Display layout and interactive objects for patient monitoring

Information

  • Patent Grant
  • 11803623
  • Patent Number
    11,803,623
  • Date Filed
    Friday, October 16, 2020
    4 years ago
  • Date Issued
    Tuesday, October 31, 2023
    a year ago
Abstract
A physiological patient monitoring system with a patient-facing interface is disclosed. The patient interface can be used by the patient to communicate with hospital staff without actually requesting attendance and can request attendance for specific purposes. The patient interface may also track patient treatment and inform patients of the details of their treatments.
Description
BACKGROUND

The present disclosure relates to display layouts and interactive objects for a physiological patient monitoring system.


Often patients have lackluster experiences at hospitals, regardless of the quality of treatment or the reputation of the hospital. Patients often do not feel informed enough about their treatments or do not feel they are receiving the right amount of attention. This leads to patients feeling confused or detached from their treatment. The problem is caused at least in part by the fact that the current hospital system has many inefficiencies that use care team members' time ineffectively. For example, most hospitals currently only have a general attendance button used for both non-emergencies, such as a request for a glass of water, as well as life-threatening events. Medical staff are thus wasting their time running between rooms for attendance requests that should be directed toward support staff. Further, entire teams of healthcare professionals take care of a single patient, but in the current hospital system, information is not shared in a way that allows every member to stay up to date on the patient's treatment and progress. Such gaps in knowledge mean not only that patients are not receiving answers when they ask questions, but there is a heightened risk of clinician error each time a new care team member arrives. Thus, there is a need for more effective and efficient channels of communication between hospital staff and patients.


SUMMARY

For purposes of summarizing the disclosure, certain aspects, advantages and novel features are discussed herein. It is to be understood that not necessarily all such aspects, advantages, or features will be embodied in any particular configuration of the invention and an artisan would recognize from the disclosure herein a myriad of combinations of such aspects, advantages or features.


The disclosure describes a physiological patient monitoring system with a patient-facing interface. The patient interface can be used by the patient to communicate with hospital staff without actually requesting attendance and can request attendance for specific purposes such that physicians and nurses are not running room to room for non-medical emergency needs. The patient interface can also track patient treatment and informs patients of the details of their treatments, thereby increasing engagement.





BRIEF DESCRIPTION OF THE DRAWINGS

Throughout the drawings, reference numbers may be re-used to indicate correspondence between referenced elements. The drawings are provided to illustrate example configurations described herein and are not intended to limit the scope of the disclosure.



FIG. 1 depicts a hospital patient using a portable device with a patient interface for a physiological monitoring system.



FIG. 2 is an illustrative interface for a default screen for a patient interface on portable devices in hospital rooms, according to some configurations.



FIG. 3 is an illustrative interface for a room control panel summon screen where the the room control panel appears in full view while the remaining screen features are dimmed, according to some configurations.



FIG. 4 is an illustrative interface for a full screen view of a room control panel according to some configurations.



FIG. 5 is an illustrative interface displaying personalized information regarding a hospital building and a patient's care staff, according to some configurations.



FIG. 6 is an illustrative interface of different methods patients may utilize to communicate with hospital staff, according to some configurations.



FIGS. 7A-7C are illustrative interfaces showing how patients could communicate their levels of pain while requesting attendance, according to some configurations.



FIGS. 8A-8B are illustrative interfaces for a feature which allows patients to communicate with their assigned nurse via text messaging, according to some configurations.



FIG. 9 is an illustrative interface for a feature which allows patients to communicate with their assigned nurse via either audio or video communication, according to some configurations.



FIG. 10 is an illustrative interface for a feature which allows patients to record questions to ask hospital staff, according to some configurations.



FIGS. 11A-11B are illustrative interfaces showing medication prescription and administration details for a patient, according to some configurations.



FIGS. 12A-12B are illustrative interfaces showing treatment details and patient vitals, according to some configurations.



FIG. 13 is an illustrative interface showing a patient's daily goals, according to some configurations.



FIGS. 14A-14C are illustrative interfaces for a patient meal ordering feature, according to some configurations.





DETAILED DESCRIPTION OF THE PREFERRED CONFIGURATION

The current hospital system has several inefficiencies, many of which are caused by ineffective communication. Such ineffective communication leads to negative patient experience because patients feel confused and detached from their treatment. Patients are ill-informed about the details of their treatment, and they cannot communicate their needs until a hospital staff member, who may not be the best person for the patient's particular need, is already in the room. The presently disclosed patient interface of a physiological patient monitoring system addresses the issue of inefficient communication by creating a portal through which patients can both track details about their treatment and communicate their exact needs to the most relevant members of the hospital staff. By fostering quick yet precise communication, the present system aims to improve patient hospital experiences and increase patient understanding and engagement in treatments. Furthermore, physical switches may be heard to reach or the wires may be cumbersome. Accordingly, the systems described herein can improve communication without requiring physical switches that a patient may need to try to access to get help. In some instances, there are no physical switches and/or wires to call a nurse or indicate status in the hospital room.



FIG. 1 depicts a hospital patient using a portable device 100 with a patient interface for a physiological patient monitoring system. The physiological patient monitoring system may be connected to patient monitoring equipment and a hospital data network such that the patient interface may be updated with live measurements, diagnoses, and treatment plans. Updates may occur continuously, automatically, and/or only when new data is manually entered. Patients may thus be more informed about and involved with their treatment and progress. Patients may also communicate with hospital staff and request attendance from their hospital beds through the physiological patient monitoring system. The system may route patient requests to the appropriate hospital department based on the content of the patient's request.



