retractor cable.
The retractor cable is called “multi-conductor” because it typically consists of multiple numbers of individually insulated conductor wires surrounded by an exterior sheath. The conductor wires deliver electrical power to the puck (for powering the hand-held) and also provide electrical signal wires for alarm functions. The number of individual conductor wires in the cable may vary for different reasons.
Display posts have evolved over the years in a way that parallels the many changes, improvements, and evolutions of hand-held products in the consumer electronic market. Given that hand-held product models change on a regular basis, a need has arisen to develop display post systems that make it easy to swap one type of product (or “hand-held”) with another off the puck.
The retailers who purchase systems of this type for in-store customer displays want display posts that allow sales people to make product swaps easily, with little or no training, and with no significant or complicated cable management and power supply changes. From the standpoint of the sales person, the best type of design is one that allows the sales person to easily detach one hand-held from the puck and replace it with another, making the necessary electrical connections using only a short cable between the puck and hand-held.
One of the earlier display post designs of this type used a multi-conductor retractor cable that had several power wires in it, each of which supplied a unique operating voltage that was intended to match a specific kind of device. For example, one wire provided a standardized high voltage for devices that needed high power (e.g., a video camera), another wire provided a standardized low voltage for devices requiring lower power (e.g., a cell phone), and so forth.
The system described above employed a short patch cord that interconnected the hand-held with a modular connector on the end of the retractor cable. One end of the cord plugged into the power socket on the device. The other end had a “pinned” connector that plugged directly into the modular connector on the end of the retractor cable.
The pins of the patch cord connector were customized for specific electronic devices. A single power pin on the patch cord connector uniquely mated with one power socket out of several offered within the body of the other modular connector on the end of the retractor cable (each socket corresponding to different power wires within the retractor cable). In this way, a pin-to-socket connection was used to select the correct power wire for the device (that is, one power wire within the many offered by the multi-conductor retractor). One type of device was easy to swap with another because it could be done by swapping patch cords having a different pin that matched a different power socket in the retractor cable's modular connector.
The above design was described in U.S. Pat. Nos. 6,386,906 and 6,799,994. This design has drawbacks, however, and it did not appear to be accepted by the marketplace. First, the voltage delivered to the end of the retractor cable tends to vary because of the length of the wire spooled onto the retractor's reel, which is related to the low voltage and current of the electrical power transmitted through the retractor cable's conductor wires. This was not acceptable because early hand-held designs, in particular, tended to malfunction in response to relatively minor variations in power supply voltages. Second, this early design was limited by the specific number of individual power lines running through the retractor cable—which defined a finite number of power selection options. Thus, it was inflexible to new hand-held models if they had different power requirements from the ones previously used.
In or about 1999 or 2000, the assignee of the present invention created an improvement to the above design. This new or next generation design employed a single power line in a retractor cable that supplied adequate power at a voltage sufficiently high to power any hand-held product. The power line connected to an electronics control board (“ECB”) within the puck. Among other things, the ECB included voltage regulator circuitry for stabilizing the voltage in the puck at a steady and consistent level that did not materially fluctuate, at the puck's location, regardless of upstream variations of current and voltage in the power line.
In this next generation, the hand-held, mounted to the puck, connects to the ECB by a dedicated patch cord or “smart” cable. The smart cable has a circuit with a resistor in it that steps down the voltage from the ECB to the precise level needed by the hand-held.
Although the above design was subsequent in time to the design described in U.S. Pat. Nos. 6,386,906 and 6,799,994, it is believed the second design was the first one to be commercially successful, because it solved the technical problems described above that are specifically attributable to the earlier design.
In the second design, different smart cables were provided for different hand-helds, depending on individual power needs, which allowed easy swapping of one product model with the next. However, unlike the first design, the second one eliminated the use of mechanical “pins” and the need for modular electrical cable connectors to swap hand-held products. Instead, the second design's smart cable used a unique resistance value built into an electrical power circuit, all within the smart cable, which connected the puck to the hand-held. Using different resistance values in different smart cables (corresponding to the electrical requirements of different products) enabled products to be swapped to and from the puck easily and more flexibly.
While it was a significant improvement, the on-going drawback to the above smart cable design is that it continues to require use of a multi-conductor retractor cable as both a physical tether and source of electrical power and other signals. The ongoing problem relates to wear and tear. The retractor cable invariably goes through many pulling and retraction cycles by consumers as they lift the product from the display over time.
From the standpoint of electrical functions, the eventual wear caused by the retractor cycling action leads to related electrical connection problems between the ECB in the puck and upstream power and signal source modules that are located underneath the countertop (that is, modules that are connected to the ECB in the puck via the retractor cable). These connection problems ultimately result in things like the hand-held not receiving power or alarms going off when they should not go off—which are not desirable outcomes for the retailer.
Moreover, multi-conductor retractor cables are not physically robust. The wires within the cable are thin in diameter and relatively easy to break or cut. The exterior sheath on the multi-conductor retractor cable wears and becomes frayed relatively quickly. From the standpoint of a physical tether, multi-conductor retractor cables lack the strength of conventional steel cable retractors. In fact, there was an earlier time in the consumer display market when steel retractor cables were used to tether retail products to countertops, if security against theft was of concern.
Multi-conductor retractor cables eventually replaced steel cables because of evolving power and security requirements, along with the desire to minimize the total number of power and security cables, etc. That is, rather than have multiple numbers of unorganized power and security alarm wires extending to an electronic product on a display countertop from power adapters and control modules below a countertop, all of the wiring evolved into the multiple number of conductors resident within a single, multi-conductor retractor cable. If the multi-conductor retractor cable is cut, then an alarm sensor circuit provided by the conductors in the cable will be broken—which will generate a signal to the retailer that someone is probably stealing the product.
This type of product evolution caused multi-conductor retractor cables to supplant the physical tethering function of steel cable retractors. However, even with modern sensor circuits that automatically signal an alarm when the retractor cable is cut or broken in some way, multi-conductor retractor cables continue to be regarded as less secure than the older-style steel cable retractors, simply because steel cables are physically stronger and difficult to cut in the store without drawing attention.
