The present disclosure generally relates to a rearview device system, and more particularly, to a display mirror assembly having a partially reflective, partially transmissive element and a display behind the reflective element.
One aspect of the disclosure includes a display mirror assembly for a vehicle having a housing. A glass element is operably coupled with the housing. A display module is mounted between the glass element and the housing, and includes a display, an optic block, and a printed circuit board. The display module is configured to be turned to an on state and an off state. A peripheral support is disposed proximate a periphery of the glass element and is configured to retain the glass element against the display module. The peripheral support includes a radio frequency shield integral therewith. An actuator device is disposed on a bottom surface of the housing and is operably coupled with the glass element. The actuator device is adjustable to tilt the glass element in one direction, thereby moving the glass element to an off-axis position which approximately simultaneously changes the on/off state of the display module. The actuator device is also adjustable to tilt the glass element in another direction, thereby moving the glass element to an on-axis position which approximately simultaneously changes the on/off state of the display module.
Another aspect of the disclosure includes a display mirror assembly for a vehicle having a partially reflective, partially transmissive element. A display module is operably coupled with the partially reflective, partially transmissive element and is configured to be turned to an on state and an off state. A radio frequency shield is formed from a metallic material and securely engaged with the polymeric bezel. The radio frequency shield includes an internal peripheral wall that abuts a rear of the partially reflective, partially transmissive element. An actuator device is operably coupled with the partially reflective, partially transmissive element. The actuator device is adjustable to tilt the partially reflective, partially transmissive element to an off-axis position which approximately simultaneously changes the on/off state of the display module. The actuator device is also adjustable to tilt the partially reflective, partially transmissive element to an on-axis position which approximately simultaneously changes the on/off state of the display module.
Yet another aspect of the disclosure includes a display mirror assembly for a vehicle having a housing. An electro-optic element is operably coupled with the housing. A display module is mounted at least partially between the electro-optic element and the housing and operably coupled to a printed circuit board. The display module is configured to be turned to an on state and an off state. A bezel is disposed about a periphery of the glass element and is configured to retain the glass element against the display module. The bezel is operably coupled with a radio frequency shield disposed between the glass element and the display module.
These and other features, advantages, and objects of the present disclosure will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.
The present illustrated embodiments reside primarily in combinations of method steps and apparatus components related to a display mirror. Accordingly, the apparatus components and method steps have been represented, where appropriate, by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present disclosure so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein. Further, like numerals in the description and drawings represent like elements.
For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the disclosure as oriented in
The terms “including,” “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises a . . . ” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
Referring now to
Referring generally to
Referring to
The display mirror assembly 10 will hereafter be described in greater detail, beginning with the elements closest to the intended viewer, and extending rearwardly away from the viewer.
The glass element 12 may be an electro-optic element or single transflective or an element such as a prism. For electro-optic element constructions, the glass element 12 may include a front substrate and a rear substrate. One non-limiting example of an electro-optic element includes an electrochromic medium, which includes at least one solvent, at least one anodic material, and at least one cathodic material disposed between the first substrate and the rear substrate. Typically, both of the anodic and cathodic materials are electroactive and at least one of them is electrochromic. It will be understood that regardless of its ordinary meaning, the term “electroactive” will be defined herein as a material that undergoes a modification in its oxidation state upon exposure to a particular electrical potential difference. Additionally, it will be understood that the term “electrochromic” will be defined herein, regardless of its ordinary meaning, as a material that exhibits a change in its extinction coefficient at one or more wavelengths upon exposure to a particular electrical potential difference. Electrochromic components, as described herein, include materials whose color or opacity are affected by electric current, such that when an electrical current is applied to the material, the color or opacity change from a first phase to a second phase. The electrochromic component may be a single-layer, single-phase component, multi-layer component, or multi-phase component, as described in U.S. Pat. No. 5,928,572 entitled “Electrochromic Layer And Devices Comprising Same,” U.S. Pat. No. 5,998,617 entitled “Electrochromic Compounds,” U.S. Pat. No. 6,020,987 entitled “Electrochromic Medium Capable Of Producing A Pre-selected Color,” U.S. Pat. No. 6,037,471 entitled “Electrochromic Compounds,” U.S. Pat. No. 6,141,137 entitled “Electrochromic Media For Producing A Pre-selected Color,” U.S. Pat. No. 6,241,916 entitled “Electrochromic System,” U.S. Pat. No. 6,193,912 entitled “Near Infrared-Absorbing Electrochromic Compounds And Devices Comprising Same,” U.S. Pat. No. 6,249,369 entitled “Coupled Electrochromic Compounds With Photostable Dication Oxidation States,” and U.S. Pat. No. 6,137,620 entitled “Electrochromic Media With Concentration Enhanced Stability, Process For The Preparation Thereof and Use In Electrochromic Devices”; U.S. Pat. No. 6,519,072, entitled “Electrochromic Device”; and International Patent Application Serial Nos. PCT/US98/05570 entitled “Electrochromic Polymeric Solid Films, Manufacturing Electrochromic Devices Using Such Solid Films, And Processes For Making Such Solid Films And Devices,” PCT/EP98/03862 entitled “Electrochromic Polymer System,” and PCT/US98/05570 entitled “Electrochromic Polymeric Solid Films, Manufacturing Electrochromic Devices Using Such Solid Films, And Processes For Making Such Solid Films And Devices,” all of which are herein incorporated by reference in their entirety. The glass element 12 may also be any other element having partially reflective, partially transmissive properties. To provide electric current to the glass element 12, electrical elements are provided on opposing sides of the element, to generate an electrical potential therebetween. A J-clip may be electrically engaged with each electrical element, and element wires may extend from the J-clips to the primary printed circuit board 28.
Now referring to
With reference again to
As illustrated in
With reference now to
Additionally, the peripheral wall 46 includes a plurality of attachment features configured to engage with one or more of the display 22, the optic block 24, the heat sink 26, the primary printed circuit board 28, the rear shield 16, and the housing 30. The attachment features may include friction-fit designs, snap-fit configurations, etc. It is also generally contemplated that mechanical fasteners or an adhesive may be used to secure the components references above.
With reference again to
The display 22 may be liquid crystal display (LCD), LED, organic light emitting diode (OLED), plasma, digital light processing (DLP), or other display technology. The display 22 further includes a flexible electrical connector 50, which is operably mechanically and electrically connected with the primary printed circuit board 28. The flexible electrical connector 50 has a length L which is sufficient to wrap around the display module 18 components between the display 22 and the primary printed circuit board 28, and has a width which extends substantially along a top edge 52 of the display 22. The flexible electrical connector, when operably coupled to the primary printed circuit board 28, aids in securing the components along a top edge of the display module 18.
With reference again to
The heat sink 26 is disposed rearwardly from the optic block 24, and dissipates heat generated by the LED printed circuit board 28 and other components of the primary printed circuit board 28. The heat sink 26 has a generally planar body 70 with a front side 72 and a top edge 74.