FIG. 2 illustrates an example default screen 200 for a patient interface for portable devices in hospital rooms. The default screen 200 may display a patient's daily schedule 201, nurse call button 202, progress measurement feature 203, room control panel 204, and application navigation panel 205. The application navigation panel 205 may be used to access all other pages of the application. To return to the default screen 200, the patient may simply tap on the home button in the navigation panel 205. For ease of access, the nurse call button 202 may remain in the same location on each screen of the application. The daily schedule 201 may show the time at which each task is set to occur. The daily schedule 201 may update automatically once the scheduled time for an event has passed, or it may only mark a task as complete when the patient, a healthcare provider, or both manually mark the task as complete. In some configurations, the progress measurement feature 203 may be shaped like a flower that grows as daily tasks are completed. A leaf 203a may be added for completed tasks and the flower 203b may bloom when all tasks are complete. Other configurations may assign different parts of the flower to completed tasks, contain more or less detailed parts of the flower, or may use a different graphical representation of patient progress altogether. Together, the daily schedule 201 and the progress measurement feature 203 can inform and motivate patients throughout their recovery. The room control panel 204 may be partially hidden when not in use.



FIG. 3 shows an example room control panel summon screen 300 where the room control panel 204 shown in FIG. 2 may appear in full view while the remaining screen features are dimmed. The room control panel can allow patients to control the light 301, television or speaker volume 302, television 303, temperature 304, and window blinds 305 without calling hospital staff or even leaving their beds. The control panel may also include a help button 306 which explains how to use the application. The call-out button 307 can open the control panel as its own full screen.



FIG. 4 shows an illustrative full screen view 400 of the room control panel 204 from FIG. 2. The same features that were in the sidebar view may appear on this screen in full: light 401, volume 402, television 403, temperature 404, and window blinds 405. The full screen view 400 may include detailed buttons that allow more specific control of the features, such as which individual light to adjust, which window's blind to move, or other such changes to individual ambient items. The full screen view 400 of the room control panel can have an extra bedtime mode button 406. Bedtime mode may darken the screen such that patients can sleep without blue light disruption. With greater control over their hospital room environment, patients may not need to call for hospital staff assistance as often, thereby freeing up healthcare providers to attend to more urgent matters. Patients may also feel more comfortable as they can make adjustments to their liking at any time.



FIG. 5 illustrates an illustrative Hospital tab screen 500 which may display personalized information regarding the hospital building and the patient's care staff. The Hospital screen 500 may be accessed via the application navigation panel 205. The Hospital tab may show the patient's room information 501 and a hospital map 502. The patient's care team information 503 may also be included. The information button 504, when pressed, may create a pop-up or separate sub-screen that shares the individual team member's credentials, background, and any other information the team member chooses to share so that patients feel more connection with their care team.



FIG. 6 shows a default Help tab screen 600, according to some configurations. The Help screen 600 may be accessed via the application navigation panel 205. The top control panel 601 may lead to sub-screens that allow patients to request staff assistance, contact a nurse, or write down questions to ask a care team member. The assistance buttons 602 may allow patients to specify the reason they need assistance, such that the appropriate hospital staff can be sent to the patient's room. In some configurations, when the patient selects an assistance button 602, a pop-up window or sub-screen may appear in which the patient can enter details about the selection. For example, after selecting the “nauseous” button, the physiological patient monitoring system may prompt the patient about the type of nausea, other discomfort associated with the nausea, etc. The physiological patient monitoring system may present pre-set options from which the patient may select, or the patient may freely type in details. Upon receiving user input, the physiological patient monitoring system may send an alert to one or more pagers, computing devices, portable electronic devices, or any other type of electronic device. The one or more electronic devices may be associated with a department in the hospital or with specific hospital staff. In some configurations, an individual electronic device may have a static pairing with one or more of the assistance buttons 602. In other configurations, the button-device pairings may be configurable, such that the individual electronic device may be used in different departments or by different hospital staff members. With the current predominant system, patients have one universal button that pages the nursing staff, even though most patient pages are non-emergencies, such as bedding adjustments, room operation questions, food requests, or cleaning requests. The assistance buttons 602 can save nurses and physicians time by sending the appropriate hospital staff from the start.



FIGS. 7A-7C illustrate how the Pain button 603 in FIG. 6 may work. FIG. 7A shows the pop-up 701 that may appear when the patient requests attendance due to pain. The pop-up 701 may be a numerical scale that reflects the severity of a patient's experienced pain. The numerical scale may span any number range and may be marked with any regular increment. In some configurations, the numerical scale may be controlled by a slider on a sliding scale rather than discrete buttons on an incremented scale. In some configurations, the pop-up may only display figures that reflect degrees of discomfort, may only contain descriptor words that reflect degrees of discomfort, or may be any other scale that allows patients to communicate their discomfort level. FIG. 7B illustrates how the graphics may update to reflect a patient selection 702. In some configurations, the pop-up may offer further patient prompts, such as location of pain, type of pain, duration of pain, etc. The physiological patient monitoring system may present pre-set options from which the patient may select, or the patient may freely type in details. In some configurations, the pop-up 701 may be a separate sub-screen. FIG. 7C shows an example of an updated Pain button 703 after the patient selection 702 is sent. The updated Pain button 703 may show the patient's selection and confirm the information was submitted.



FIGS. 8A-8B illustrate an example Text Nurse sub-screen 800, which may be accessed through the control panel 601. FIG. 8A shows an illustrative chat window 801 which may open when the patient chooses Text Nurse. The chat function may be linked to an application on the nurse's cellular phone or other electronic device so that the nurse can receive live notifications and can provide live feedback. The Text Nurse feature may be linked to a device only accessible by the patient's attending nurse or may be linked to a general nursing department device such that any nurse may respond to the patient. FIG. 8B demonstrates an example virtual keyboard 803 that may appear when the patient taps on a message drafting space 802 on the chat window 801.



