1. Field of the Invention
This invention relates to a display and a labeled article. This invention relates to, for example, a display which can be used for forgery-prevention of articles such as cards, securities and brand-name products and which displays an image by utilizing light-scattering, and to a labeled article including it.
2. Description of the Related Art
Generally, a pattern for displaying an image by light-scattering (hereinafter called a light-scattering pattern) is formed by subjecting a surface of a substrate to a relief-processing. The relief-processing method includes, for example, a method of etching a substrate, a method of roughening a surface of a substrate with a chemical, a method of forming relief on a surface of a substrate using an EB writer, or the like.
Among these method, according to the method utilizing etching and the method using a chemical, it is difficult to make a density of recesses and/or protrusions in a certain fine region different from that in another fine region, on a surface where the recesses and/or protrusions are to be formed. It is therefore difficult to make the degrees of scattering in those regions different from each other by controlling the densities of the recesses and/or protrusions. On the other hand, if the EB writer is used, the densities and shapes of recesses and/or protrusions to be formed in the fine regions can be controlled arbitrarily.
Jpn. Pat. Appln. KOKAI Publication No. 5-273500 describes a display on which a diffraction grating pattern and a light-scattering pattern are formed in the same surface using an EB writer. This display has the following effects.
(a) Since display does not rely on diffracted light alone, restrictions on observation conditions are small.
(b) Since the scattered light is also used for the display, an iridescent appearance is not the only impression that the image offers.
(c) Since both the diffraction grating pattern and the light-scattering pattern are constituted by the recesses and/or protrusions, those patterns can be formed by embossing and the alignment between those patterns is unnecessary.
However, a relief-type diffraction grating can be formed with relative ease by laser facilities, etc. In addition, a visual effect of the light-scattering pattern included in the above display can be obtained from, for example, a printed layer containing transparent particles and transparent resin having a refractive index different from that of the transparent particles. For this reason, the forgery-prevention effect of this display is not always considered sufficient.
An object of the present invention is to realize a forgery-prevention technique for achieving a high forgery-prevention effect.
According to a first aspect of the invention, there is provided a display comprising light-scattering regions each provided with linear protrusions and/or recesses having the same longitudinal direction, the light-scattering regions being different from each other in the longitudinal direction.
According to a second aspect of the invention, there is provided a labeled article comprising the display according to the first aspect, and an article supporting the display.
Embodiments of the present invention will be described below with reference to the accompanying drawings. The same reference symbols denote components having the same or similar functions throughout all of the drawings and their duplicated descriptions will be omitted.
A display 1 contains a layer 2. The layer 2 includes, for example, a light-transmitting material layer 50 and a reflective material layer 51. As shown in
The reflecting material layer 51 covers a back of the light-transmitting material layer 50. A relief structure is provided to an interface between the light-transmitting material layer 50 and the reflecting material layer 51. The relief structure will be described later. It suffices that the reflecting material layer 51 covers at least a region of the interface of the light-transmitting material layer 50 used for displaying an image by the relief structure. The adhesive layer 52 is provided on the reflecting material layer 51.
The light-transmitting material layer 50 plays a role as, for example, an underlayer of the reflecting material layer 51. The light-transmitting material layer 50 also plays a role of protecting the relief structure from contamination, flaw, etc. of the surface and thereby maintaining the visual effect of the display 1 for a long period. Furthermore, the light-transmitting material layer 50 prevents the relief structure from being exposed and makes its duplication difficult. Either of the light-transmitting material layer 50 and the reflecting material layer 51 may be omitted. In a case where the reflecting material layer 51 is omitted, in order that light reflects on the interface between the light-transmitting material layer 50 and the adhesive layer 52, it is good to make the difference in refractive index between the light-transmitting material layer 50 and the adhesive layer 52 greater or to form the adhesive layer 52 of a material having the reflectivity.
As the material of the light-transmitting material layer 50, thermoplastic resin, ultraviolet curing resin, etc. are suitable to form a relief structure by transfer using the master. In a case of using embossing, if the relief structure corresponding to a diffraction grating region 10 and light-scattering regions 20a and 20b to be described later is formed on the master with high accuracy, precise mass-produced copies can be easily obtained.
A structure of two or more layers may be employed for the light-transmitting material layer 50, in consideration of the surface strength and the ease of formation of the relief structure. In addition, in a case where metal is used as the material of the reflecting material layer 51, it is also possible to blend dye, etc. with the light transmitting material layer 50 and make the dye absorb light of a specific wavelength, to change a metallic luster color derived from the metal to a color different therefrom.