The primary printed circuit board 28 operates to provide electrical power and control for the components of the display module 18 and for the glass element 12. As shown in
The rear shield 16 functions to shield the printed circuit board 28 from emitting RF radiation. The rear shield 16 also serves to encapsulate the display module 18, and further interlock the components of the display mirror assembly 10. The rear shield 16 is formed from a material which is suitable to block such radiation and provide the desired support for the display mirror assembly 10, such as steel. As a non-limiting example, the rear shield 16 can be formed from stamped steel.
The rear housing 30 includes a forwardly directed cavity 100, into which all or a portion of the front shield 14, rear shield 16, and the display module 18 are received and supported therein. The rear housing 30 includes mechanically engaging features 102 which snap fit with corresponding engagement features 51 of the bezel 13, which are located above locating features 104 on a peripheral wall 106 of the rear shield 16. Alternatively, the mechanically engaging features 102 may engage any of the display module components, such as the heat sink 26. The mounting member 32 is operably engaged with the rear housing 30 in any known manner.
With reference again to
With respect to the following description, the display mirror assembly 10 is considered “on axis” when a line perpendicular to the plane of the glass element 12 extends toward the eyes of a viewer. Due to the display 22 being viewed through the glass element 12, any glare on the glass element 12 may interfere with the visibility of the display 22. When the display mirror assembly 10 is on axis and is being used during night time driving conditions, headlights from a trailing vehicle (i.e., a vehicle driving behind the vehicle with the display mirror assembly 10) can cause a glare which is visible to the driver.
According to one embodiment of the present disclosure, an actuator device 110, as shown in
As illustrated in
Additionally, to provide information to the viewer of the display mirror assembly 10, the display mirror assembly 10 may include information regarding the field of view, such as a partially transmissive graphic overlay or an image on the display 22 visible on the viewing area 40 when the display mirror assembly 10 is in use.
The forwardly directed cavity of the rear housing 30 is placed over the bezel 13, and the mechanically engaging features of the rear housing 30 are snap fit to engage with the corresponding engagement feature of the bezel 13. The mounting member 32 may be installed in the rear housing 30 prior to assembly.
The present disclosure may be used with a glass element such as that described in U.S. Pat. Nos. 9,174,577; 8,925,891; 8,814,373; 8,201,800; and 8,210,695; U.S. Patent Application Publication No. 2012/0327234, now U.S. Pat. No. 9,838,653; and U.S. Provisional Patent Application Nos. 61/709,716; 61/707,676; and 61/704,869, which are hereby incorporated herein by reference in their entirety. Further, the present disclosure may be used with a rearview packaging assembly such as that described in U.S. Pat. Nos. 8,885,240; 8,814,373; 8,646,924; 8,643,931; and 8,264,761; and U.S. Provisional Patent Application Nos. 61/707,625; and 61/590,259, which are hereby incorporated herein by reference in their entirety. Additionally, it is contemplated that the present disclosure can include a bezel such as that described in U.S. Pat. Nos. 8,827,517; 8,210,695; and 8,201,800, which are hereby incorporated herein by reference in their entirety.
A display mirror assembly according to the present disclosure has several advantages. The display module is supported between the bezel and housing, and does not require an additional support or carrier plate. Omission of a carrier plate, and inclusion of retaining features in the front shield and rear shield, permits the display mirror assembly to be lighter, involve less parts for manufacturing, and to have a display which is viewable over a larger percentage of the total viewing area of the display mirror assembly. For mirror applications with one or more mirror-based accessories, the accessory or accessories may be received in or disposed at or in the mirror casing and/or may be disposed at the mounting structure of the mirror assembly.
The present disclosure may also include a frameless mirror assembly that has a reflective element adhered or attached to a front or mounting surface of a mirror casing or bezel having a configuration that generally defines a peripheral support. The peripheral support may be externally exposed or hidden within the housing behind the glass element 12. In this instance, the peripheral support does not encompass a perimeter edge region of the front surface of the reflective element. In configurations where the glass element 12 is an electro-optic element, then a peripheral edge of the front substrate can be exposed and not covered by the peripheral support. The rear substrate may or may not be concealed by the peripheral support. The peripheral support may extend behind the glass element 12 between the forward peripheral edge of the housing and a rear side of the front substrate. Alternatively, the peripheral support could be positioned behind the rear substrate within the housing. The flush front surface of the reflective element and peripheral support provides a frameless, and more modern appearance to the mirror assembly. Also, the opaque perimeter border band and peripheral support may contrast or match to further enhance the appearance, depending on the application and desired appearance of the mirror assembly. For example, the opaque border band may include a metallic appearance or may be light absorbing and thus may have a dark color, while the peripheral support may be a dark or black colored plastic or may be chrome plated or otherwise colored to provide the desired or selected appearance of the mirror assembly. It is also contemplated that a distance from a peripheral edge of the display to the housing may be less than 11 mm. Alternatively, a distance from a peripheral edge of the display to a forward peripheral edge of the housing may be less than 6.5 mm, or a distance from a peripheral edge of the display to the housing may be less than 3.0 mm.
It will be appreciated that embodiments of the disclosure described herein may be comprised of one or more conventional processors and unique stored program instructions that control one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of a display mirror assembly 10, as described herein. The non-processor circuits may include, but are not limited to signal drivers, clock circuits, power source circuits, and/or user input devices. As such, these functions may be interpreted as steps of a method used in using or constructing a classification system. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. Of course, a combination of the two approaches could be used. Thus, the methods and means for these functions have been described herein. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.
It will be understood by one having ordinary skill in the art that construction of the described disclosure and other components is not limited to any specific material. Other exemplary embodiments of the disclosure disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.
For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.
It is also important to note that the construction and arrangement of the elements of the disclosure as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present disclosure. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.