FIG. 9 illustrates an example Call Nurse sub-screen 900, which may be accessed through the control panel 601. The sub-screen may offer the options to either audio call 901 or video call 902 the nurse. The portable device 100 may thus have a microphone, a camera, or both such that the patient can call the nurse. If the portable device 100 does not support audio or video transmission, the call buttons may be disactivated or a warning pop-up may appear when the buttons are selected. Both call options may be linked to an application on the nurse's cellular phone or other electronic device so that the nurse can receive live notifications and can provide live feedback. The Call Nurse feature may be linked to a device only accessible by the patient's attending nurse or may be linked to a general nursing department device such that any nurse may respond to the patient.



FIG. 10 illustrates an example Things To Ask sub-screen 1000, which may be accessed through the control panel 601. The Things To Ask sub-screen 1000 can function like a digital notepad where the patient can create new questions 1001 and view saved questions 1002. In some configurations, patients may be able to select a specific individual on their care team to direct each question. Saving questions until the staff's scheduled visit may be more efficient than paging staff members each time the patient thinks of a question. In some configurations, the patient interface of the physiological patient monitoring system may be linked to a healthcare provider interface such that healthcare providers may directly access the patient's questions from a separate electronic device.



FIGS. 11A-11B show illustrative Medication tab sub-screens. FIG. 11A illustrates an example Medication tab default screen 1100. The Medication tab default screen 1100 may be accessed via the application navigation panel 205. The default screen 1100 may list all the patient's medications and related details, such as drug name 1101, administration schedule 1102, and dosage instructions 1103. The patient may also tap on individual drugs on the drug name list to view extra drug information, such as what the drug may treat, side effects of the drugs, and other information typically included on drug labels. In some configurations, an icon may be included that accurately reflects the physical form or appearance of the drug. FIG. 11B may offer a detailed view 1104 of the medication administration schedule 1102 for a given day, broken down by time and dosage. In some configurations, the detailed view 1104 displays medication information for the current day. In other configurations, the detailed view may include a date selection feature where patients can view their medication details for other dates. The detailed view 1104 may also include icons that show the physical form of the drugs. The information presented in the Medication tab sub-screens can not only help patients better understand what medications they are taking but can also act as a simple method for healthcare providers to confirm they are administering the correct medications.



FIGS. 12A-12B show an illustrative My Info tab sub-screens. FIG. 12A illustrates an exemplary My Info tab default screen 1200, or Care Plan sub-screen, which may outline the patient's care plan. The My Info tab default screen 1200 may be accessed via the application navigation panel 205. The Care Plan sub-screen may show a procedure timeline 1201 and procedure details, including the length of the procedure 1202, videos about the procedure 1203, and why the procedure is necessary in the patient's case 1204. The procedure timeline 1201 may have buttons associated with each event on the timeline, and the patient may tap on each button to access an interactive sub-screen to learn more about each individual event. For example, a Before the Procedure sub-screen may allow the patient to access pre-approved informational videos by tapping on the button for videos about the procedure 1203. This provides approved information to patients, avoiding misinformation through a patient's own independent research, which can potentially carry the risk of finding the wrong procedure or being misinformed. Similar content may be incorporated in the other procedure timeline sub-screens. The content on the Care Plan sub-screen 1200 may also be customized for the patient. For example, a feature explaining why the procedure is necessary in the patient's case 1204 could be a short explanation personally drafted by the attending physician. Personalized explanations can help patients feels more at ease and more informed. FIG. 12B shows an example Vitals sub-screen, which may track the patient's oxygen levels 1206, blood pressure 1207, and heart rate 1208. The vitals may be recorded, so the patient can use the calendar panel 1205 to view trends.



FIG. 13 illustrates an example default Goals tab screen 1300. Patients can check their daily tasks and completion statuses for those tasks. The Goals screen 1300 may be accessed via the application navigation panel 205. A date selector 1301 may allow patients to review old goals and see upcoming goals. The date selector 1301 may be a scroll-through list, a drop-down menu, a calendar graphic with selectable dates, or any other graphical representation that can allow the patient to view data from any date during the patient's hospital stay. The goals display 1302 may update to mark tasks as completed. Tasks may be marked completed by either patients or healthcare providers, or both.



FIGS. 14A-14C show an exemplary Meal tab screen 1400 through which the patient can order food for any meal of the week. The Meal screen 1400 may be accessed via the application navigation panel 205. FIG. 14A shows an illustrative Meal tab screen 1400 before the patient places an order. The application may allow for meal selection 1401, so patients can order food for any meal of the day. The menu 1402 may list details about each dish, including, but not limited to, caloric and allergen information. When ready, the patient can tap the add button 1403 to add the dish to a virtual cart 1405. FIG. 14B shows an illustrative Meal tab screen 1400 after the patient has selected menu items. The selection graphic 1404 may update to show which dishes have been selected, and the patient can see the full list in a virtual cart 1405. FIG. 14C may show a date selection menu 1406 that the patient could use to order food for different days of the week. The date selection menu 1406 may be a scroll-through list, a drop-down menu, a calendar graphic with selectable dates, or any other graphical representation.


The various features and processes described above may be used independently of one another or may be combined in various ways. All possible combinations and sub-combinations are intended to fall within the scope of this disclosure. In addition, certain interfaces and features may be omitted in some implementations. The interfaces described herein are also not limited to any particular sequence and may be arranged in other sequences that are appropriate. Features may be added to or removed from the disclosed example configurations. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example configurations


Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain configurations include, while other configurations do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more configurations or that one or more configurations necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular configuration.


It should be emphasized that many variations and modifications may be made to the above-described configurations, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure. The foregoing description details certain configurations of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated. The scope of the invention should therefore be construed in accordance with the appended claims and any equivalents thereof.

