1. Field of the Invention
The invention relates to on screen display (OSD), and more particularly to a display interface and display method for OSD.
2. Description of the Related Art
Display of on screen display (OSD) of current computer devices (for example, notebook (NB) or liquid crystal display (LCD)) is two-dimensionally represented with respect to adjustment of brightness or volume or switch of hardware functions such as wireless LAN and sunlight readable, as shown in
Generally, when a display interface of the OSD is activated, icons and wording are simultaneously displayed, even displaying the wording or a bar merely, as shown in
However, the 2.5D/3D pattern design only considers display effect with a colorful background that other effects may not be observed under a white background, resulting in inconvenience of reading.
Thus, a display interface and display method for OSD is desirable.
Display methods for on screen display are provided. An exemplary embodiment of a display method for on screen display comprises the following. Radiative transition effect is provided for a display interface capable of an on screen display (OSD), wherein the radiative transition effect comprises scroll-in effect and scroll-out effect. It is determined whether the OSD is activated. A full-color pattern corresponding to the OSD is displayed when the OSD is activated. A layer with a black and transparent background is rendered and the scroll-in effect is displayed. It is determined whether the OSD is switched to off. It is determined whether display of the full-color pattern reaches a predetermined time if the OSD is not switched to off. The layer with the black and transparent background is rendered and the scroll-out effect is displayed if the OSD is switched to off.
Display interfaces are provided. An exemplary embodiment of a display interface comprises a pattern and a layer with a black and transparent background. When the OSD is activated, the pattern corresponding to the OSD is displayed, a layer with a black and transparent background is rendered, and radiative transition effect is implemented on the pattern.
A detailed description is given in the following embodiments with reference to the accompanying drawings.
The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
Several exemplary embodiments of the invention are described with reference to
The invention discloses a display interface and display method for OSD.
An embodiment of a display interface for OSD introduces more beautiful 2.5D/3D icons to enhance brand value and quality of the display interface for OSD (as shown in
An embodiment of the invention first applies the radiative transition effect to different functions of the OSD, comprising switch of networks (such as WiMAX, Bluetooth, or infrared rays), use of touchpad, adjustment of brightness, and so on, and further comprising enabled/disabled (ON/OFF) of a sunlight readable mode (as shown in
When the sunlight readable mode is enabled (ON), a full-color sunlight readable pattern is displayed with applied for the radiative transition effect while the full-color sunlight readable pattern is converted a gray-level pattern when the sunlight readable mode is disabled (OFF). When the volume is increased or decreased, a full-color volume pattern is displayed with applied for the radiative transition effect. When the display mode is switched, a full-color display pattern is displayed with applied for the radiative transition effect.
It is noted the radiative transition effect comprises scroll-in effect and scroll-out effect. The scroll-in effect represents radiative rays with a clockwise or anticlockwise direction while the scroll-out effect represents radiative rays with a direction opposite to that for the scroll-in effect. Additionally, partial functions of the OSD provide an enabled/disabled (ON/$OFF) modes, such as the sunlight readable mode, the display switch (comprising LCD, LCD+VGA, and VGA), the network switch (comprising WiMAX, Bluetooth, or infrared rays), the use of the touchpad, and so on. Partial functions of the OSD only provide an enabled (ON) mode, such as adjustment of the volume and brightness, and so on.
Display rules for the display interface for the OSD are described in the following.
When one of the OSD mode is enabled, a full-color pattern corresponding to the OSD mode is displayed while the pattern is converted to a gray-level pattern if the OSD mode is disabled. Regardless of the OSD mode is enabled or disabled, the displayed pattern is faded when display time thereof reaches a predetermined time (3 seconds, for example).
When the scroll-in effect of the radiative transition effect is generated, a pattern corresponding to an OSD mode is assigned halation scroll-in effect regardless of the OSD mode is enabled or disabled. As shown in
When the scroll-out effect of the radiative transition effect is generated, a pattern switched to on is assigned the scroll-out effect while a pattern switched to off is not assigned the scroll-out effect but is only assigned gray out effect. As shown in
Since the halation is displayed as the while color, a layer with a black and 50% transparent background is rendered before the radiative transition effect is generated to enhance the radiative effect, such that the radiative transition effect can be seen even if the background of the desktop of a computer device is represented as white color.
Radiative transition effect is provided for a display interface capable of an on screen display (OSD) (step S401), wherein the radiative transition effect comprises scroll-in effect and scroll-out effect. It is determined whether the OSD is activated (step S402). A full-color pattern corresponding to the OSD is displayed when the OSD is activated (step S403) and a layer with a black and 50% transparent background is rendered and the scroll-in effect (the halation scroll-in effect) is displayed (step S404).
It is determined whether the OSD is switched to off (step S405). It is determined whether display of the full-color pattern reaches a predetermined time if the OSD is not switched to off (step S406). The layer with the black and transparent background is rendered and 50% transparent background and the scroll-out effect (the halation scroll-out effect) is displayed, if the display of the full-color pattern reaches the predetermined time, and the full-color pattern is faded (step S407).
If the OSD is switched to off, the gray out effect is displayed and the full-color pattern is converted to a gray-level pattern when the OSD does not provide the on and off modes (step S408), and the scroll-out effect (the halation scroll-out effect) is not displayed and the gray-level pattern is faded when the display thereof reaches the predetermined time (step S409).
If the OSD is switched to off, a full-color pattern corresponding to the off mode is displayed when the OSD provides the on and off modes (step S410), the layer with the black and 50% transparent background is rendered and the scroll-in effect is displayed (step S411), and the full-color pattern corresponding to the off mode is faded when display of the full-color pattern corresponding to the off mode reaches the predetermined time (step S412)
Methods and systems of the present disclosure, or certain aspects or portions of embodiments thereof, may take the form of a program code (i.e., instructions) embodied in media, such as floppy diskettes, CD-ROMS, hard drives, firmware, or any other machine-readable storage medium, wherein, when the program code is loaded into and executed by a machine, such as a computer, the machine becomes an apparatus for practicing embodiments of the disclosure. The methods and apparatus of the present disclosure may also be embodied in the form of a program code transmitted over some transmission medium, such as electrical wiring or cabling, through fiber optics, or via any other form of transmission, wherein, when the program code is received and loaded into and executed by a machine, such as a computer, the machine becomes an apparatus for practicing and embodiment of the disclosure. When implemented on a general-purpose processor, the program code combines with the processor to provide a unique apparatus that operates analogously to specific logic circuits.
While the invention has been described by way of example and in terms of the preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.