The reflecting material layer 51 plays a role of increasing the reflectivity of the interface where the relief structure is provided. As the material of the reflecting material layer 51, for example, metal materials such as Al, Ag, etc. can be used. In addition, the material of the reflecting material layer 51 may be a transparent material such as a dielectric material, etc. which has a refractive index different from that of the light-transmitting material layer 50. The reflecting material layer 51 may not only be a single layer, but also a multilayered film.
The adhesive layer 52 is provided to attach the display 1 to an article whose forgery should be prevented. The adhesive layer 52 may be formed of two or more layers, in consideration of the adhesive strength between the display 1 and the article whose forgery should be prevented, smoothness of the adhesive surface, etc.
Next, the relief structure provided on the layer 2 will be described.
The layer 2 includes the diffraction grating region 10, the first light-scattering region 20a, the second light-scattering region 20b, and a region 30.
In the diffraction grating region 10, a diffraction grating pattern constituted by relief-type diffraction grating is formed on the interface between the light-transmitting material layer 50 and the reflecting material layer 51. The diffraction grating is constituted by, for example, arraying grooves. The term “diffraction grating” means a structure in which a diffracted wave is generated by radiating illumination light, and encompasses not only general diffraction grating in which, for example, grooves are arranged parallel at regular intervals, but also interference fringes recorded in a hologram. In addition, the groove or a portion sandwiched by the grooves is called “grating line”.
A depth of the grooves forming the diffraction grating is set to be within a range of, for example, 0.1 to 1 μm. In addition, a grating constant of the diffraction grating is set to be within a range of, for example, 0.5 to 2 μm.
In each of the light-scattering regions 20a and 20b, linear protrusions and/or recesses aligned in similar directions are provided on the interface between the light-transmitting material layer 50 and the reflecting material layer 51. The directions of the linear protrusions and/or recesses in the region 20a are different from that in the region 20b.
If the region 20a or 20b is illuminated from a direction normal to the region, the region emits the scattered light with the widest angular range of emission, i.e., with the widest range of angle of divergence, in a plane perpendicular to the longitudinal direction of the linear protrusions and/or recesses, and emits the scattered light with the narrowest angular range of emission, in a plane which is parallel to the longitudinal direction of the linear protrusions and/or recesses and which is perpendicular to a main surface of the region. The angular range within which the light-scattering region emits the scattered light at a certain intensity or higher is hereinafter expressed by a term “light-scattering ability”. In a case where, for example, the term “light-scattering ability” is used, the above optical characteristic can be described as “each of the regions 20a and 20b shows the minimum light-scattering ability in the longitudinal direction of the linear protrusions and/or recesses and shows the maximum light-scattering ability in the direction perpendicular thereto”. In addition, a characteristic that a difference between the maximum light-scattering ability and the minimum light-scattering ability is sufficiently large is called “anisotropic light-scattering ability”.
The length of the linear protrusions and/or recesses is set to be, for example, 10 μm or more. The width of the protrusions and/or recesses is set to be, for example, within a range of 0.1 to 10 μm. The height or depth of the protrusions and/or recesses is set to be, for example, within a range of 0.1 to 10 μm.
In the region 30, the relief structure is not provided on the interface between the light-transmitting material layer 50 and the reflective material layer 51. In other words, the interface between the light-transmitting material layer 50 and the reflecting material layer 51 is flat in the region 30.
The layer 2 can be constituted by, for example, segments corresponding to the regions 10, 20a, 20b and 30, respectively. Alternatively, the layer 2 may be constituted by cells arrayed in a matrix, the diffraction grating region 10 may be constituted by some of the cells, the region 20a may be constituted by some of the other cells, the region 20b may be constituted by some of the other cells, and the region 20b may be constituted of the remaining cells. In a case where the layer 2 is constituted by cells, an image can be displayed by using each of those cells as a pixel. The cells constituting the diffraction grating region 10 are hereinafter called “diffraction grating cells” and the cells constituting the regions 20a and 20b are hereinafter called “light-scattering cells”.
In a case where the layer 2 is constituted by various types of cells, an image to be obtained by rearranging the cells can easily be expected if the visual effect of each of the cells is understood. For this reason, the cell to be used in each pixel can be easily determined from the digital image data. In this case, the display 1 can easily be therefore designed.
To make the visual effects of the segments or of the pixels different from each other, matters described below can be utilized.