Claims
  • 1. A system comprising: a portable electronic device comprising a display and one or more hardware processors, wherein the one or more hardware processors execute computer-executable instructions to cause the one or more hardware processors to: cause presentation of a first user interface on the display, wherein the first user interface comprises a plurality of patient assistance options;receive, via the first user interface, a first user selection of a patient assistance option, wherein the patient assistance option comprises a request to communicate with a healthcare provider;determine, from a plurality of healthcare providers, a subset of healthcare providers related to the request to communicate, wherein the determination is based at least in part on a property of the subset of healthcare providers;enable real-time communication, through the portable electronic device, with the subset of healthcare providers, wherein the subset of healthcare providers receive the real-time communication via one or more electronic devices associated with the subset of healthcare providers;cause presentation of a second user interface on the display, wherein the second user interface comprises a first physiological parameter value for an oxygen level of a patient, a second physiological parameter value for blood pressure of the patient, and a third physiological parameter value for heart rate of the patient; andcause presentation of an overlay over the second user interface on the display, wherein the overlay comprises a room control panel,the room control panel comprising at least one of light option, volume option, television option, temperature option, or window blinds option,wherein user interface features of the second user interface are dimmed during the presentation of the overlay.
  • 2. The system of claim 1, wherein the real-time communication includes at least one of: written, aural, or visual communication.
  • 3. The system of claim 1, wherein the one or more hardware processors execute further computer-executable instructions to cause the one or more hardware processors to: receive, via the first user interface, a user selection of a second patient assistance option, wherein the second patient assistance option is associated with a subset of recipients of a plurality of recipients;generate a patient assistance request according to the user selection of the second patient assistance option;determine the subset of recipients associated with the second patient assistance option; anddeliver the patient assistance request to one or more other electronic devices associated with the subset of recipients.
  • 4. The system of claim 1, wherein the one or more hardware processors execute further computer-executable instructions to cause the one or more hardware processors to: receive data from a healthcare data network, wherein the data comprises healthcare and treatment regimen information;display the data from the healthcare data network in real time;track user progress throughout a treatment regimen; andindicate a progress of a user throughout the treatment regimen.
  • 5. The system of claim 4, wherein the healthcare and treatment regimen information includes at least one of: treatment information personalized to the user, or general educational materials.
  • 6. The system of claim 1, wherein the one or more hardware processors execute further computer-executable instructions to cause the one or more hardware processors to: in response to user input, interact with electronically-controlled items remote to the one or more hardware processors.
  • 7. The system of claim 1, wherein the first user interface comprises a representation of a living entity, wherein a growth of the living entity is related to a progress of a user, and wherein the living entity is a plant.
  • 8. The system of claim 7, wherein living entity includes one or more leaves.
  • 9. The system of claim 1, wherein the first user interface comprises icons selectable by a user to indicate frequently used status indicators.
  • 10. The system of claim 1, wherein the property comprises an identity, task, or role of healthcare providers in the subset of healthcare providers.
  • 11. The system of claim 1, wherein the subset of healthcare providers are associated with a user, and wherein the determination is based at least in part on the association of the subset of healthcare providers with the user.
  • 12. The system of claim 3, wherein determining the subset of recipients associated with the second patient assistance option comprises determining a property of the subset of recipients.
  • 13. The system of claim 3, wherein the second patient assistance option is associated with the one or more other electronic devices, and wherein determining the subset of recipients associated with the second patient assistance option comprises determining the one or more other electronic devices associated with the second patient assistance option.
  • 14. A method for providing patient assistance, the method comprising: causing presentation, via a display of a portable electronic device, of a first user interface comprising a plurality of patient assistance options;receiving, via the first user interface, a first user selection of a patient assistance option, wherein the patient assistance option comprises a request to communicate with a healthcare provider;determining, from a plurality of healthcare providers, a subset of healthcare providers to receive the request, wherein the determination is based at least in part on a property of the subset of healthcare providers;enabling real-time communication, through the portable electronic device, with the subset of healthcare providers, wherein the subset of healthcare providers receive the real-time communication via one or more electronic devices associated with the subset of healthcare providers;causing presentation of a second user interface on the display, wherein the second user interface comprises a first physiological parameter value for an oxygen level of a patient, a second physiological parameter value for blood pressure of the patient, and a third physiological parameter value for heart rate of the patient; andcausing presentation of an overlay over the second user interface on the display, wherein the overlay comprises a room control panel,the room control panel comprising at least one of light option, volume option, television option, temperature option, or window blinds option,wherein user interface features of the second user interface are dimmed during the presentation of the overlay.
  • 15. The method of claim 14, wherein the property comprises an identity, task, or role of healthcare providers in the subset of healthcare providers.
  • 16. The method of claim 14, wherein the subset of healthcare providers are associated with a user, and wherein the determination is based at least in part on the association of the subset of healthcare providers with the user.
  • 17. The method of claim 14, further comprising: receiving, via the first user interface, a user selection of a second patient assistance option, wherein the second patient assistance option is associated with a subset of recipients of a plurality of recipients;generating a patient assistance request according to the user selection of the second patient assistance option;determining the subset of recipients associated with the second patient assistance option; anddelivering the patient assistance request to one or more other electronic devices associated with the subset of recipients.
  • 18. The method of claim 17, wherein determining the subset of recipients associated with the second patient assistance option comprises determining a property of the subset of recipients.
  • 19. The method of claim 17, wherein the second patient assistance option is associated with the one or more other electronic devices, and wherein determining the subset of recipients associated with the second patient assistance option comprises determining the one or more other electronic devices associated with the second patient assistance option.
CROSS REFERENCE TO PRIORITY APPLICATIONS

Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR § 1.57. This application claims the benefit of priority to U.S. Provisional Patent Application No. 62/923,248, filed Oct. 18, 2019 and entitled “DISPLAY LAYOUT AND INTERACTIVE OBJECTS FOR PATIENT MONITORING,” and to U.S. Provisional Patent Application No. 63/017,151, filed Apr. 29, 2020 and entitled “DISPLAY LAYOUT AND INTERACTIVE OBJECTS FOR PATIENT MONITORING.” All the foregoing are hereby incorporated by reference in their entireties herein.