It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present disclosure, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
This application claims priority to and the benefit under 37 U.S.C. § 119(e) of U.S. Provisional Application No. 62/086,841, filed on Dec. 3, 2014, entitled “DISPLAY MIRROR ASSEMBLY,” the disclosure of which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2131888 | Harris | Oct 1938 | A |
2632040 | Rabinow | Mar 1953 | A |
2827594 | Rabinow | Mar 1958 | A |
3179845 | Kulwiec | Apr 1965 | A |
3280701 | Donnelly et al. | Oct 1966 | A |
3581276 | Newman | May 1971 | A |
3663819 | Hicks et al. | May 1972 | A |
3837129 | Losell | Sep 1974 | A |
4109235 | Bouthors | Aug 1978 | A |
4139801 | Linares | Feb 1979 | A |
4151526 | Hinachi et al. | Apr 1979 | A |
4214266 | Myers | Jul 1980 | A |
4236099 | Rosenblum | Nov 1980 | A |
4257703 | Goodrich | Mar 1981 | A |
4258979 | Mahin | Mar 1981 | A |
4277804 | Robison | Jul 1981 | A |
4286308 | Wolff | Aug 1981 | A |
4310851 | Pierrat | Jan 1982 | A |
4357558 | Massoni et al. | Nov 1982 | A |
4376909 | Tagami et al. | Mar 1983 | A |
4479173 | Rumpakis | Oct 1984 | A |
4499451 | Suzuki et al. | Feb 1985 | A |
D283998 | Tanaka | May 1986 | S |
4599544 | Martin | Jul 1986 | A |
4630904 | Pastore | Dec 1986 | A |
4638287 | Umebayashi et al. | Jan 1987 | A |
4645975 | Meitzler et al. | Feb 1987 | A |
4665321 | Chang et al. | May 1987 | A |
4665430 | Hiroyasu | May 1987 | A |
4692798 | Seko et al. | Sep 1987 | A |
4716298 | Etoh | Dec 1987 | A |
4727290 | Smith et al. | Feb 1988 | A |
4740838 | Mase et al. | Apr 1988 | A |
4768135 | Kretschmer et al. | Aug 1988 | A |
4862037 | Farber et al. | Aug 1989 | A |
4891559 | Matsumoto et al. | Jan 1990 | A |
4902108 | Byker | Feb 1990 | A |
4910591 | Petrossian et al. | Mar 1990 | A |
4930742 | Schofield et al. | Jun 1990 | A |
4934273 | Endriz | Jun 1990 | A |
4967319 | Seko | Oct 1990 | A |
5005213 | Hanson et al. | Apr 1991 | A |
5008946 | Ando | Apr 1991 | A |
5027200 | Petrossian et al. | Jun 1991 | A |
5036437 | Macks | Jul 1991 | A |
5052163 | Czekala | Oct 1991 | A |
5066112 | Lynam et al. | Nov 1991 | A |
5069535 | Baucke et al. | Dec 1991 | A |
5072154 | Chen | Dec 1991 | A |
5073012 | Lynam | Dec 1991 | A |
5076673 | Lynam et al. | Dec 1991 | A |
5086253 | Lawler | Feb 1992 | A |
5096287 | Kakinami et al. | Mar 1992 | A |
5115346 | Lynam | May 1992 | A |
5121200 | Choi et al. | Jun 1992 | A |
5124549 | Michaels et al. | Jun 1992 | A |
5128799 | Byker | Jul 1992 | A |
5151824 | O'Farrell | Sep 1992 | A |
5158638 | Osanami et al. | Oct 1992 | A |
5166681 | Bottesch et al. | Nov 1992 | A |
5182502 | Slotkowski et al. | Jan 1993 | A |
5187383 | Taccetta et al. | Feb 1993 | A |
5197562 | Kakinami et al. | Mar 1993 | A |
5230400 | Kakainami et al. | Jul 1993 | A |
5235178 | Hegyi | Aug 1993 | A |
5243417 | Pollard | Sep 1993 | A |
5253109 | O'Farrell et al. | Oct 1993 | A |
5278693 | Theiste | Jan 1994 | A |
5280380 | Byker | Jan 1994 | A |
5282077 | Byker | Jan 1994 | A |
5289321 | Secor | Feb 1994 | A |
5294376 | Byker | Mar 1994 | A |
5296924 | Blancard et al. | Mar 1994 | A |
D346356 | Leu | Apr 1994 | S |
5304980 | Maekawa | Apr 1994 | A |
5329206 | Slotkowski et al. | Jul 1994 | A |
5336448 | Byker | Aug 1994 | A |
5347261 | Adell | Sep 1994 | A |
5347459 | Greenspan et al. | Sep 1994 | A |
5355146 | Chiu et al. | Oct 1994 | A |
5379104 | Takao | Jan 1995 | A |
5379146 | Defendini | Jan 1995 | A |
5381309 | Borchardt | Jan 1995 | A |
5386285 | Asayama | Jan 1995 | A |
5396054 | Krichever et al. | Mar 1995 | A |
5402170 | Parulski et al. | Mar 1995 | A |
5408357 | Beukema | Apr 1995 | A |
5414461 | Kishi et al. | May 1995 | A |
5416318 | Hegyi | May 1995 | A |
5418610 | Fischer | May 1995 | A |
5421940 | Cornils et al. | Jun 1995 | A |
5424952 | Asayama | Jun 1995 | A |
5426294 | Kobayashi et al. | Jun 1995 | A |
5428464 | Silverbrook | Jun 1995 | A |
5430450 | Holmes | Jul 1995 | A |
5434407 | Bauer et al. | Jul 1995 | A |
5448397 | Tonar | Sep 1995 | A |
5451822 | Bechtel et al. | Sep 1995 | A |
5452004 | Roberts | Sep 1995 | A |
5469298 | Suman et al. | Nov 1995 | A |
5471515 | Fossum et al. | Nov 1995 | A |
5475441 | Parulski et al. | Dec 1995 | A |
5475494 | Nishida et al. | Dec 1995 | A |
5481268 | Higgins | Jan 1996 | A |
5483346 | Butzer | Jan 1996 | A |
5483453 | Uemura et al. | Jan 1996 | A |
5485155 | Hibino | Jan 1996 | A |
5485378 | Franke et al. | Jan 1996 | A |
5488496 | Pine | Jan 1996 | A |
5508592 | Lapatovich et al. | Apr 1996 | A |
5515448 | Nishitani | May 1996 | A |
5523811 | Wada et al. | Jun 1996 | A |
5530421 | Marshall et al. | Jun 1996 | A |
5535144 | Kise | Jul 1996 | A |
5537003 | Bechtel et al. | Jul 1996 | A |
5541590 | Nishio | Jul 1996 | A |
5541724 | Hoashi | Jul 1996 | A |