First, the visual effect offered by the diffraction grating region 10 will be described with reference to the drawings.
If illumination light 71 is made incident on diffraction grating 11 at an angle of incidence a′ in a direction perpendicular to the grating lines, the diffraction grating 11 emits first-order diffracted light 73, which is typical diffracted light, at an angle of emergence β. A reflection angle or an angle of emergence α of light regular-reflected by the diffraction grating 11 (0-order diffracted light) 72 is equal to the incident angle α′ in terms of absolute value, and symmetrical thereto about the normal line (for α, β, the clockwise direction is the positive direction). The angle α and the angle β fulfill a relationship represented in the following equation (1) where the grating constant of the diffraction grating 11 is d (nm) and the wavelength of the illumination light 71 is λ (nm).
d=λ/(sin α−sin β) (1)
As will be apparent from the above equation (1), if white light is made incident, the angle of emergence of the first-order diffracted light varies according to the wavelength. In other words, the diffraction grating 11 has a function of a spectroscope, and a color of the diffraction grating region 10 is changed iridescently when the position of observation is changed.
In addition, the color seen by an observer under a certain observation condition is changed according to the grating constant d.
For example, it is assumed that the diffraction grating 11 emits the first-order diffracted light 73 in a direction perpendicular to a plane of the grating. In other words, it is assumed that the angle β of emergence of the first-order diffracted light 73 is 0°. In this case, if the absolute values of the incident angle of the illumination light 71 and the angle of emergence of the 0-order diffracted light 72 are αN, the equation (1) is simplified as follows.
d=λ/sin αN (2)
As will be apparent from the equation (2), in order to make the observer see a certain color, the wavelength λ corresponding to the color, the absolute value αN of the incident angle of the illumination light 71, and the grating constant d may be set to fulfill the relationship represented by the equation (2). For example, if the white light including rays having wavelengths of 400 to 700 nm is the illumination light 71, the absolute value αN of the incident angle of the illumination light 71 is 45°, and a diffraction grating in which a spatial frequency of diffraction grating, i.e., an inverse of the grating constant ranges from 1,800 to 1,000/mm is used, the portion at which the spatial frequency is approximately 1,600/mm is seen blue-colored and the portion at which the spatial frequency is approximately 1,100/mm is seen red-colored. Therefore, by making the spatial frequencies of the diffraction gratings different between the segments or the cells, their display colors can be made different from each other.
The smaller the spatial frequency of the diffraction grating is, the easier the formation of the diffraction grating is. For this reason, the spatial frequency is set to be 500 to 1,600/mm in many of the general diffraction gratings used for the display.
In the above descriptions, it is assumed that the illumination light 71 is made incident on the diffraction grating 11 in the direction perpendicular to the grating lines. In such a situation, when the diffraction grating 11 is rotated around its normal line with the direction of observation unchanged, an effective value of the grating constant d is changed according to the rotation angle. As a result, the color seen by the observer is changed. If the rotation angle is sufficiently great, the observer can not see the diffracted light in the above direction of observation. For this reason, by making the segments or the cells have different orientations of the grating lines, their display colors can be made different from each other, and the direction in which the cells are seen brightly due to the diffracted light can be changed.
In addition, the diffraction efficiency is changed by making the depths of the grooves constituting the diffraction grating 11 great. And, the greater the area ratio of the diffraction grating with respect to the segments or cells is made, the greater the intensity of the diffracted light is.
Therefore, if the segments or cells are made to have different spatial frequencies and/or orientations of the diffraction grating, the colors displayed on the segments or cells can be made different from each other, and the conditions permitting the observation can be adjusted. Further, if the segments or cells are made different in at least one of the depths of the grooves forming the diffraction grating 11 and the area ratios of the diffraction grating 11 with respect to the segments or cells, the segments or cells can be made different in brightness. For this reason, by utilizing these, an image such as a full-color image, a stereoscopic image, etc. can be displayed.
Next, visual effects offered by the light-scattering regions 20a and 20b will be described with reference to the drawings.
A light-scattering region 20 shown in
It is not necessary that the light-scattering structures 25 are aligned completely parallel with each other in each light-scattering region 20. As long as the light-scattering region 20 has a sufficient anisotropic light-scattering ability, for example, the longitudinal direction of some of the light-scattering structures 25 may cross the longitudinal direction of the other light-scattering structures 25 in this light-scattering region 20. Among directions parallel to the main surface of the light-scattering region 20, a direction in which the light-scattering region 20 represents a minimum light-scattering ability is hereinafter called “an orientational direction” and a direction in which the light-scattering region 20 represents a maximum light-scattering ability is hereinafter called “a light-scattering axis”. In the present embodiment, since the basic structure is the linear structure, the orientational direction is orthogonal to the light-scattering axis.