US Referenced Citations (560)
Number Name Date Kind
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
5319355 Russek Jun 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5377676 Vari et al. Jan 1995 A
D359546 Savage et al. Jun 1995 S
5431170 Mathews Jul 1995 A
5436499 Namavar et al. Jul 1995 A
D361840 Savage et al. Aug 1995 S
D362063 Savage et al. Sep 1995 S
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5479934 Imran Jan 1996 A
5482036 Diab et al. Jan 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5533511 Kaspari et al. Jul 1996 A
5561275 Savage et al. Oct 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5671914 Kalkhoran et al. Sep 1997 A
5726440 Kalkhoran et al. Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5747806 Khalil et al. May 1998 A
5750994 Schlager May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5890929 Mills et al. Apr 1999 A
5919134 Diab Jul 1999 A
5987343 Kinast Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6010937 Karam et al. Jan 2000 A
6027452 Flaherty et al. Feb 2000 A
6040578 Malin et al. Mar 2000 A
6066204 Haven May 2000 A
6115673 Malin et al. Sep 2000 A
6124597 Shehada et al. Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6144868 Parker Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6184521 Coffin, IV et al. Feb 2001 B1
6232609 Snyder et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6255708 Sudharsanan et al. Jul 2001 B1
6280381 Malin et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6317627 Ennen et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6360114 Diab et al. Mar 2002 B1
6368283 Xu et al. Apr 2002 B1
6411373 Garside et al. Jun 2002 B1
6415167 Blank et al. Jul 2002 B1
6430437 Marro Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6487429 Hockersmith et al. Nov 2002 B2
6505059 Kollias et al. Jan 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6534012 Hazen et al. Mar 2003 B1
6542764 Al-Ali et al. Apr 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6587196 Stippick et al. Jul 2003 B1
6587199 Luu Jul 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6635559 Greenwald et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6640117 Makarewicz et al. Oct 2003 B2
6658276 Kiani et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6697656 Al-Ali Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
RE38492 Diab et al. Apr 2004 E
6738652 Mattu et al. May 2004 B2
6760607 Al-Ali Jul 2004 B2
6788965 Ruchti et al. Sep 2004 B2
6816241 Grubisic Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6876931 Lorenz et al. Apr 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6934570 Kiani et al. Aug 2005 B2
6943348 Coffin, IV Sep 2005 B1
6956649 Acosta et al. Oct 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6985764 Mason et al. Jan 2006 B2
6990364 Ruchti et al. Jan 2006 B2
6998247 Monfre et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7027849 Al-Ali Apr 2006 B2
D526719 Richie, Jr. et al. Aug 2006 S
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
D529616 Deros et al. Oct 2006 S
7133710 Acosta et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7225006 Al-Ali et al. May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7254429 Schurman et al. Aug 2007 B2
7254431 Al-Ali et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali et al. Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7356365 Schurman Apr 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7377794 Al-Ali et al. May 2008 B2
7395158 Monfre et al. Jul 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7483729 Al-Ali et al. Jan 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7500950 Al-Ali et al. Mar 2009 B2
7509494 Al-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7514725 Wojtczuk et al. Apr 2009 B2
7519406 Blank et al. Apr 2009 B2
D592507 Wachman et al. May 2009 S
7530942 Diab May 2009 B1
7593230 Abul-Haj et al. Sep 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7606608 Blank et al. Oct 2009 B2
7620674 Ruchti et al. Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7629039 Eckerbom et al. Dec 2009 B2
7640140 Ruchti et al. Dec 2009 B2
7647083 Al-Ali et al. Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
D614305 Al-Ali et al. Apr 2010 S
7697966 Monfre et al. Apr 2010 B2
7698105 Ruchti et al. Apr 2010 B2
RE41317 Parker May 2010 E
RE41333 Blank et al. May 2010 E
7729733 Al-Ali et al. Jun 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621516 Kiani et al. Aug 2010 S