5550677 | Schofield et al. | Aug 1996 | A |
5554912 | Thayer et al. | Sep 1996 | A |
5574443 | Hsieh | Nov 1996 | A |
5574463 | Shirai et al. | Nov 1996 | A |
5576975 | Sasaki et al. | Nov 1996 | A |
5587929 | League et al. | Dec 1996 | A |
5592146 | Kover, Jr. et al. | Jan 1997 | A |
5602542 | Windmann et al. | Feb 1997 | A |
5614788 | Mullins et al. | Mar 1997 | A |
5615023 | Yang | Mar 1997 | A |
5617085 | Tsutsumi et al. | Apr 1997 | A |
5621460 | Hatlestad et al. | Apr 1997 | A |
5634709 | Iwama | Jun 1997 | A |
5642238 | Sala | Jun 1997 | A |
5646614 | Abersfelder et al. | Jul 1997 | A |
5649756 | Adams et al. | Jul 1997 | A |
5650765 | Park | Jul 1997 | A |
5660454 | Mori et al. | Aug 1997 | A |
5666028 | Bechtel et al. | Sep 1997 | A |
5670935 | Schofield et al. | Sep 1997 | A |
5679283 | Tonar | Oct 1997 | A |
5680123 | Lee | Oct 1997 | A |
5682267 | Tonar | Oct 1997 | A |
5684473 | Hibino et al. | Nov 1997 | A |
5689370 | Tonar | Nov 1997 | A |
5707129 | Kobayashi | Jan 1998 | A |
5708410 | Blank et al. | Jan 1998 | A |
5708857 | Ishibashi | Jan 1998 | A |
5710565 | Shirai et al. | Jan 1998 | A |
5714751 | Chen | Feb 1998 | A |
5715093 | Schierbeek et al. | Feb 1998 | A |
5729194 | Spears et al. | Mar 1998 | A |
5736816 | Strenke et al. | Apr 1998 | A |
5742026 | Dickinson | Apr 1998 | A |
5745050 | Nakagawa | Apr 1998 | A |
5751211 | Shirai et al. | May 1998 | A |
5751832 | Panter et al. | May 1998 | A |
5754099 | Nishimura et al. | May 1998 | A |
5760828 | Cortes | Jun 1998 | A |
5764139 | Nojima et al. | Jun 1998 | A |
5767793 | Agravante et al. | Jun 1998 | A |
5781105 | Bitar et al. | Jul 1998 | A |
5786787 | Eriksson et al. | Jul 1998 | A |
5790298 | Tonar | Aug 1998 | A |
5793308 | Rosinski et al. | Aug 1998 | A |
5793420 | Schmidt | Aug 1998 | A |
5796094 | Schofield et al. | Aug 1998 | A |
5798727 | Shirai et al. | Aug 1998 | A |
5803579 | Turnbull | Sep 1998 | A |
5808778 | Bauer et al. | Sep 1998 | A |
5811888 | Hsieh | Sep 1998 | A |
5812321 | Schierbeek et al. | Sep 1998 | A |
5818625 | Forgette et al. | Oct 1998 | A |
5825527 | Forgette et al. | Oct 1998 | A |
D400481 | Stephens et al. | Nov 1998 | S |
D401200 | Huang | Nov 1998 | S |
5837994 | Stam | Nov 1998 | A |
5841126 | Fossum et al. | Nov 1998 | A |
5844505 | Van Ryzin | Dec 1998 | A |
5845000 | Breed et al. | Dec 1998 | A |
5850176 | Kinoshita et al. | Dec 1998 | A |
5867214 | Anderson et al. | Feb 1999 | A |
5877897 | Schofield et al. | Mar 1999 | A |
5883739 | Ashihara et al. | Mar 1999 | A |
5888431 | Tonar et al. | Mar 1999 | A |
5896119 | Evanicky et al. | Apr 1999 | A |
5904729 | Ruzicka | May 1999 | A |
5905457 | Rashid | May 1999 | A |
D410607 | Carter | Jun 1999 | S |
5912534 | Benedict | Jun 1999 | A |
5923027 | Stam | Jul 1999 | A |
5923457 | Byker et al. | Jul 1999 | A |
5928572 | Tonar et al. | Jul 1999 | A |
5935613 | Benham et al. | Aug 1999 | A |
5940011 | Agravante et al. | Aug 1999 | A |
5940201 | Ash et al. | Aug 1999 | A |
5942853 | Piscart | Aug 1999 | A |
5949331 | Schofield et al. | Sep 1999 | A |
5956012 | Turnbull et al. | Sep 1999 | A |
5956079 | Ridgley | Sep 1999 | A |
5956181 | Lin | Sep 1999 | A |
5959555 | Furuta | Sep 1999 | A |
5990469 | Bechtel | Nov 1999 | A |
5998617 | Srinivasa | Dec 1999 | A |
6002511 | Varaprasad | Dec 1999 | A |
6008486 | Stam | Dec 1999 | A |
6009359 | El-Hakim et al. | Dec 1999 | A |
6018308 | Shirai | Jan 2000 | A |
6020987 | Baumann | Feb 2000 | A |
6023040 | Zahavi | Feb 2000 | A |
6023229 | Bugno et al. | Feb 2000 | A |
6025872 | Ozaki et al. | Feb 2000 | A |
6037471 | Srinivasa | Mar 2000 | A |
6043452 | Bestenlehrer | Mar 2000 | A |
6046766 | Sakata | Apr 2000 | A |
6049171 | Stam | Apr 2000 | A |
6051956 | Nakashimo | Apr 2000 | A |
6060989 | Gehlot | May 2000 | A |
6061002 | Weber et al. | May 2000 | A |
6062920 | Jordan | May 2000 | A |
6064508 | Forgette et al. | May 2000 | A |
6064509 | Tonar et al. | May 2000 | A |
6067111 | Hahn et al. | May 2000 | A |
6068380 | Lynn et al. | May 2000 | A |
6072391 | Suzuki et al. | Jun 2000 | A |
6078355 | Zengel | Jun 2000 | A |
6084700 | Knapp | Jul 2000 | A |
6097023 | Schofield et al. | Aug 2000 | A |
6102546 | Carter | Aug 2000 | A |
6106121 | Buckley et al. | Aug 2000 | A |
6111498 | Jobes et al. | Aug 2000 | A |
6111683 | Cammenga | Aug 2000 | A |
6111684 | Forgette | Aug 2000 | A |
6115651 | Cruz | Sep 2000 | A |
6122597 | Saneyoshi et al. | Sep 2000 | A |
6128576 | Nishimoto et al. | Oct 2000 | A |
6130421 | Bechtel | Oct 2000 | A |
6130448 | Bauer et al. | Oct 2000 | A |
6132072 | Turnbull | Oct 2000 | A |
6140933 | Bugno | Oct 2000 | A |
6144158 | Beam | Nov 2000 | A |
6151065 | Steed et al. | Nov 2000 | A |
6151539 | Bergholz et al. | Nov 2000 | A |
6154149 | Tychkowski et al. | Nov 2000 | A |
6157294 | Urai et al. | Dec 2000 | A |
6166629 | Andreas | Dec 2000 | A |