The design described below offers the next generation of puck and patch cord display post for selling hand-held consumer electronics that is intended to provide an alternative to the multi-conductor retractor system described above.
The invention disclosed here is an improved display for hand-held consumer electronic devices like digital cameras, cell phones, digital camcorders, GPS devices, etc. The display is intended to be used in retail environments where large numbers of individual electronic devices are displayed in an array. The invention is an improved version of the puck and patch cord display system that is currently in use in the retail industry.
Like prior designs, the display disclosed here has a mounting member for the electronic device. As indicated above, this member is usually referred to as a “puck.” The puck provides a housing for necessary power and alarm electronics and, at the same time, a movable platform for bearing the hand-held that is to be offered for sale on the display. The physical size of the puck will vary according to retailer application.
The display includes a post or similar base piece that is connected to a countertop or similar surface. The base piece provides a fixed resting point for the puck. The physical implementation of the base piece also varies. Sometimes it has a very low profile relative to the countertop. Other times it takes the form of a short post.
The present invention is differentiated from prior designs because it successfully eliminates the need or requirement for a multi-conductor retractor cable in order to provide power and security alarm functions for the display. In other words, both hand-held power and security alarm functions can be sourced through the puck wirelessly—without needing the hard wiring (i.e., multiple conductors) within a retractor cable that spools to and from a reel.
The design disclosed here utilizes a rechargeable power storage device carried by the puck (e.g., a single battery or multiple batteries)—with the rechargeable power storage device traveling with the puck as it is lifted from the display surface. When the puck is at rest, single input power is delivered to an electronics board or ECB that is resident within the puck. The power input is delivered from a conventional power supply, or power source, at that particular time only. The power input connection occurs via contacts that are brought together when the puck is placed on or in the base piece on the display surface. At that time only, the rechargeable power storage device carried by the puck is electrically coupled to power, and recharges, via the puck ECB.
The power supply is usually resident within the control module under the countertop, although this could be a variable. The ECB inside the puck serves as a power manifold and electronics control for the rechargeable storage device and other components, as needed, for accomplishing hand-held power and security alarm functions.
When the puck is subsequently lifted from the display surface, the rechargeable power storage device (once again, carried by the puck) is decoupled from the power source. At that time, the power storage device independently enables the operation of the hand-held and/or other electronic components carried by the puck (e.g., security alarm circuitry or other control functions inside the puck's housing) for a period of time sufficient to allow a consumer to handle the product and determine how it works. When the puck is returned to the display, the power storage device reconnects to the power source for another recharging cycle.
The hand-held is detachably mounted to the puck, so that one hand-held can be swapped with another kind. The hand-held is electrically connected to the puck via a short patch cord that will also be swapped (at least typically) when hand-helds are changed. Other kinds of primary and secondary alarm sensors, common to the industry, may interconnect hand-held and puck, depending on retailer needs. In all cases, the combination of hand-held, puck, patch cord and alarm sensor components are collectively decoupled from direct and continuous contact with the power source under the countertop when the puck is lifted.
Once again, the above arrangement eliminates the need for the kinds of multi-conductor retractor cables used in earlier designs, along with the drawbacks attached to the same. However, if desired, a conventional steel cable retractor may be used to tether the puck to the display, thereby replacing the security function of the less physically robust multi-conductor retractor cable used in the past. Because steel cables are harder to cut, they provide a higher level of physical security against theft or unauthorized removal. They also do not have the same long-term wear problems that attach to multi-conductor cables (which typically have a soft material sheath that surrounds the interior wires).
It is possible to implement the rechargeable storage device in different ways, depending on the needs of the retailer and the specific model or type of hand-held that is displayed. For some hand-helds, it will be possible to take advantage of the battery that is normally part of the product. Cell phones will often have their batteries in place, on the display, in order to be operated by a potential customer. In this particular case, it is possible to configure the puck electronics, or ECB, so that a single input, power-charging connection is made to the cell phone battery via the puck's ECB when the puck is at rest. The cell phone's battery charges and operates in conventional fashion, using the puck as a pass-through platform for recharging purposes. According to this particular example, the cell phone battery serves as the “power storage device” that is carried by or travels with the puck, although it is to be understood that this arrangement is physically more indirect, because the cell phone battery is not housed directly within the body of the puck.
Alternatively, the footprint of the puck, or the puck housing, can be designed so that it carries a separate battery that is adequate to independently supply power to the electronic device, the ECB, and other puck electronics, as needed. This example can be made to apply to other kinds of hand-helds that are not displayed with their own batteries and/or will operate without batteries in place.
Yet another hybrid version of the design disclosed here may involve using an independent rechargeable battery in the puck, for supplying power to puck electronics, while, at the same time, taking advantage of the handheld's rechargeable battery. In other words, in this version, the “power storage device” carried by the puck comprises two batteries, both carried by the puck at the same time—one in the puck and the other on the displayed product.
In this last example, the battery in the puck may provide power for driving alarm and other kinds of display features or ECB functions, while the hand-held battery still provides primary power to just the hand-held. Similar to the other versions described above, charging of these multiple battery components occurs via a single power input to puck circuitry (the ECB) when the puck is at rest. They discharge as needed to provide hand-held power and alarm functions after the puck is lifted from the base piece.
All of these alternatives are considered to fall within the scope of claim language calling for a power storage device that is carried by or travels with the puck, unless amendments and arguments relating to this disclosure, as reflected in U.S. Patent Office records, should subsequently indicate otherwise. Moreover, the rechargeable power storage device carried by the puck might include other kinds of electrical storage devices, like capacitance devices, for example.