7791155 Diab Sep 2010 B2
RE41912 Parker Nov 2010 E
7880626 Al-Ali et al. Feb 2011 B2
7909772 Popov et al. Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7941199 Kiani May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7976472 Kiani Jul 2011 B2
7990382 Kiani Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8028701 Al-Ali et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
8182443 Kiani May 2012 B1
8190223 Al-Ali et al. May 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8219172 Schurman et al. Jul 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8229532 Davis Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8255026 Al-Ali Aug 2012 B1
8265723 McHale et al. Sep 2012 B1
8274360 Sampath et al. Sep 2012 B2
8280473 Al-Ali Oct 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
RE43860 Parker Dec 2012 E
8346330 Lamego Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
8388353 Kiani et al. Mar 2013 B2
8401602 Kiani Mar 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8428967 Olsen et al. Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8437825 Dalvi et al. May 2013 B2
8455290 Siskavich Jun 2013 B2
8457707 Kiani Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
8509867 Workman et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
8523781 Al-Ali Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8571617 Reichgott et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
8577431 Lamego et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8630691 Lamego et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
8666468 Al-Ali Mar 2014 B1
8670811 O'Reilly Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
8688183 Bruinsma et al. Apr 2014 B2
8690799 Telfort et al. Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8712494 MacNeish, III et al. Apr 2014 B1
8715206 Telfort et al. May 2014 B2
8723677 Kiani May 2014 B1
8740792 Kiani et al. Jun 2014 B1
8755535 Telfort et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8840549 Al-Ali et al. Sep 2014 B2
8852094 Al-Ali et al. Oct 2014 B2
8852994 Wojtczuk et al. Oct 2014 B2
8897847 Al-Ali Nov 2014 B2
8911377 Al-Ali Dec 2014 B2
8989831 Al-Ali et al. Mar 2015 B2
8998809 Kiani Apr 2015 B2
9066666 Kiani Jun 2015 B2
9066680 Al-Ali et al. Jun 2015 B1
9095316 Welch et al. Aug 2015 B2
9106038 Telfort et al. Aug 2015 B2
9107625 Telfort et al. Aug 2015 B2
9131881 Diab et al. Sep 2015 B2
9138180 Coverston et al. Sep 2015 B1
9153112 Kiani et al. Oct 2015 B1
9192329 Al-Ali Nov 2015 B2
9192351 Telfort et al. Nov 2015 B1
9195385 Al-Ali et al. Nov 2015 B2
9211095 Al-Ali Dec 2015 B1
9218454 Kiani et al. Dec 2015 B2
9245668 Vo et al. Jan 2016 B1
9267572 Barker et al. Feb 2016 B2
9277880 Poeze et al. Mar 2016 B2
9307928 Al-Ali et al. Apr 2016 B1
9323894 Kiani Apr 2016 B2
D755392 Hwang et al. May 2016 S
9326712 Kiani May 2016 B1
9392945 Al-Ali et al. Jul 2016 B2
9408542 Kinast et al. Aug 2016 B1
9436645 Al-Ali et al. Sep 2016 B2
9445759 Lamego et al. Sep 2016 B1
9474474 Lamego et al. Oct 2016 B2
9480435 Olsen Nov 2016 B2
9510779 Poeze et al. Dec 2016 B2
9517024 Kiani et al. Dec 2016 B2
9532722 Lamego et al. Jan 2017 B2
9560996 Kiani Feb 2017 B2
9579039 Jansen et al. Feb 2017 B2
9622692 Lamego et al. Apr 2017 B2
D788312 Al-Ali et al. May 2017 S
9649054 Lamego et al. May 2017 B2
9697928 Al-Ali et al. Jul 2017 B2
9717458 Lamego et al. Aug 2017 B2
9724016 Al-Ali et al. Aug 2017 B1
9724024 Al-Ali Aug 2017 B2
9724025 Kiani et al. Aug 2017 B1
9749232 Sampath et al. Aug 2017 B2
9750442 Olsen Sep 2017 B2
9750461 Telfort Sep 2017 B1
9775545 Al-Ali et al. Oct 2017 B2
9778079 Al-Ali et al. Oct 2017 B1
9782077 Lamego et al. Oct 2017 B2
9787568 Lamego et al. Oct 2017 B2
9808188 Perea et al. Nov 2017 B1
9839379 Al-Ali et al. Dec 2017 B2
9839381 Weber et al. Dec 2017 B1
9847749 Kiani et al. Dec 2017 B2
9848800 Lee et al. Dec 2017 B1
9861298 Eckerbom et al. Jan 2018 B2
9861305 Weber et al. Jan 2018 B1
9877650 Muhsin et al. Jan 2018 B2
9891079 Dalvi Feb 2018 B2
9924897 Abdul-Hafiz Mar 2018 B1
9936917 Poeze et al. Apr 2018 B2
9955937 Telfort May 2018 B2
9965946 Al-Ali et al. May 2018 B2
D820865 Muhsin et al. Jun 2018 S
9986952 Dalvi et al. Jun 2018 B2
D822215 Al-Ali et al. Jul 2018 S
D822216 Barker et al. Jul 2018 S
10010276 Al-Ali et al. Jul 2018 B2
10086138 Novak, Jr. Oct 2018 B1
10111591 Dyell et al. Oct 2018 B2
D833624 DeJong et al. Nov 2018 S
10123729 Dyell et al. Nov 2018 B2