6166698 | Turnbull et al. | Dec 2000 | A |
6166848 | Cammenga et al. | Dec 2000 | A |
6167755 | Damson et al. | Jan 2001 | B1 |
6170956 | Rumsey et al. | Jan 2001 | B1 |
6172600 | Kakinami et al. | Jan 2001 | B1 |
6172601 | Wada et al. | Jan 2001 | B1 |
6175300 | Kendrick | Jan 2001 | B1 |
6184781 | Ramakesavan | Feb 2001 | B1 |
6185492 | Kagawa et al. | Feb 2001 | B1 |
6188505 | Lomprey | Feb 2001 | B1 |
6191704 | Takenaga et al. | Feb 2001 | B1 |
6193378 | Tonar et al. | Feb 2001 | B1 |
6193912 | Theiste | Feb 2001 | B1 |
6195194 | Roberts et al. | Feb 2001 | B1 |
6200010 | Anders | Mar 2001 | B1 |
6218934 | Regan | Apr 2001 | B1 |
6222177 | Bechtel | Apr 2001 | B1 |
6222447 | Schofield et al. | Apr 2001 | B1 |
6224716 | Yoder | May 2001 | B1 |
6229435 | Knapp | May 2001 | B1 |
6239898 | Byker | May 2001 | B1 |
6239899 | Devries et al. | May 2001 | B1 |
6244716 | Steenwyk | Jun 2001 | B1 |
6246507 | Bauer | Jun 2001 | B1 |
6247819 | Turnbull | Jun 2001 | B1 |
6249214 | Kashiwazaki | Jun 2001 | B1 |
6249369 | Theiste et al. | Jun 2001 | B1 |
6250766 | Strumolo et al. | Jun 2001 | B1 |
6255639 | Stam | Jul 2001 | B1 |
6259475 | Ramachandran et al. | Jul 2001 | B1 |
6262831 | Bauer | Jul 2001 | B1 |
6262832 | Lomprey | Jul 2001 | B1 |
6265968 | Betzitza et al. | Jul 2001 | B1 |
6268803 | Gunderson et al. | Jul 2001 | B1 |
6268950 | Ash | Jul 2001 | B1 |
6269308 | Kodaka et al. | Jul 2001 | B1 |
6281632 | Stam | Aug 2001 | B1 |
6281804 | Haller et al. | Aug 2001 | B1 |
6289332 | Menig et al. | Sep 2001 | B2 |
6291812 | Bechtel | Sep 2001 | B1 |
6300879 | Regan et al. | Oct 2001 | B1 |
6304173 | Pala et al. | Oct 2001 | B2 |
6313457 | Bauer | Nov 2001 | B1 |
6313892 | Gleckman | Nov 2001 | B2 |
6317057 | Lee | Nov 2001 | B1 |
6317248 | Agrawal et al. | Nov 2001 | B1 |
6320612 | Young | Nov 2001 | B1 |
6324295 | Avionique et al. | Nov 2001 | B1 |
D451869 | Knapp et al. | Dec 2001 | S |
6329925 | Skiver et al. | Dec 2001 | B1 |
6330511 | Ogura et al. | Dec 2001 | B2 |
6335548 | Roberts | Jan 2002 | B1 |
6335680 | Matsuoka | Jan 2002 | B1 |
6344805 | Yasui et al. | Feb 2002 | B1 |
6348858 | Weis et al. | Feb 2002 | B2 |
6349782 | Sekiya et al. | Feb 2002 | B1 |
6356206 | Takenaga et al. | Mar 2002 | B1 |
6356376 | Tonar | Mar 2002 | B1 |
6357883 | Strumolo et al. | Mar 2002 | B1 |
6359274 | Nixon | Mar 2002 | B1 |
6363326 | Scully | Mar 2002 | B1 |
6369701 | Yoshida et al. | Apr 2002 | B1 |
6379013 | Bechtel | Apr 2002 | B1 |
6392783 | Lomprey | May 2002 | B1 |
6396040 | Hill | May 2002 | B1 |
6396397 | Bos et al. | May 2002 | B1 |
6402328 | Bechtel | Jun 2002 | B1 |
6403942 | Stam | Jun 2002 | B1 |
6407468 | Levesque et al. | Jun 2002 | B1 |
6407847 | Poll et al. | Jun 2002 | B1 |
6408247 | Ichikawa et al. | Jun 2002 | B1 |
6412959 | Tseng | Jul 2002 | B1 |
6415230 | Maruko et al. | Jul 2002 | B1 |
6420800 | Levesque | Jul 2002 | B1 |
6421081 | Markus | Jul 2002 | B1 |
6424272 | Gutta et al. | Jul 2002 | B1 |
6424273 | Gutta et al. | Jul 2002 | B1 |
6424892 | Matsuoka | Jul 2002 | B1 |
6426485 | Buljajewski | Jul 2002 | B1 |
6428172 | Hutzel et al. | Aug 2002 | B1 |
6429594 | Stam | Aug 2002 | B1 |
6433680 | Ho | Aug 2002 | B1 |
6437688 | Kobayashi | Aug 2002 | B1 |
6438491 | Farmer | Aug 2002 | B1 |
6441872 | Ho | Aug 2002 | B1 |
6441943 | Roberts | Aug 2002 | B1 |
6442465 | Breed et al. | Aug 2002 | B2 |
6443585 | Saccomanno | Sep 2002 | B1 |
6443602 | Tanabe et al. | Sep 2002 | B1 |
6447128 | Lang et al. | Sep 2002 | B1 |
6452533 | Yamabuchi et al. | Sep 2002 | B1 |
6463369 | Sadano et al. | Oct 2002 | B2 |
6465962 | Fu et al. | Oct 2002 | B1 |
6465963 | Turnbull | Oct 2002 | B1 |
6466701 | Ejiri et al. | Oct 2002 | B1 |
6469739 | Bechtel | Oct 2002 | B1 |
6471362 | Carter | Oct 2002 | B1 |
6472977 | Pochmuller | Oct 2002 | B1 |
6473001 | Blum | Oct 2002 | B1 |
6476731 | Miki et al. | Nov 2002 | B1 |
6476855 | Yamamoto | Nov 2002 | B1 |
6483429 | Yasui et al. | Nov 2002 | B1 |
6483438 | Deline et al. | Nov 2002 | B2 |
6487500 | Lemelson et al. | Nov 2002 | B2 |
6491416 | Strazzanti | Dec 2002 | B1 |
6498620 | Schofield et al. | Dec 2002 | B2 |
6501387 | Skiver et al. | Dec 2002 | B2 |
6504142 | Nixon | Jan 2003 | B2 |
6507779 | Breed et al. | Jan 2003 | B2 |
6512624 | Tonar | Jan 2003 | B2 |
6515581 | Ho | Feb 2003 | B1 |
6515597 | Wada et al. | Feb 2003 | B1 |
6520667 | Mousseau | Feb 2003 | B1 |
6521916 | Roberts | Feb 2003 | B2 |
6522969 | Kannonji | Feb 2003 | B2 |
6523976 | Turnbull | Feb 2003 | B1 |
D471847 | Rumsey et al. | Mar 2003 | S |
6535126 | Lin et al. | Mar 2003 | B2 |
6542085 | Yang | Apr 2003 | B1 |
6542182 | Chutorash | Apr 2003 | B1 |
6545598 | De Villeroche | Apr 2003 | B1 |
6545794 | Ash | Apr 2003 | B2 |
6550943 | Strazzanti | Apr 2003 | B2 |
6553130 | Lemelson et al. | Apr 2003 | B1 |
6558026 | Strazzanti | May 2003 | B2 |