As explained previously, electronic retail displays have been reliant on multi-conductor retractor cables because they need multiple lines to the puck for different functions (i.e., power and security). If one reviews prior art designs that involve electrical security alarms (e.g., RE 37,590) or attempts at providing universal power (e.g., U.S. Pat. Nos. 6,386,906 and 6,799,994), they share a common limitation in that all involve use of a continuous electrical line, or lines, between a control module under the countertop and the puck. In all of these cases, the necessary lines are provided by a retractor cable.
Therefore, in accordance with the conceptual difference between the design disclosed here and the prior art, the present design wirelessly severs the puck-mounted power and alarm circuitry from prior reliance on conductor wires in a retractor cable. A steel retractor cable (“steel tether”) is the only cabling necessary for connecting puck to countertop, if such cable is desired. And, while it may be desirable to continue using a steel tether, the present invention allows a combined hand-held/puck/patch cord implementation that can provide power and a security alarm without any physical tethering at all. In other words, while many retailers may desire a steel tether for the physical security it provides against theft, it is possible to do without, because the design described here also provides wireless security alarm functionality.
The present design provides security alarm functions via an ECB-controlled wireless device, or wireless transmitter, that is also carried by the puck. The rechargeable power storage device carried by the puck, as per the above description, also powers the wireless device. It preferably operates in conjunction with one or more conventional alarm sensors that may include, for example, a mechanically triggered sensor, or a secondary alarm sensor. Sensors of this kind are common to existing display designs.
The wireless device in the puck communicates an active wireless signal from the puck to a control module that is located under the display countertop or elsewhere. The wireless signal from the puck changes if an alarm sensor is triggered in some way—which indicates a theft event or the like. In all cases, however, the security functionality is essentially closed to the arrangement of puck and hand-held, with the wireless device providing the means for indicating an alarm event to a control module, in lieu of transmitting the alarm event as a security signal through a wire in a multi-conductor cable, as was done in the past.
Alternatively, the physical proximity of the wireless device to the control module (under the countertop or elsewhere) may allow for the triggering of an alarm signal due to the increased distance caused by an unauthorized removal event. The wireless device operates both when the puck is at rest and when it is lifted from the base piece.
The above features are further described in the following more detailed description, which is to be read in conjunction with the drawings.
In the drawings, like reference numerals and letters refer to like parts throughout the various views, and wherein:
Referring now to the drawings, and first to
The improvement described here includes a base 12 that is mounted to a display countertop or the like (not shown). This is typically accomplished by inserting the threaded portion 14 of the base down through a bore in the countertop's surface. A threaded member, or threaded ring, screws onto threads 14 from underneath the countertop, thus holding the base firmly in position. This type of mounting means is conventional and has been used with displays of the kind described here for many years.
The device 10 includes a “puck” portion 16 that is connected to an end 18 of a steel cable 20. The steel cable 20 extends from and retracts back into a housing 22. This particular collection of retractor parts is referred to herein as a steel retractor cable 24. The steel retractor cable 24 is conventional in design and would be familiar to those having knowledge and experience with retail security systems.
The puck 16 has a generally rectangular housing 26 (see
Inside the puck 16 is an electronics control board (ECB), indicated generally at 30. The ECB 30 carries various electronic components schematically illustrated in
The display 10 will have a typical control (power and alarm) module 32 (e.g., under the countertop) that delivers power to a set of charge contacts 34. The charge contacts 34 are mounted to a base ring 36 that fits inside the base 12.
Referring to
Mounted below the ECB 30 is a charge contact ring, indicated generally at 46. The charge contact ring 46 is illustrated more clearly in
When the puck 16 is at rest (see
First, the ECB board 30 is designed to take advantage of those hand-helds that are displayed with batteries in them (typically, cell phones). When the display 10 is used for this type of device, power that is communicated to the puck, when the puck 16 is at rest, flows through contacts 34, 50 to the ECB 30 in the puck and then to both the battery 52 in the puck and the battery in the hand-held—for the purpose of charging both batteries. Power to the hand-held battery will be supplied via a conventional patch cord or smart cable 54 (see description below) power connection. When the puck 16 is lifted from the base 12, the contacts between charge contacts 34 and 50 are broken, which means the hand-held operates on its own charged batteries at that point in time. This is the “hybrid” design summarized above.
Depending on the technical application, the ECB 30 may or may not provide voltage regulation functionality. In other words, when the display 10 is used as a “universal” device that allows the swapping of different kinds of hand-helds with different power requirements, the control module 32 supplies sufficient power, via contacts 34, 50, 32, to generate the electrical energy necessary to operate any type of hand-held that might be mounted to the display 10 after the puck/hand-held combination is lifted from the base piece 12. If needed, ECB 30 may provide the type of voltage regulation functionality currently in use with prior art designs. In such case, the design may include a patch cord similar to what the industry currently knows as a “smart cable” (see item 54 in
Depending on the technical application, ECB 30 will usually need power independently of the hand-held when the charge contacts are broken, regardless of whether the hand-held has its own battery. Among other things, in preferred form, the ECB 30 carries a wireless device 56 for theft or security purposes (see
As suggested above, depending on the retailer's needs, it is likely a hybrid version of the design will be employed, as described above. That is, the electrical power storage device carried by the puck 16 will be in the form of what is essentially a two battery system—one battery being the one typically carried by the hand-held; the other battery being like battery 52 on the ECB 30.
Yet another alternative embodiment is generally illustrated in
This alternative embodiment is intended for use in situations where different hand-helds are to be swapped to and from the puck 16, and it is needed to have sufficient power carried by the puck for operating any hand-held. In this example, the ECB 30 may regulate both charging and discharging of the battery 60 when the puck 16 is respectively at rest or is lifted. Other parts of the puck design are conventional relative to prior designs that have been in the field for many years, including use of “smart cables” and voltage regulation on the ECB as needed.
The puck 16 includes means for attaching a secondary alarm sensor 64 to the electronic device. The use of secondary sensors is well-known in the art. A typical example is illustrated in U.S. Pat. No. 5,861,807, which is incorporated herein by reference.