In the light-scattering region 20 shown in
As will be apparent from above, for example, in a case where the light-scattering region 20 is illuminated in the oblique direction and this is observed from the front with an unaided eye, as the light-scattering region 20 is rotated about its normal line, brightness thereof is changed. For this reason, for example, if the same structures are employed in the light-scattering region 20a and the light-scattering region 20b shown in
In other words, by making the light-scattering axis 27 in the region 20a different from that of the region 20b, difference in brightness between them can be caused. Therefore, an image can be thereby displayed. In particular, by making an angle formed by the light-scattering axis 27 in the region 20a and that of the region 20b sufficiently great (for example, 30° or greater in a typical room in which illumination light sources are arranged on a ceiling, which depends the magnitude of the illumination light sources) or by making each anisotropic light-scattering ability sufficiently great, the images displayed on the respective regions can be observed with an unaided eye under different observation conditions. By employing the light-scattering structures in which the light-scattering axes are orthogonal to each other, similarly to the light-scattering regions 20a and 20b, the conditions for observing the images displayed on the respective regions are completely made different from each other, and the images can be certainly observed separately.
The brightness of the light-scattering region 20 can also be controlled in other manners.
For example, the greater the width of the light-scattering structures 25 is, the smaller the light-scattering ability in the direction of the light-scattering axis 27 is. On the other hand, the longer the light-scattering structures 25 are, the smaller the light-scattering ability in the orientational direction 26 is.
All the light-scattering structures 25 in a single light-scattering region 20 may have the same shape. Alternatively, protrusions and/or recesses 25 having different shapes may be present in a single light scattering-region 20.
When the light-scattering region 20 include only the light-scattering structures 25 having the same shape, the light-scattering ability can be designed easily. In addition, such a light-scattering region 20 can be formed with high accuracy and ease by using a fine processing device such as an EB writer, stepper, etc. On the other hand, when the light-scattering region 20 includes the light-scattering structures 25 having different shapes, scattered light having a gentle distribution of light intensity over a wide angular range can be obtained. For this reason, white color can be displayed stably with reduced variations of light-and-shade according to the observation position.
In addition, the higher the degree of orientational order of the light-scattering structures 25 is, the greater the anisotropic light-scattering ability of the light-scattering region 20 is.
In the light-scattering region 20, the light-scattering structures 25 may be arranged regularly to some extent or randomly. For example, if intervals of the light-scattering structures 25 in a direction parallel to the light-scattering axis 27 are set randomly, the light-intensity distribution of the scattered light in a direction perpendicular to the orientational direction 26 is gentle. Therefore, variation in whiteness and brightness according to the observation angle is restricted.
If the intervals among the light-scattering structures 25 in the directions parallel to the-light scattering axis 27 are made smaller, much more incident light can be scattered, and the intensity of the scattered light can be therefore made greater without degrading the anisotropic light-scattering ability. For example, if the average interval among the light-scattering structures 25 in the direction parallel to the light-scattering axis 27 is 10 μm or smaller, it is possible to obtain the light-scattering intensity sufficient to display an image with good visibility.
In a case where the light-scattering region 20 is constituted by light-scattering cells, if this average interval is made sufficiently small, it is sufficiently possible to set the size of the light-scattering cells at approximately 100 μm. In this case, images can be displayed with resolution equal to or higher than that of a human eye under general observation conditions. In other words, images with sufficiently high-resolution can be displayed.
Although two light-scattering regions 20a and 20b having the light-scattering axes approximately orthogonal to each other are arranged in
In the light-scattering region 20 shown in
Thus, if three or more light-scattering regions having light-scattering axes different from each other are arranged, for example, gradation can be displayed and the image change due to the change in the orientation of the display 1 can be made more complicated. For example, it is also possible to change the image as animation by changing the orientation of the display 1.
In the light-scattering region 20 shown in
The light-scattering structures 25 shown in
In a case where the degree of divergence of the scattered light is low, the intensity of the scattered light observed at a specific position is high. Thus, an image formed by regions which have the same directions of the light-scattering axes 26 and have widths of the light-scattering structures 25 different from each other, for example, the light-scattering region 20 shown in
The light-scattering regions 20a and 20b shown in
As described above, the images displayed on the light-scattering regions 20a and 20b shown in
The light-scattering structures 25 may have binary structures or may have continuously-varying structures in the depth or height direction.