6559761 | Miller et al. | May 2003 | B1 |
6572233 | North Man et al. | Jun 2003 | B1 |
6580373 | Ohashi | Jun 2003 | B1 |
6581007 | Hasegawa et al. | Jun 2003 | B2 |
6583730 | Lang et al. | Jun 2003 | B2 |
6575643 | Takashashi | Jul 2003 | B2 |
6587573 | Stam | Jul 2003 | B1 |
6591192 | Okamura et al. | Jul 2003 | B2 |
6594583 | Ogura et al. | Jul 2003 | B2 |
6594614 | Studt et al. | Jul 2003 | B2 |
6606183 | Ikai et al. | Aug 2003 | B2 |
6611202 | Schofield et al. | Aug 2003 | B2 |
6611227 | Nebiyeloul-Kifle | Aug 2003 | B1 |
6611610 | Stam et al. | Aug 2003 | B1 |
6611759 | Brosche | Aug 2003 | B2 |
6614387 | Deadman | Sep 2003 | B1 |
6614579 | Roberts et al. | Sep 2003 | B2 |
6616764 | Kramer et al. | Sep 2003 | B2 |
6617564 | Ockerse et al. | Sep 2003 | B2 |
6618672 | Sasaki et al. | Sep 2003 | B2 |
6630888 | Lang et al. | Oct 2003 | B2 |
6631316 | Stam et al. | Oct 2003 | B2 |
6635194 | Kloeppner | Oct 2003 | B2 |
6636258 | Strumolo | Oct 2003 | B2 |
6642840 | Lang et al. | Nov 2003 | B2 |
6642851 | Deline et al. | Nov 2003 | B2 |
6648477 | Hutzel et al. | Nov 2003 | B2 |
6650457 | Busscher et al. | Nov 2003 | B2 |
6657767 | Bonardi | Dec 2003 | B2 |
6665592 | Kodama | Dec 2003 | B2 |
6670207 | Roberts | Dec 2003 | B1 |
6670910 | Delcheccolo et al. | Dec 2003 | B2 |
6674370 | Rodewald et al. | Jan 2004 | B2 |
6675075 | Engelsberg et al. | Jan 2004 | B1 |
6677986 | Pöchmüller | Jan 2004 | B1 |
6683539 | Trajkovic et al. | Jan 2004 | B2 |
6683969 | Nishigaki et al. | Jan 2004 | B1 |
6690268 | Schofield et al. | Feb 2004 | B2 |
6690413 | Moore | Feb 2004 | B1 |
6693517 | McCarty et al. | Feb 2004 | B2 |
6693518 | Kumata | Feb 2004 | B2 |
6693519 | Keirstead | Feb 2004 | B2 |
6693524 | Payne | Feb 2004 | B1 |
6700692 | Tonar | Mar 2004 | B2 |
6717610 | Bos et al. | Apr 2004 | B1 |
6727808 | Uselmann et al. | Apr 2004 | B1 |
6727844 | Zimmermann et al. | Apr 2004 | B1 |
6731332 | Yasui et al. | May 2004 | B1 |
6734807 | King | May 2004 | B2 |
6737964 | Samman et al. | May 2004 | B2 |
6738088 | Uskolovsky et al. | May 2004 | B1 |
6744353 | Sjonell | Jun 2004 | B2 |
6746122 | Knox | Jun 2004 | B2 |
D493131 | Lawlor et al. | Jul 2004 | S |
D493394 | Lawlor et al. | Jul 2004 | S |
6768566 | Walker | Jul 2004 | B2 |
6772057 | Breed et al. | Aug 2004 | B2 |
6774988 | Stam | Aug 2004 | B2 |
6781738 | Kikuchi et al. | Aug 2004 | B2 |
D498446 | Bradley | Nov 2004 | S |
6816145 | Evanicky | Nov 2004 | B1 |
6816297 | Tonar | Nov 2004 | B1 |
D499678 | Bradley | Dec 2004 | S |
6846098 | Bourdelais et al. | Jan 2005 | B2 |
6847487 | Burgner | Jan 2005 | B2 |
6853413 | Larson | Feb 2005 | B2 |
6861809 | Stam | Mar 2005 | B2 |
6870656 | Tonar et al. | Mar 2005 | B2 |
6902284 | Hutzel et al. | Jun 2005 | B2 |
6902307 | Strazzanti | Jun 2005 | B2 |
6912001 | Okamoto et al. | Jun 2005 | B2 |
6913375 | Strazzanti | Jul 2005 | B2 |
6923080 | Dobler et al. | Aug 2005 | B1 |
6930737 | Weindorf et al. | Aug 2005 | B2 |
6934080 | Saccomanno et al. | Aug 2005 | B2 |
6946978 | Schofield | Sep 2005 | B2 |
6968273 | Ockerse | Nov 2005 | B2 |
7012543 | Deline et al. | Mar 2006 | B2 |
7038577 | Pawlicki et al. | May 2006 | B2 |
7042616 | Tonar et al. | May 2006 | B2 |
7046448 | Burgner | May 2006 | B2 |
7064882 | Tonar | Jun 2006 | B2 |
7175291 | Li | Feb 2007 | B1 |
7255465 | Deline et al. | Aug 2007 | B2 |
7262406 | Heslin et al. | Aug 2007 | B2 |
7265342 | Heslin et al. | Sep 2007 | B2 |
D553061 | Schmidt et al. | Oct 2007 | S |
7285903 | Cull et al. | Oct 2007 | B2 |
7287868 | Carter | Oct 2007 | B2 |
D556105 | Carter et al. | Nov 2007 | S |
D556106 | Carter et al. | Nov 2007 | S |
7292208 | Park et al. | Nov 2007 | B1 |
7311428 | Deline et al. | Dec 2007 | B2 |
7321112 | Stam et al. | Jan 2008 | B2 |
7324261 | Tonar et al. | Jan 2008 | B2 |
7342707 | Roberts | Mar 2008 | B2 |
7360932 | Liken et al. | Apr 2008 | B2 |
7417221 | Creswick et al. | Aug 2008 | B2 |
7417717 | Pack | Aug 2008 | B2 |
7446650 | Scholfield et al. | Nov 2008 | B2 |
7467883 | Deline et al. | Dec 2008 | B2 |
7468651 | Deline et al. | Dec 2008 | B2 |
7505047 | Yoshimura | Mar 2009 | B2 |
7533998 | Schofield et al. | May 2009 | B2 |
7548291 | Lee et al. | Jun 2009 | B2 |
7565006 | Stam et al. | Jul 2009 | B2 |
7567291 | Bechtel et al. | Jul 2009 | B2 |
7579940 | Schofield et al. | Aug 2009 | B2 |
7592563 | Wissenbach | Sep 2009 | B2 |
7619508 | Lynam et al. | Nov 2009 | B2 |
7653215 | Stam | Jan 2010 | B2 |
7658521 | Deline et al. | Feb 2010 | B2 |
7663798 | Tonar | Feb 2010 | B2 |
7683326 | Stam et al. | Mar 2010 | B2 |
7688495 | Tonar et al. | Mar 2010 | B2 |
7706046 | Bauer et al. | Apr 2010 | B2 |
7711479 | Taylor et al. | May 2010 | B2 |
7719408 | Deward et al. | May 2010 | B2 |
7720580 | Higgins-Luthman | May 2010 | B2 |
7746534 | Tonar et al. | Jun 2010 | B2 |
7815326 | Blank et al. | Oct 2010 | B2 |