The puck 16 will also have a primary alarm sensor that is triggered if the hand-held is physically disconnected from the puck. This is a common design feature and need not be further described here. It may be desirable to include a VHB pad 66 on the top surface of the puck's housing 26. The puck is likely to have a primary sensor trigger 68. While the physical look changes from one embodiment to the next, these specific components are generally familiar to a person of ordinary skill in the art. The implementation of primary and secondary sensors in this field is known.
Reference numerals 70, 72, 74, 76, 78, 80, 82, 84 and 86 correspond to like connections on the left-hand side of
As described above, a closed loop circuit arrangement will exist between the ECB 30 and primary or secondary alarm sensors 108. For reference purposes, one type of alarm sensor could be a spring loaded pin, like pin 46 described in U.S. Pat. No. 6,946,961. U.S. Pat. No. 6,946,961 is incorporated herein by reference and also illustrates the positioning of alarm assemblies and control modules for displays of the type described here. Another type of sensor, usually called “secondary,” is illustrated in U.S. Pat. No. 5,861,807, also incorporated herein by reference. The difference between primary and secondary alarm sensor functions would be familiar to those having knowledge of power and security displays for consumer electronics.
In preferred form, the wireless device 56 will transmit a different signal to the alarm module if one of two events takes place (see item 110). First, the wireless device 56 will transmit a different signal if its proximity goes beyond a certain distance from the alarm module, as indicated at 112. Under these circumstances a signal alteration 114 is detected that indicates a connection change due to distance or some other reason that may suggest a security alarm event. This type of functionality can be accomplished with or without a steel retractor cable.
Next, if a primary/secondary alarm circuit is broken, then it triggers a similar signal alteration event, as indicated at 116. Both detectable events would correspond to an unauthorized removal of the puck 16 from the base 12, thus necessitating a security alarm 118. This type of functionality is consistent with security alarm sensors presently in use.
It likely that there will be new ways of implementing the design described here as technology changes. As an example, the use of one or more batteries carried by the puck may eventually evolve into some other type of device (i.e., capacitance) that is capable of performing the same functionality. There are commonly known wireless transmitters that are capable of carrying out the functionality described here, but new types may evolve in the future. The problem solved by the present invention is that it eliminates the hard-wiring of power and alarm functions from a display puck via the use of a multi-conductor retractor cable. Therefore, the invention described above is not to be limited to the particular details of the foregoing description. Instead, the scope of the invention and/or the scope of the patent right is to be limited only by the patent claims, the interpretation of which is to be made in accordance with standard doctrines of patent claim interpretation as per the various disclosures in this document.
Number | Name | Date | Kind |
---|---|---|---|
883335 | O'Connor | Mar 1908 | A |
3274631 | Spohr | Sep 1966 | A |
3444547 | Surek | May 1969 | A |
3780909 | Callahan et al. | Dec 1973 | A |
3840795 | Roszyk et al. | Oct 1974 | A |
4075878 | Best | Feb 1978 | A |
4117465 | Timblin | Sep 1978 | A |
4335931 | Kinnear | Jun 1982 | A |
4354613 | Desai et al. | Oct 1982 | A |
4370020 | Davey | Jan 1983 | A |
4384688 | Smith | May 1983 | A |
4590337 | Engelmore | May 1986 | A |
4714184 | Young et al. | Dec 1987 | A |
4772878 | Kane | Sep 1988 | A |
4898493 | Blankenburg | Feb 1990 | A |
4920334 | DeVolpi | Apr 1990 | A |
5003292 | Harding et al. | Mar 1991 | A |
5072213 | Close | Dec 1991 | A |
5146205 | Keifer | Sep 1992 | A |
5176465 | Holsted | Jan 1993 | A |
5246183 | Leyden | Sep 1993 | A |
5543782 | Rothbaum et al. | Aug 1996 | A |
5552771 | Leyden et al. | Sep 1996 | A |
5685436 | Davet | Nov 1997 | A |
5861807 | Leyden et al. | Jan 1999 | A |
6039496 | Bishop | Mar 2000 | A |
6170775 | Kovacik et al. | Jan 2001 | B1 |
6236435 | Gertz | May 2001 | B1 |
6314236 | Taylor | Nov 2001 | B1 |
6380855 | Ott | Apr 2002 | B1 |
6386906 | Burke | May 2002 | B1 |
6476717 | Gross | Nov 2002 | B1 |