The light-scattering region 20 including the light-scattering structures 25 having the binary structures can be produced with relative ease by a device having a fine processing ability, and a shape thereof, etc. can also be set easily. The light-scattering region 20 including the light-scattering structures 25 of the continuously-varying structures can be easily produced by recording a speckle in a photosensitive material, for example, photoresist by using the interference of the laser beam. When the area of the portion provided with the light-scattering structures 25 is 50% of the area of the light-scattering region 20 in the case of the binary structure, or alternatively when the area of the portion provide with the light-scattering structure 25 is 100% of the area of the light-scattering region 20, i.e., no flat surface is present in the case of the continuously-varying structure, the light-scattering structure in the light scattering region 20 has the highest scattering efficiency.
The layer 2 of the display 1 shown in
In the display 1 shown in
Since the display 1 shown in
In the above description, the white scattered light is described by exemplifying a case where the transmitting material layer 50 shown in
The display 1 shown in
In other words, the display 1 shown in
The display 1 shown in
Since the display 1 shown in
Thus, due to the characteristic visual effects and the difficulty in forgery and imitation, the display 1 shown in
In the display 1 shown in
Next, another embodiment of the present invention will be described.
The display 1 shown in
In the display 1 shown in
Since the diffraction grating cells denoted by the same reference number in
In the display 1 shown in
In the light-scattering regions 20a and 20b of the display 1 shown in
The sizes of the diffraction grating cells 12a to 12f and the light-scattering cells 21a and 21b are preferably 300 μm or smaller. In particular, when the display 1 is small, the sizes are preferably 100 μm or smaller in consideration of a situation in which the display may be observed very closely. If the size of each of the cells is equal to or smaller than these numerical values, the cells cannot be distinguished from each other under the normal observation conditions with an unaided eye, and enhancement of the forgery-prevention effect and enhancement of the design and decoration can be obtained.
The sizes of the diffraction grating cells 12a to 12f and the light-scattering cells 21 and 21b are preferably the same. By using the cells having the same size as pixels, the images of the display 1 can be easily formed from the image data.
As described above, the display 1 shown in
In addition, since the display 1 shown in
In addition, since both the diffraction grating 11 and the light-scattering structure 25 are constituted by protrusions and recesses, in the display 1 shown in
Furthermore, even if the display 1 shown in
Thus, due to the characteristic visual effects and the difficulty in forgery and imitation, the display 1 shown in
A modified example of the display 1 shown in
The display 1 shown in
In the display 1 shown in
In the display 1 shown in
In addition, in the display 1 shown in
Furthermore, in the display 1 shown in
The display 1 shown in
As described above, the display 1 shown in
In addition, since both the diffraction grating 11 and the light-scattering structure 25 are constituted by protrusions and recesses in the display 1 shown in
Furthermore, even if the display 1 shown in
Thus, due to the characteristic visual effects and the difficulty in forgery and imitation, the display 1 shown in
Besides the light scattering-regions 20a and 20b including the linear light-scattering structures, the above-described display 1 may further include a light-scattering region including protrusions and/or recesses having other shapes.
A light-scattering region 20′ shown in
In the light-scattering regions 20′ shown in
Therefore, the visual effects of the display 1 can be made further complicated by adding the light-scattering region 20′.
The above-described display 1 can also be attached to an article such as a printed articles, etc. and used as a forgery-preventing medium.
A labeled article 100 shown in
The labeled article 100 shown in
The labeled article shown in
In addition, it is not necessary that the labeled article is a printed article. In other words, the display 1 may be supported by high-grade articles such as art objects, etc.
The display 1 may be used for the purpose other than the forgery-prevention. For example, it can also be utilized as a toy, a teaching material, a decorative article, etc.