7817020 | Turnbull et al. | Oct 2010 | B2 |
7821696 | Tonar et al. | Oct 2010 | B2 |
7830583 | Neuman et al. | Nov 2010 | B2 |
7864399 | McCabe et al. | Jan 2011 | B2 |
7877175 | Higgins-Luthman | Jan 2011 | B2 |
7881496 | Camilleri et al. | Feb 2011 | B2 |
7881839 | Stam et al. | Feb 2011 | B2 |
7888629 | Heslin et al. | Feb 2011 | B2 |
7914188 | Deline et al. | Mar 2011 | B2 |
7972045 | Schofield | Jul 2011 | B2 |
7978393 | Tonar et al. | Jul 2011 | B2 |
7994471 | Heslin et al. | Aug 2011 | B2 |
8031225 | Watanabe et al. | Oct 2011 | B2 |
8035881 | Luten et al. | Oct 2011 | B2 |
8045760 | Stam et al. | Oct 2011 | B2 |
8059235 | Utsumi et al. | Nov 2011 | B2 |
8063753 | DeLine et al. | Nov 2011 | B2 |
8090153 | Schofield et al. | Jan 2012 | B2 |
8095310 | Taylor et al. | Jan 2012 | B2 |
8100568 | Deline et al. | Jan 2012 | B2 |
8116929 | Higgins-Luthman | Feb 2012 | B2 |
8120652 | Bechtel et al. | Feb 2012 | B2 |
8142059 | Higgins-Luthman et al. | Mar 2012 | B2 |
8162518 | Schofield | Apr 2012 | B2 |
D659617 | Brockington et al. | May 2012 | S |
8194133 | DeWind et al. | Jun 2012 | B2 |
8201800 | Filipiak | Jun 2012 | B2 |
8203433 | Deuber et al. | Jun 2012 | B2 |
8217830 | Lynam | Jul 2012 | B2 |
8222588 | Schofield et al. | Jul 2012 | B2 |
8237909 | Ostreko et al. | Aug 2012 | B2 |
8258433 | Byers et al. | Sep 2012 | B2 |
8282226 | Blank et al. | Oct 2012 | B2 |
8325028 | Schofield et al. | Dec 2012 | B2 |
8482683 | Hwang et al. | Jul 2013 | B2 |
8520069 | Haler | Aug 2013 | B2 |
8564662 | Busch et al. | Oct 2013 | B2 |
8779910 | DeLine et al. | Jul 2014 | B2 |
D712325 | Bohanan et al. | Sep 2014 | S |
8836888 | Minikey, Jr. et al. | Sep 2014 | B2 |
D724508 | Bohanan et al. | Mar 2015 | S |
D724509 | Bohanan et al. | Mar 2015 | S |
20010019356 | Takeda et al. | Sep 2001 | A1 |
20010022616 | Rademacher et al. | Sep 2001 | A1 |
20010026316 | Senatore | Oct 2001 | A1 |
20010045981 | Gloger et al. | Nov 2001 | A1 |
20020040962 | Schofield et al. | Apr 2002 | A1 |
20020044065 | Quist et al. | Apr 2002 | A1 |
20020191127 | Roberts et al. | Dec 2002 | A1 |
20030002165 | Mathias et al. | Jan 2003 | A1 |
20030007261 | Hutzel et al. | Jan 2003 | A1 |
20030016125 | Lang et al. | Jan 2003 | A1 |
20030016287 | Nakayama et al. | Jan 2003 | A1 |
20030025596 | Lang et al. | Feb 2003 | A1 |
20030025597 | Schofield | Feb 2003 | A1 |
20030030546 | Tseng | Feb 2003 | A1 |
20030030551 | Ho | Feb 2003 | A1 |
20030030724 | Okamoto | Feb 2003 | A1 |
20030035050 | Mizusawa | Feb 2003 | A1 |
20030043269 | Park | Mar 2003 | A1 |
20030052969 | Satoh et al. | Mar 2003 | A1 |
20030058338 | Kawauchi et al. | Mar 2003 | A1 |
20030067383 | Yang | Apr 2003 | A1 |
20030076415 | Strumolo | Apr 2003 | A1 |
20030080877 | Takagi et al. | May 2003 | A1 |
20030085806 | Samman et al. | May 2003 | A1 |
20030088361 | Sekiguchi | May 2003 | A1 |
20030090568 | Pico | May 2003 | A1 |
20030090569 | Poechmueller | May 2003 | A1 |
20030090570 | Takagi et al. | May 2003 | A1 |
20030098908 | Misaiji et al. | May 2003 | A1 |
20030103141 | Bechtel et al. | Jun 2003 | A1 |
20030103142 | Hitomi et al. | Jun 2003 | A1 |
20030117522 | Okada | Jun 2003 | A1 |
20030122929 | Minaudo et al. | Jul 2003 | A1 |
20030122930 | Schofield et al. | Jul 2003 | A1 |
20030133014 | Mendoza | Jul 2003 | A1 |
20030137586 | Lewellen | Jul 2003 | A1 |
20030141965 | Gunderson et al. | Jul 2003 | A1 |
20030146831 | Berberich et al. | Aug 2003 | A1 |
20030169158 | Paul, Jr. | Sep 2003 | A1 |
20030179293 | Oizumi | Sep 2003 | A1 |
20030202096 | Kim | Oct 2003 | A1 |
20030202357 | Strazzanti | Oct 2003 | A1 |
20030214576 | Koga | Nov 2003 | A1 |
20030214584 | Ross, Jr. | Nov 2003 | A1 |
20030214733 | Fujikawa et al. | Nov 2003 | A1 |
20030222793 | Tanaka et al. | Dec 2003 | A1 |
20030222983 | Nobori et al. | Dec 2003 | A1 |
20030227546 | Hilborn et al. | Dec 2003 | A1 |
20040004541 | Hong | Jan 2004 | A1 |
20040027695 | Lin | Jan 2004 | A1 |
20040032321 | McMahon et al. | Feb 2004 | A1 |
20040036768 | Green | Feb 2004 | A1 |
20040051634 | Schofield et al. | Mar 2004 | A1 |
20040056955 | Berberich et al. | Mar 2004 | A1 |
20040057131 | Hutzel et al. | Mar 2004 | A1 |
20040064241 | Sekiguchi | Apr 2004 | A1 |
20040066285 | Sekiguchi | Apr 2004 | A1 |
20040075603 | Kodama | Apr 2004 | A1 |
20040080404 | White | Apr 2004 | A1 |
20040080431 | White | Apr 2004 | A1 |
20040085196 | Milelr et al. | May 2004 | A1 |
20040090314 | Iwamoto | May 2004 | A1 |
20040090317 | Rothkop | May 2004 | A1 |
20040096082 | Nakai et al. | May 2004 | A1 |
20040098196 | Sekiguchi | May 2004 | A1 |
20040107030 | Nishira et al. | Jun 2004 | A1 |
20040107617 | Shoen et al. | Jun 2004 | A1 |
20040109060 | Ishii | Jun 2004 | A1 |
20040114039 | Ishikura | Jun 2004 | A1 |
20040119668 | Homma et al. | Jun 2004 | A1 |