6502727 | Decoteau | Jan 2003 | B1 |
6581421 | Chmela et al. | Jun 2003 | B2 |
6659382 | Ryczek | Dec 2003 | B2 |
6731212 | Hirose et al. | May 2004 | B2 |
6748707 | Buchalter et al. | Jun 2004 | B1 |
6761579 | Fort et al. | Jul 2004 | B2 |
6786766 | Chopra | Sep 2004 | B1 |
6799994 | Burke | Oct 2004 | B2 |
6831560 | Gresset | Dec 2004 | B2 |
6896543 | Fort et al. | May 2005 | B2 |
6946961 | Frederiksen et al. | Sep 2005 | B2 |
6961401 | Nally et al. | Nov 2005 | B1 |
7015596 | Pail | Mar 2006 | B2 |
7053774 | Sedon et al. | May 2006 | B2 |
7081822 | Leyden et al. | Jul 2006 | B2 |
7101187 | Deconinck et al. | Sep 2006 | B1 |
7132952 | Leyden et al. | Nov 2006 | B2 |
7135972 | Bonato | Nov 2006 | B2 |
7154039 | Marszalek et al. | Dec 2006 | B1 |
7209038 | Deconinck | Apr 2007 | B1 |
7287652 | Scholen et al. | Oct 2007 | B2 |
7327276 | Deconinck et al. | Feb 2008 | B1 |
7352567 | Hotelling et al. | Apr 2008 | B2 |
7385522 | Belden, Jr. et al. | Jun 2008 | B2 |
7387003 | Marszalek et al. | Jun 2008 | B2 |
7446659 | Marsilio et al. | Nov 2008 | B2 |
7522047 | Belden, Jr. et al. | Apr 2009 | B2 |
7626500 | Belden, Jr. et al. | Dec 2009 | B2 |
7667601 | Rabinowitz et al. | Feb 2010 | B2 |
7688205 | Ott | Mar 2010 | B2 |
7701339 | Irmscher et al. | Apr 2010 | B2 |
7710071 | Elizalde Rodarte | May 2010 | B2 |
7710266 | Belden, Jr | May 2010 | B2 |
7724135 | Rapp et al. | May 2010 | B2 |
7736846 | Masuda et al. | Jun 2010 | B2 |
7737843 | Belden, Jr. et al. | Jun 2010 | B2 |
7737844 | Scott et al. | Jun 2010 | B2 |
7737845 | Fawcett et al. | Jun 2010 | B2 |
7737846 | Belden, Jr. et al. | Jun 2010 | B2 |
7744404 | Henson et al. | Jun 2010 | B1 |
7909641 | Henson et al. | Mar 2011 | B1 |
7969305 | Belden, Jr. et al. | Jun 2011 | B2 |
7971845 | Galant | Jul 2011 | B2 |
8009348 | Zehner et al. | Aug 2011 | B2 |
D649076 | Alexander | Nov 2011 | S |
8102262 | Irmscher et al. | Jan 2012 | B2 |
D663972 | Alexander et al. | Jul 2012 | S |
8499384 | Zerhusen | Aug 2013 | B2 |
8558688 | Henson et al. | Oct 2013 | B2 |
8698617 | Henson et al. | Apr 2014 | B2 |
8698618 | Henson et al. | Apr 2014 | B2 |
8749194 | Kelsch et al. | Jun 2014 | B1 |
8814128 | Trinh | Aug 2014 | B2 |
8844972 | Riley et al. | Sep 2014 | B2 |
8847759 | Bisesti et al. | Sep 2014 | B2 |
8904686 | Greer | Dec 2014 | B2 |
8955807 | Alexander et al. | Feb 2015 | B2 |
8963498 | Ferguson | Feb 2015 | B2 |
9092960 | Wheeler | Jul 2015 | B2 |
9097380 | Wheeler | Aug 2015 | B2 |
9105167 | Fawcett | Aug 2015 | B2 |
9220358 | Wheeler et al. | Dec 2015 | B2 |
9269247 | Fawcett et al. | Feb 2016 | B2 |
9303809 | Reynolds et al. | Apr 2016 | B2 |
9373236 | Oehl et al. | Jun 2016 | B2 |
9396631 | Fawcett et al. | Jul 2016 | B2 |
9478110 | Fawcett et al. | Oct 2016 | B2 |
9576452 | Fawcett et al. | Feb 2017 | B2 |
9659472 | Fawcett et al. | May 2017 | B2 |
9786140 | Henson et al. | Oct 2017 | B2 |
10026281 | Henson et al. | Jul 2018 | B2 |
20010049222 | Fort et al. | Dec 2001 | A1 |
20020085343 | Wu et al. | Jul 2002 | A1 |
20020162366 | Chmela et al. | Nov 2002 | A1 |
20030007634 | Wang | Jan 2003 | A1 |
20030010859 | Ryczek | Jan 2003 | A1 |
20040003150 | Deguchi | Jan 2004 | A1 |
20040029498 | Neff | Feb 2004 | A1 |
20040077210 | Kollmann | Apr 2004 | A1 |
20040201449 | Denison et al. | Oct 2004 | A1 |
20050073413 | Sedon et al. | Apr 2005 | A1 |
20050088572 | Pandit et al. | Apr 2005 | A1 |
20050113036 | Lita | May 2005 | A1 |
20050165806 | Roatis et al. | Jul 2005 | A1 |
20050206522 | Leyden et al. | Sep 2005 | A1 |
20060001541 | Leyden et al. | Jan 2006 | A1 |
20060097875 | Ott | May 2006 | A1 |
20070075914 | Bates | Apr 2007 | A1 |
20070159328 | Belden et al. | Jul 2007 | A1 |
20070194918 | Rabinowitz et al. | Aug 2007 | A1 |
20070229259 | Irmscher et al. | Oct 2007 | A1 |
20080168806 | Belden et al. | Jul 2008 | A1 |
20080169923 | Belden et al. | Jul 2008 | A1 |
20080204239 | Marszalek et al. | Aug 2008 | A1 |
20080222849 | Lavoie | Sep 2008 | A1 |
20090007390 | Tsang et al. | Jan 2009 | A1 |
20090033492 | Rapp et al. | Feb 2009 | A1 |
20090173868 | Fawcett et al. | Jul 2009 | A1 |
20090322278 | Franks et al. | Dec 2009 | A1 |
20100007482 | Leyden et al. | Jan 2010 | A1 |
20100081473 | Chatterjee et al. | Apr 2010 | A1 |
20100146308 | Gioscia et al. | Jun 2010 | A1 |
20110068919 | Rapp et al. | Mar 2011 | A1 |
20110068920 | Yeager et al. | Mar 2011 | A1 |
20110254661 | Fawcett et al. | Oct 2011 | A1 |
20110283754 | Ezzo et al. | Nov 2011 | A1 |
20110303816 | Horvath et al. | Dec 2011 | A1 |
20110309934 | Henson et al. | Dec 2011 | A1 |