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
This application is a continuation of U.S. patent application Ser. No. 14/619,558, filed Feb. 11, 2015, which is a continuation of U.S. patent application Ser. No. 12/801,635, filed Jun. 17, 2010 and which is a continuation Application of PCT Application No. PCT/JP2008/057611, filed Apr. 18, 2008, which was published under PCT Article 21(2) in Japanese, the contents of all of the above being incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4589686 | McGrew | May 1986 | A |
5059776 | Antes | Oct 1991 | A |
5808758 | Solmsdorf | Sep 1998 | A |
6271967 | Stork | Aug 2001 | B1 |
6906861 | Tompkin et al. | Jun 2005 | B2 |
8982465 | Toda | Mar 2015 | B2 |
9387720 | Toda | Jul 2016 | B2 |
20040179266 | Schilling et al. | Sep 2004 | A1 |
20050082819 | Tompkin et al. | Apr 2005 | A1 |
20060238664 | Uehara et al. | Oct 2006 | A1 |
20070020404 | Seiberle et al. | Jan 2007 | A1 |
20070109532 | Dichtl | May 2007 | A1 |
20070196616 | Stalder et al. | Aug 2007 | A1 |
20080088124 | Lee et al. | Apr 2008 | A1 |
20120127547 | Gocho et al. | May 2012 | A1 |
Number | Date | Country |
---|---|---|
0 366 858 | May 1990 | EP |
1 855 127 | Nov 2007 | EP |
5-273500 | Oct 1993 | JP |
6-278396 | Oct 1994 | JP |
8-62411 | Mar 1996 | JP |
8-272285 | Oct 1996 | JP |
2000-131516 | May 2000 | JP |
2002-328210 | Nov 2002 | JP |
2002-328639 | Nov 2002 | JP |
2002-333854 | Nov 2002 | JP |
2002-341809 | Nov 2002 | JP |
2003-98324 | Apr 2003 | JP |
2005-24601 | Jan 2005 | JP |
2005-326455 | Nov 2005 | JP |
2006-308700 | Nov 2006 | JP |
2008-83532 | Apr 2008 | JP |
2008-83599 | Apr 2008 | JP |
2008-107472 | May 2008 | JP |
0129148 | Apr 2001 | WO |
03000504 | Jan 2003 | WO |
2005071444 | Aug 2005 | WO |
2006007742 | Jan 2006 | WO |
2007131375 | Nov 2007 | WO |
2008024813 | Feb 2008 | WO |
2008041580 | Apr 2008 | WO |
2008104277 | Sep 2008 | WO |
Entry |
---|
Office Action dated Jul. 1, 2015 in related U.S. Appl. No. 14/619,558. |
Notice of Allowance dated Mar. 17, 2016 in related U.S. Appl. No. 14/619,558. |
Advisory Action dated Jun. 14, 2011 in related U.S. Appl. No. 12/801,635. |
International Preliminary Report of Patentability; International Application PCT/JP2008/057611; PCT/IB/338; PCT/IB/373; PCT/ISA/237; dated Dec. 9, 2010. |
Canadian Office Action for Corresponding Canadian application 2,708,526; dated Apr. 28, 2011. |
International Search Report dated Jul. 29, 2008 in corresponding PCT Application No. PCT/JP2008/057611. |
U.S. Office Action dated Dec. 7, 2010 in related U.S. Appl. No. 12/801,635. |
U.S. Final Office Action dated Apr. 1, 2011 in related U.S. Appl. No. 12/801,635. |
U.S. Office Action dated Aug. 24, 2011 in related U.S. Appl. No. 12/801,635. |
U.S. Final Office Action dated Jan. 25, 2012 in related U.S. Appl. No. 12/801,635. |
U.S. Office Action dated Jan. 15, 2013 in related U.S. Appl. No. 12/801,635. |
U.S. Final Office Action dated Aug. 6, 2013 in related U.S. Appl. No. 12/801,635. |
U.S. Office Action dated Jul. 15, 2014 in related U.S. Appl. No. 12/801,635. |
U.S. Notice of Allowance dated Nov. 12, 2014 in related U.S. Appl. No. 12/801,635. |
U.S. Appl. No. 14/619,558, filed Feb. 11, 2015, Toshiki Toda, Toppan Printing Co., Ltd. |
European Office Communication dated Oct. 5, 2017 from European Patent Application No. 08751881.7, 29 pages. |
Elhaj et al., “Optical polymer thin films with Isotropic and anisotropic nano-corrugated surface topologies”, Nature, vol. 410, Apr. 12, 2001, pp. 796-799. |
Number | Date | Country | |
---|---|---|---|
20160279999 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14619558 | Feb 2015 | US |
Child | 15176718 | US | |
Parent | 12801635 | Jun 2010 | US |
Child | 14619558 | US | |
Parent | PCT/JP2008/057611 | Apr 2008 | US |
Child | 12801635 | US |