D835282 Barker et al. Dec 2018 S
D835283 Barker et al. Dec 2018 S
D835284 Barker et al. Dec 2018 S
D835285 Barker et al. Dec 2018 S
10149616 Al-Ali et al. Dec 2018 B2
10154815 Al-Ali et al. Dec 2018 B2
10159412 Lamego et al. Dec 2018 B2
10188348 Al-Ali et al. Jan 2019 B2
RE47218 Al-Ali Feb 2019 E
RE47244 Kiani et al. Feb 2019 E
RE47249 Kiani et al. Feb 2019 E
10205291 Scruggs et al. Feb 2019 B2
10226187 Al-Ali et al. Mar 2019 B2
10231657 Al-Ali et al. Mar 2019 B2
10231670 Blank et al. Mar 2019 B2
RE47353 Kiani et al. Apr 2019 E
10279247 Kiani May 2019 B2
10292664 Al-Ali May 2019 B2
10299720 Brown et al. May 2019 B2
10327337 Schmidt et al. Jun 2019 B2
10327713 Barker et al. Jun 2019 B2
10332630 Al-Ali Jun 2019 B2
10383520 Wojtczuk et al. Aug 2019 B2
10383527 Al-Ali Aug 2019 B2
10388120 Muhsin et al. Aug 2019 B2
D864120 Forrest et al. Oct 2019 S
10441181 Telfort et al. Oct 2019 B1
10441196 Eckerbom et al. Oct 2019 B2
10448844 Al-Ali et al. Oct 2019 B2
10448871 Al-Ali et al. Oct 2019 B2
10456038 Lamego et al. Oct 2019 B2
10463340 Telfort et al. Nov 2019 B2
10471159 Lapotko et al. Nov 2019 B1
10505311 Al-Ali et al. Dec 2019 B2
10524738 Olsen Jan 2020 B2
10532174 Al-Ali Jan 2020 B2
10537285 Shreim et al. Jan 2020 B2
10542903 Al-Ali et al. Jan 2020 B2
10555678 Dalvi et al. Feb 2020 B2
10568553 O'Neil et al. Feb 2020 B2
RE47882 Al-Ali Mar 2020 E
10608817 Haider et al. Mar 2020 B2
D880477 Forrest et al. Apr 2020 S
10617302 Al-Ali et al. Apr 2020 B2
10617335 Al-Ali et al. Apr 2020 B2
10637181 Al-Ali et al. Apr 2020 B2
D887548 Abdul-Hafiz et al. Jun 2020 S
D887549 Abdul-Hafiz et al. Jun 2020 S
10667764 Ahmed et al. Jun 2020 B2
D890708 Forrest et al. Jul 2020 S
10721785 Al-Ali Jul 2020 B2
10736518 Al-Ali et al. Aug 2020 B2
10750984 Pauley et al. Aug 2020 B2
D897098 Al-Ali Sep 2020 S
10779098 Iswanto et al. Sep 2020 B2
10827961 Iyengar et al. Nov 2020 B1
10828007 Telfort et al. Nov 2020 B1
10832818 Muhsin et al. Nov 2020 B2
10849554 Shreim et al. Dec 2020 B2
10856750 Indorf Dec 2020 B2
D906970 Forrest et al. Jan 2021 S
10918281 Al-Ali et al. Feb 2021 B2
10932705 Muhsin et al. Mar 2021 B2
10932729 Kiani et al. Mar 2021 B2
10939878 Kiani et al. Mar 2021 B2
10956950 Al-Ali et al. Mar 2021 B2
D916135 Indorf et al. Apr 2021 S
D917550 Indorf et al. Apr 2021 S
D917564 Indorf et al. Apr 2021 S
D917704 Al-Ali et al. Apr 2021 S
10987066 Chandran et al. Apr 2021 B2
10991135 Al-Ali et al. Apr 2021 B2
D919094 Al-Ali et al. May 2021 S
D919100 Al-Ali et al. May 2021 S
11006867 Al-Ali May 2021 B2
D921202 Al-Ali et al. Jun 2021 S
11024064 Muhsin et al. Jun 2021 B2
11026604 Chen et al. Jun 2021 B2
D925597 Chandran et al. Jul 2021 S
D927699 Al-Ali et al. Aug 2021 S
11076777 Lee et al. Aug 2021 B2
11114188 Poeze et al. Sep 2021 B2
D933232 Al-Ali et al. Oct 2021 S
11145408 Sampath et al. Oct 2021 B2
11147518 Al-Ali et al. Oct 2021 B1
11185262 Al-Ali et al. Nov 2021 B2
11191484 Kiani et al. Dec 2021 B2
D946596 Ahmed Mar 2022 S
D946597 Ahmed Mar 2022 S
D946598 Ahmed Mar 2022 S
D946617 Ahmed Mar 2022 S
11272839 Al-Ali et al. Mar 2022 B2
11289199 Al-Ali Mar 2022 B2
RE49034 Al-Ali Apr 2022 E
11298021 Muhsin et al. Apr 2022 B2
D950580 Ahmed May 2022 S
D950599 Ahmed May 2022 S
D957648 Al-Ali Jul 2022 S
11389093 Triman et al. Jul 2022 B2
11406286 Al-Ali et al. Aug 2022 B2
11417426 Muhsin et al. Aug 2022 B2
11439329 Lamego Sep 2022 B2
20010034477 Mansfield et al. Oct 2001 A1
20010039483 Brand et al. Nov 2001 A1
20020010401 Bushmakin et al. Jan 2002 A1
20020058864 Mansfield et al. May 2002 A1
20020133080 Apruzzese et al. Sep 2002 A1
20030013975 Kiani Jan 2003 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030144582 Cohen et al. Jul 2003 A1
20030156288 Barnum et al. Aug 2003 A1
20030212312 Coffin, IV et al. Nov 2003 A1
20040106163 Workman, Jr. et al. Jun 2004 A1
20050055276 Kiani et al. Mar 2005 A1
20050234317 Kiani Oct 2005 A1
20060073719 Kiani Apr 2006 A1
20060189871 Al-Ali et al. Aug 2006 A1
20070073116 Kiani et al. Mar 2007 A1
20070180140 Welch et al. Aug 2007 A1
20070244377 Cozad et al. Oct 2007 A1
20080064965 Jay et al. Mar 2008 A1
20080094228 Welch et al. Apr 2008 A1
20080172789 Elliot Jul 2008 A1
20080221418 Al-Ali et al. Sep 2008 A1
20090036759 Ault et al. Feb 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090095926 MacNeish, III Apr 2009 A1
20090247984 Lamego et al. Oct 2009 A1
20100004518 Vo et al. Jan 2010 A1
20100030040 Poeze et al. Feb 2010 A1
20100037170 Poole Feb 2010 A1