20120037783 | Alexander et al. | Feb 2012 | A1 |
20120043451 | Alexander et al. | Feb 2012 | A1 |
20120119910 | Belden, Jr. et al. | May 2012 | A1 |
20120205326 | Richter et al. | Aug 2012 | A1 |
20120217371 | Abdollahzadeh et al. | Aug 2012 | A1 |
20120280810 | Wheeler | Nov 2012 | A1 |
20120286118 | Richards | Nov 2012 | A1 |
20130026322 | Wheeler et al. | Jan 2013 | A1 |
20130043369 | Wheeler | Feb 2013 | A1 |
20130161054 | Allison et al. | Jun 2013 | A1 |
20130168527 | Wheeler et al. | Jul 2013 | A1 |
20130238516 | Moock et al. | Sep 2013 | A1 |
20130268316 | Moock et al. | Oct 2013 | A1 |
20140159898 | Wheeler et al. | Jun 2014 | A1 |
20140168884 | Wylie | Jun 2014 | A1 |
20150048625 | Weusten et al. | Feb 2015 | A1 |
20160042620 | Dandie et al. | Feb 2016 | A1 |
20160239796 | Grant et al. | Aug 2016 | A1 |
20170193780 | Moock et al. | Jul 2017 | A1 |
20170345266 | Henson et al. | Nov 2017 | A1 |
20180025596 | Henson et al. | Jan 2018 | A1 |
20180049563 | Henson et al. | Feb 2018 | A1 |
20180144593 | Henson et al. | May 2018 | A1 |
Number | Date | Country |
---|---|---|
506665 | Oct 2009 | AT |
2465692 | Nov 2004 | CA |
202009013722 | Jan 2011 | DE |
0745747 | Dec 1996 | EP |
1575249 | Sep 2005 | EP |
1058183 | Nov 2004 | ES |
2595227 | Sep 1987 | FR |
2768906 | Apr 1999 | FR |
2868459 | Oct 2005 | FR |
2427056 | Dec 2006 | GB |
2440600 | Feb 2008 | GB |
H0573857 | Oct 1993 | JP |
H0668913 | Mar 1994 | JP |
1997-259368 | Oct 1997 | JP |
3100287 | Oct 2000 | JP |
1997031347 | Aug 1997 | WO |
2004038670 | May 2004 | WO |
2009001273 | Dec 2008 | WO |
2009042905 | Apr 2009 | WO |
2011045058 | Apr 2011 | WO |
2012039794 | Mar 2012 | WO |
2012069816 | May 2012 | WO |
2012151130 | Nov 2012 | WO |
2013015855 | Jan 2013 | WO |
2013068036 | May 2013 | WO |
2013134484 | Sep 2013 | WO |
2014019072 | Feb 2014 | WO |
2014107184 | Jul 2014 | WO |
2014134718 | Sep 2014 | WO |
2015050710 | Apr 2015 | WO |
2015051840 | Apr 2015 | WO |
Entry |
---|
“35 mm Camera Display”—Walmart Publication 1995. |
“Declaration of Mike Cook”, Vanguard Products Group, Inc. v. Merchandising Technologies, Inc., Case No. 3:10-cv-392-BR, U.S. District Court for the District of Oregon, Oct. 20, 2010, pp. 1-7. |
“Declaration of Thaine Allison in Support of Patent Owner's Reply to Petitioner's Opposition to Patent Owner's Motion to Amend”, Inter Partes Review of U.S. Pat. No. 7,909,641, Case IPR2013-00122, Feb. 5, 2014, pp. 1-13. |
“Deposition of Thaine Allison, III”, Inter Partes Review of U.S. Pat. No. 7,909,641, Case IPR2013-00122, Feb. 24, 2014, pp. 1-198. |
“MTI Freedom Universal 2.0 Product Manual”, Dec. 2008, pp. 1-21. |
“Reasons for Substantial New Question of Patentability and Supplemental Examination Certificate”, Inter Partes Review of U.S. Pat. No. 7,909,641, Case IPR2013-00122, Jan. 30, 2013, pp. 1-12. |
Excerpts from Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C (1994). |
International Search Report for PCT/US2011/037235 dated Oct. 21, 2011. |
MTI 2008 PowerPoint, “Vanguard Program” (Exhibit 1005 of Declaration of Mike Cook), pp. 1-9. |
PropelInteractive, “Freedom Universal 2 Animation_003.wmv”, YouTube Video https://www.youtube.com/watch?v=_odGNnQv0BQ&t=1s, published on Feb. 16, 2010 (see sample screenshots, pp. 1-24). |
PropelInteractive, “Installing LP3 Old Version”, YouTube Video https://www.youtube.com/watch?v=FRUaOFWiDRw&t=1s, published on Jun. 28, 2010 (see sample screenshots, pp. 1-9). |
PropelInteractive, “MTI LP3 Product Mounting”, YouTube Video https://www.youtube.com/watch?v=KX4TEuj1jCl, published on Jun. 23, 2010 (see sample screenshots, pp. 1-11). |
Prosecution History for U.S. Appl. No. 12/819,944, now U.S. Pat. No. 8,698,617, filed Jun. 21, 2010. |
Prosecution History for U.S. Appl. No. 12/888,107, now U.S. Pat. No. 8,698,618, filed Sep. 22, 2010. |
Prosecution History for U.S. Appl. No. 13/457,348, now U.S. Pat. No. 8,558,688, filed Apr. 26, 2012. |
Prosecution History for U.S. Appl. No. 14/066,606, filed Oct. 29, 2013 (now abandoned). |
Prosecution History for U.S. Appl. No. 14/092,845, filed Nov. 27, 2013 (now abandoned). |
Protex International Corp., “Instructions for PowerPro Detangler”, 2005, 1 page. |
Protex International Corp., “Instructions for PowerPro Sensor Head Cameras and Camcorders (Power and Security)”, 2007, pp. 1-9. |
Protex International Corp., “PowerPro System”, 2006, pp. 1-2. |
RetailGeek, “Virtual Tour of MTI Retail Innovation Center in 2009,” YouTube Video https://www.youtube.com/watch?v=-wUvcDAmhj0, published on Aug. 2, 2010 (see transcript and sample screenshots, pp. 1-20). |
Reuters, “MTI Begins Shipping Freedom™ Universal 2.0 Merchandising Solution”, Oct. 1, 2008, pp. 1-3. |
U.S. Appl. No. 61/607,802, filed Mar. 7, 2012. |
U.S. Appl. No. 61/620,621, filed Apr. 5, 2012. |
U.S. Appl. No. 61/774,870 filed Mar. 8, 2013. |
U.S. Appl. No. 61/884,098, filed Sep. 29, 2013. |
Unicam Europe, “Freedom Lp3 4.17.09”, SlideShare Presentation https://www.slideshare.net/Borfu/freedom-lp3-41709, published on Jul. 28, 2009 (pp. 1-9). |
“Complaint for Civil Contempt, Breach of Contract, Declaratory Judgment, Injunction and Accounting”, Vanguard Products Group, Inc., and Telefonix, Inc. v. Merchandising Technologies, Inc., Case No. 3:10-cv-392 (USDC, District of Oregon, Portland Division) dated Dec. 13, 2017, pp. 1-39 (cited as Exhibit B in IDS Citation Nos. 2 & 3). |
“Complaint for Injunction and Damages”, Mobile Tech., Inc. d/b/a Mobile Technologies Inc. and MTI v. Invue Security Products Inc., Case No. 2:17-cv-07491 (Central District of California, Western Division) dated Oct. 13, 2017, pp. 1-83. |
“Declaration of Thaine Allison”, Vanguard Products Group, Inc., and Telefonix, Inc. v. Merchandising Technologies, Inc., Case No. 3:10-cv-392 (USDC, District of Oregon) dated Dec. 13, 2017, pp. 1-16 (cited as Exhibit C in IDS Citation Nos. 2 & 3). |
“Defendant's Amended Answer and Counterclaim to Complaint for Injunction and Damages”, Mobile Tech., Inc. d/b/a Mobile Technologies Inc. and MTI v. Invue Security Products Inc., Case No. 3:18-cv-00052 (Western District of North Carolina, Charlotte Division) dated Feb. 2, 2018, pp. 1-77. |
“Defendant's Answer and Counterclaim to Complaint for Injunction and Damages”, Mobile Tech., Inc. d/b/a Mobile Technologies Inc. and MTI v. Invue Security Products Inc., Case No. 2:17-cv-07491 (Central District of California, Western Division) dated Dec. 13, 2017, pp. 1-53. |
“Final Judgment by Consent and Permanent Injunction”, Vanguard Products Group, Inc., and Telefonix, Inc. v. Merchandising Technologies, Inc., Case No. 3:07-cv-1405 (USDC, District of Oregon) dated May 11, 2009, pp. 1-5 (cited as Exhibit A in IDS Citation Nos. 2 & 3). |
“Plaintiffs Answer to Defendant's Counterclaims”, Mobile Tech., Inc. d/b/a Mobile Technologies Inc. and MTI v. Invue Security Products Inc., Case No. 2:17-cv-07491 (Central District of California, Western Division) dated Jan. 12, 2018, pp. 1-20. |
Extended European Search Report for EP11827111.3 dated Oct. 30, 2017. |
Freedom LP3 brochure, MTI, Sep. 2009, 1 page. |
Freedom LP3 Product Manual, MTI, Mar. 2010, pp. 1-20. |
Freedom LP3 Product Manual, MTI, Mar. 2011, pp. 1-25. |
Freedom LP3 Quick Reference Guide, MTI, Feb. 2010, pp. 1-2. |
Freedom One Product Manual, MTI, Jun. 2011, pp. 1-32. |
Freedom One Product Manual, MTI, Jun. 2012, pp. 1-32. |
Freedom One Sell Sheet, MTI, 2012, pp. 1-2. |
Machine Translation of WO2011/045058 published Apr. 21, 2011 (LOGOKETT GMBH). |
Office Action for U.S. Appl. No. 12/351,837 dated May 18, 2018. |
Prosecution History for U.S. Appl. No. 15/221,497, now U.S. Pat. No. 9,786,140, filed Jul. 27, 2016. |
Prosecution History for U.S. Appl. No. 15/679,620, filed Aug. 17, 2017. |
Prosecution History for U.S. Appl. No. 15/724,914, filed Oct. 4, 2017. |
Prosecution History for U.S. Appl. No. 15/826,017, now U.S. Pat. No. 10,026,281, filed Nov. 29, 2017. |
Response for Extended European Search Report for EP11827111.3 dated Oct. 30, 2017. |
“281 Patent File History” at Exhibit X1025 in PGR2019-00019, filed Nov. 21, 2018, 193 pages. |
“837 Patent Application Select File History” at Exhibit X1026 in PGR2019-00019, filed Nov. 21, 2018, 158 pages. |
“2009 Virtual Store Tour Video Transcript” at Exhibit X1015 in PGR2019-00019, filed Nov. 21, 2018, 4 pages. |
“ADS filed in U.S. Appl. No. 14/092,845 (Wheeler)” at Exhibit X1032 in PGR2019-00019, filed Nov. 21, 2018, 7 pages. |
“Complaint for Injunction and Damages for Patent Infringement” (asserting U.S. Pat. No. 10,026,281), Mobile Tech, Inc. v. InVue Security Products, Inc., Case 3:18-cv-00505-RJC-DSC, United States District Court for the Northern District of Ohio, Filed Jul. 17, 2018, 21 pages. |
“Curriculum Vitae of Harry Direen” at Exhibit X1019 in PGR2019-00019, filed Nov. 21, 2018, 25 pages. |
“Curriculum Vitae of Harry Direen, Ph.D.” at Exhibit X1014 in IPR2019-00078 and IPR2019-00079, filed Oct. 12, 2018, 25 pages. |
“Dec. 2, 2016 Office Action for '140 Patent” at Exhibit X1043 in IPR2019-00078 and IPR2019-00079, filed Oct. 12, 2018, 6 pages. |