20100099964 O'Reilly et al. Apr 2010 A1
20100234718 Sampath et al. Sep 2010 A1
20100270257 Wachman et al. Oct 2010 A1
20110028806 Merritt et al. Feb 2011 A1
20110028809 Goodman Feb 2011 A1
20110040197 Welch et al. Feb 2011 A1
20110082711 Poeze et al. Apr 2011 A1
20110087081 Kiani et al. Apr 2011 A1
20110118561 Tari et al. May 2011 A1
20110137297 Kiani et al. Jun 2011 A1
20110172498 Olsen et al. Jul 2011 A1
20110230733 Al-Ali Sep 2011 A1
20120123231 O'Reilly May 2012 A1
20120165629 Merritt et al. Jun 2012 A1
20120209084 Olsen et al. Aug 2012 A1
20120226117 Lamego et al. Sep 2012 A1
20120283524 Kiani et al. Nov 2012 A1
20130023775 Lamego et al. Jan 2013 A1
20130041591 Lamego Feb 2013 A1
20130060147 Welch et al. Mar 2013 A1
20130096405 Garfio Apr 2013 A1
20130253951 Richter Sep 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130345921 Al-Ali et al. Dec 2013 A1
20140166076 Kiani et al. Jun 2014 A1
20140180160 Brown et al. Jun 2014 A1
20140187973 Brown et al. Jul 2014 A1
20140257852 Walker Sep 2014 A1
20140275871 Lamego et al. Sep 2014 A1
20140275872 Merritt et al. Sep 2014 A1
20140316217 Purdon et al. Oct 2014 A1
20140316218 Purdon et al. Oct 2014 A1
20140323897 Brown et al. Oct 2014 A1
20140323898 Purdon et al. Oct 2014 A1
20150005600 Blank et al. Jan 2015 A1
20150011907 Purdon et al. Jan 2015 A1
20150073241 Lamego Mar 2015 A1
20150080754 Purdon et al. Mar 2015 A1
20150099950 Al-Ali et al. Apr 2015 A1
20150294549 Ribble Oct 2015 A1
20160196388 Lamego Jul 2016 A1
20160283665 Sampath et al. Sep 2016 A1
20160367173 Dalvi et al. Dec 2016 A1
20170024748 Haider Jan 2017 A1
20170173632 Al-Ali Jun 2017 A1
20170251974 Shreim et al. Sep 2017 A1
20170311891 Kiani et al. Nov 2017 A1
20180242926 Muhsin et al. Aug 2018 A1
20180247353 Al-Ali et al. Aug 2018 A1
20180247712 Muhsin et al. Aug 2018 A1
20180256087 Al-Ali et al. Sep 2018 A1
20180310823 Al-Ali et al. Nov 2018 A1
20190117070 Muhsin et al. Apr 2019 A1
20190178010 Moock et al. Jun 2019 A1
20190239787 Pauley et al. Aug 2019 A1
20190320906 Olsen Oct 2019 A1
20190374713 Kiani et al. Dec 2019 A1
20190385753 Aganyan Dec 2019 A1
20200060869 Telfort et al. Feb 2020 A1
20200111552 Ahmed Apr 2020 A1
20200113435 Muhsin Apr 2020 A1
20200113488 Al-Ali et al. Apr 2020 A1
20200113496 Scruggs et al. Apr 2020 A1
20200113497 Triman et al. Apr 2020 A1
20200113520 Abdul-Hafiz et al. Apr 2020 A1
20200138288 Al-Ali et al. May 2020 A1
20200138368 Kiani et al. May 2020 A1
20200163597 Dalvi et al. May 2020 A1
20200196877 Vo et al. Jun 2020 A1
20200204631 Subramaniam Jun 2020 A1
20200253474 Muhsin et al. Aug 2020 A1
20200253544 Belur Nagaraj et al. Aug 2020 A1
20200275841 Telfort et al. Sep 2020 A1
20200288983 Telfort et al. Sep 2020 A1
20200321793 Al-Ali et al. Oct 2020 A1
20200329983 Al-Ali et al. Oct 2020 A1
20200329984 Al-Ali et al. Oct 2020 A1
20200329993 Al-Ali et al. Oct 2020 A1
20200330037 Al-Ali et al. Oct 2020 A1
20210022628 Telfort et al. Jan 2021 A1
20210104173 Pauley et al. Apr 2021 A1
20210113121 Diab et al. Apr 2021 A1
20210117525 Kiani et al. Apr 2021 A1
20210121582 Krishnamani et al. Apr 2021 A1
20210161465 Barker et al. Jun 2021 A1
20210236729 Kiani et al. Aug 2021 A1
20210256267 Ranasinghe et al. Aug 2021 A1
20210256835 Ranasinghe et al. Aug 2021 A1
20210275101 Vo et al. Sep 2021 A1
20210290060 Ahmed Sep 2021 A1
20210290072 Forrest Sep 2021 A1
20210290080 Ahmed Sep 2021 A1
20210290120 Al-Ali Sep 2021 A1
20210290177 Novak, Jr. Sep 2021 A1
20210290184 Ahmed Sep 2021 A1
20210296008 Novak, Jr. Sep 2021 A1
20210330228 Olsen et al. Oct 2021 A1
20210386382 Olsen et al. Dec 2021 A1
20210402110 Pauley et al. Dec 2021 A1
20210407658 Taheri Dec 2021 A1
20220026355 Normand et al. Jan 2022 A1
20220039707 Sharma et al. Feb 2022 A1
20220053892 Al-Ali et al. Feb 2022 A1
20220071562 Kiani Mar 2022 A1
20220096603 Kiani et al. Mar 2022 A1
20220151521 Krishnamani et al. May 2022 A1
20220218244 Kiani et al. Jul 2022 A1
20220287574 Telfort et al. Sep 2022 A1
Foreign Referenced Citations (2)
Number Date Country
WO 2014059521 Apr 2014 WO
WO 2021077019 Apr 2021 WO
Non-Patent Literature Citations (2)
Entry
US 2022/0192529 A1, 06/2022, Al-Ali et al. (withdrawn)
International Search Report and Written Opinion received in PCT Application No. PCT/US2020/056158. dated Jan. 28, 2021 in 15 pages.
Related Publications (1)
Number Date Country
20210118581 A1 Apr 2021 US
Provisional Applications (2)
Number Date Country
63017151 Apr 2020 US
62923248 Oct 2019 US