“Declaration of Harry Direen, PhD” at Exhibit X1005 in IPR2019-00078 and IPR2019-00079, filed Oct. 12, 2018, 71 pages. |
“Disclosure of U.S. Appl. No. 12/819,944 (Jun. 21, 2010)” at Exhibit X1046 in IPR2019-00078 and IPR2019-00079, filed Oct. 12, 2018, 70 pages. |
“Disclosure of U.S. Appl. No. 14/066,606 (Oct. 29, 2013)” at Exhibit X1047 in IPR2019-00078 and IPR2019-00079, filed Oct. 12, 2018, 74 pages. |
“Disclosure of U.S. Appl. No. 14/092,845 (Nov. 27, 2013)” at Exhibit X1048 in IPR2019-0007 and IPR2019-000798, filed Oct. 12, 2018, 49 pages. |
“Excerpt of MTI Petition in IPR2017-01901” at Exhibit X1027 in PGR2019-00019, filed Nov. 21, 2018, 3 pages. |
“Expert Declaration of H. Direen” at Exhibit X1005 in PGR2019-00019, filed Nov. 21, 2018, 50 pages. |
“Henson '281 Patent Prosecution History—Priority Change” at Exhibit X1010 in PGR2019-00019, filed Nov. 21, 2018, 27 pages. |
“InVue Security Product Inc.'s Answer and Counterclaims to Complaint”, Mobile Tech, Inc. v. InVue Security Products, Inc., Case 3:18-cv-00505-RJC-DSC, United States District Court for the Western District of North Carolina, Filed Sep. 25, 2018, 579 pages. |
“InVue's Answer to Complaint—California Litigation” at Exhibit X1011 in PGR2019-00019, filed Nov. 21, 2018, 53 pages. |
“InVue's Answer to Complaint—N.C. Litigation” at Exhibit X1029 in PGR2019-00019, filed Nov. 21, 2018, 77 pages. |
“IPR2018-00481 Paper No. 1” at Exhibit X1018 in PGR2019-00019, filed Nov. 21, 2018, 73 pages. |
“Judicial Admission of Video Publication Date” at Exhibit X1013 in PGR2019-00019, filed Nov. 21, 2018, 33 pages. |
“Mar. 2010 MTI LP3 Product Manual” at Exhibit X1024 in PGR2019-00019, filed Nov. 21, 2018, 20 pages. |
“MTI 2008 Freedom Universal 2.0 Product Manual” at Exhibit X1040 in IPR2019-00078 and IPR2019-00079, filed Oct. 12, 2018, 21 pages. |
“MTI 2010 Freedom LP3 Product Manual” at Exhibit X1017 in IPR2019-00078 and IPR2019-00079, filed Oct. 12, 2018, 20 pages. |
“MTI 2011 Freedom LP3 Product Manual” at Exhibit X1018 in IPR2019-00078 and IPR2019-00079, filed Oct. 12, 2018, 25 pages. |
“MTI 2011 Freedom One Product Manual” at Exhibit X1039 in IPR2019-00078 and IPR2019-00079, filed Oct. 12, 2018, 32 pages. |
“MTI Admission of Video Publication” at Exhibit X1016 in PGR2019-00019, filed Nov. 21, 2018, 14 pages. |
“MTI Amendment and Response in U.S. Appl. No. 15/679,620, filed on Apr. 10, 2018” at Exhibit X1022 in IPR2019-00078 and IPR2019-00079, filed Oct. 12, 2018, 23 pages. |
“MTI Amendment and Response in U.S. Appl. No. 15/724,941, filed on Jul. 30, 2018” at Exhibit X1028 in IPR2019-00078 and IPR2019-00079, filed Oct. 12, 2018, 14 pages. |
“MTI Office Action Respnse—'837 Application” at Exhibit X1030 in PGR2019-00019, filed Nov. 21, 2018, 4 pages. |
“MTI Virtual Store Tour Video Publication Transcript” at Exhibit X1010 in IPR2019-00078 and IPR2019-00079, filed Oct. 12, 2018, 4 pages. |
“MTI-Vanguard Settlement Agreement” at Exhibit X1011 in IPR2019-00078 and IPR2019-00079, filed Oct. 12, 2018, 39 pages. |
“Parent U.S. Appl. No. 14/092,845 ADS” at Exhibit X1038 in IPR2019-00078 and IPR2019-00079, filed Oct. 12, 2018, 7 pages. |
“Patent Owner's Preliminary Response Under 37 C.F.R. 42. 107”, Inter Partes Review of U.S. Pat. No. 9,786,140, Case IPR2019-00078, Feb. 6, 2019, 51 pages. |
“Patent Owner's Preliminary Response Under 37 C.F.R. 42. 107”, Inter Partes Review of U.S. Pat. No. 9,786,140, Case IPR2019-00078, Feb. 6, 2019, 68 pages. |
“PowerPro Detangler Publication” at Exhibit X1035 in IPR2019-00078 and IPR2019-00079, filed Oct. 12, 2018, 1 page. |
“PowerPro System Publication” at Exhibit X1036 in IPR2019-00078 and IPR2019-00079, filed Oct. 12, 2018, 2 pages. |
“Request for Supplemental Examination by MTI” at Exhibit X1037 in IPR2019-00078 and IPR2019-00079, filed Oct. 12, 2018, 7 pages. |
“Text Comparison—'281 Patent and '898 Publication” at Exhibit X1031 in PGR2019-00019, filed Nov. 21, 2018, 32 pages. |
“U.S. Appl. No. 12/351,837—Published (Henson)” at Exhibit X1009 in IPGR2019-00019, filed Nov. 21, 2018, 18 pages. |
“U.S. Appl. No. 12/819,944 (MTI)” at Exhibit X1028 in PGR2019-00019, filed Nov. 21, 2018, 70 pages. |
Petition for Inter Partes Review for U.S. Pat. No. 9,786,140; Case IPR2019-00078, Filed Oct. 12, 2018, 79 pages. |
Petition for Inter Partes Review for U.S. Pat. No. 9,786,140; Case IPR2019-00079, Filed Oct. 12, 2018, 76 pages. |
Petition for Post-Grant Review for U.S. Pat. No. 10,026,281; Case PGR2019-00019, Filed Nov. 21, 2018, 99 pages. |
Translation of WO 2011/045058. |
Number | Date | Country | |
---|---|---|---|
20180049563 A1 | Feb 2018 | US |