20040125905 | Vlasenko et al. | Jul 2004 | A1 |
20040202001 | Roberts et al. | Oct 2004 | A1 |
20050140855 | Utsumi | Jun 2005 | A1 |
20050237440 | Sugimura et al. | Oct 2005 | A1 |
20060007550 | Tonar et al. | Jan 2006 | A1 |
20060115759 | Kim et al. | Jun 2006 | A1 |
20060139953 | Chou et al. | Jun 2006 | A1 |
20060158899 | Ayabe et al. | Jul 2006 | A1 |
20070146481 | Chen et al. | Jun 2007 | A1 |
20070171037 | Schofield et al. | Jul 2007 | A1 |
20080068520 | Minikey, Jr. et al. | Mar 2008 | A1 |
20080192132 | Bechtel et al. | Aug 2008 | A1 |
20080247192 | Hoshi et al. | Oct 2008 | A1 |
20080294315 | Breed | Nov 2008 | A1 |
20080302657 | Luten et al. | Dec 2008 | A1 |
20090015736 | Weller et al. | Jan 2009 | A1 |
20090141516 | Wu et al. | Jun 2009 | A1 |
20090296190 | Anderson et al. | Dec 2009 | A1 |
20100110553 | Anderson et al. | May 2010 | A1 |
20100201896 | Ostreko et al. | Aug 2010 | A1 |
20100277786 | Anderson et al. | Nov 2010 | A1 |
20110168687 | Door | Jul 2011 | A1 |
20110176323 | Skiver et al. | Jul 2011 | A1 |
20110181727 | Weller et al. | Jul 2011 | A1 |
20120038964 | De Wind et al. | Feb 2012 | A1 |
20120069444 | Campbell et al. | Mar 2012 | A1 |
20120229882 | Fish, Jr. et al. | Sep 2012 | A1 |
20120236388 | De Wind et al. | Sep 2012 | A1 |
20130028473 | Hilldore et al. | Jan 2013 | A1 |
20130279014 | Fish, Jr. | Oct 2013 | A1 |
20140022390 | Blank et al. | Jan 2014 | A1 |
20140043479 | Busch et al. | Feb 2014 | A1 |
20140192431 | Sloterbeek et al. | Jul 2014 | A1 |
20140347488 | Tazaki et al. | Nov 2014 | A1 |
Number | Date | Country |
---|---|---|
102010064082 | Jun 2012 | DE |
0513476 | Nov 1992 | EP |
0899157 | Mar 1999 | EP |
0899157 | Oct 2004 | EP |
2393691 | May 2014 | EP |
2338363 | Dec 1999 | GB |
1178693 | Mar 1999 | JP |
2001075485 | Mar 2001 | JP |
2002096685 | Apr 2002 | JP |
2002200936 | Jul 2002 | JP |
2005148119 | Jun 2005 | JP |
2005327600 | Nov 2005 | JP |
2008139819 | Jun 2008 | JP |
2009265248 | Nov 2009 | JP |
2009542505 | Dec 2009 | JP |
2013244753 | Dec 2013 | JP |
9621581 | Jul 1996 | WO |
2007103573 | Sep 2007 | WO |
2010090964 | Aug 2010 | WO |
Entry |
---|
Federal Institute of Industrial Property, “International Search Report and Written Opinion,” International Application No. PCT/US2015/063709, dated Dec. 8, 2016 (9 pages). |
Palalau et al., “FPD Evaluation for Automotive Application,” Proceedings of the Vehicle Display Symposium, Nov. 2, 1995, pp. 97-103, Society for Information Display, Detroit Chapter, Santa Ana, CA. |
Adler, “A New Automotive AMLCD Module,” Proceedings of the Vehicle Display Symposium, Nov. 2, 1995, pp. 67-71, Society for Information Display, Detroit Chapter, Santa Ana, CA. |
Sayer, et al., “In-Vehicle Displays for Crash Avoidance and Navigation Systems,”Proceedings of the Vehicle Display Symposium, Sep. 18, 1996, pp. 39-42, Society for Information Display, Detroit Chapter, Santa Ana, CA. |
Knoll, et al., “Application of Graphic Displays in Automobiles,” SID 87 Digest, 1987, pp. 41-44, 5A.2. |
Terada, et al., “Development of Central Information Display of Automotive Application,” SID 89 Digest, 1989, pp. 192-195, Society for Information Display, Detroit Center, Santa Ana, CA. |
Thomsen, et al., “AMLCD Design Considerations for Avionics and Vetronics Applications,” Proceedings of the 5th Annual Flat Panel Display Strategic and Technical Symposium, Sep. 9-10, 1998, pp. 139-145, Society for Information Display, Metropolitan Detroit Chapter, CA. |
Knoll, et al., “Conception of an Integrated Driver Information System,” SID International Symposium Digest of Technical Papers, 1990, pp. 126-129, Society for Information Display, Detroit Center, Santa Ana, CA. |
Vincen, “An Analysis of Direct-View FPDs for Automotive Multi-Media Applications,”Proceedings of the 6th Annual Strategic and Technical Symposium “Vehicular Applications of Displays and Microsensors,” Sep. 22-23, 1999, pp. 39-46, Society for Information Display, Metropolitan Detroit Chapter, San Jose, CA. |
Zuk, et al., “Flat Panel Display Applications in Agriculture Equipment,” Proceedings of the 5th Annual Flat Panel Display Strategic and Technical Symposium, Sep. 9-10, 1998, pp. 125-130, Society for Information Display, Metropolitan Detroit Chapter, CA. |
Vijan, et al., “A 1.7-Mpixel Full-Color Diode Driven AM-LCD,” SID International Symposium, 1990, pp. 530-533, Society for Information Display, Playa del Rey, CA. |
Vincen, “The Automotive Challenge to Active Matrix LCD Technology,” Proceedings of the Vehicle Display Symposium, 1996, pp. 17-21, Society for Information Display, Detroit Center, Santa Ana, CA. |
CORSI, et al., “Reconfigurable Displays Used as Primary Automotive Instrumentation,” SAE Technical Paper Series, 1989, pp. 13-18, Society of Automotive Engineers, Inc., Warrendale, PA. |
Schumacher, “Automotive Display Trends,” SID 96 Digest, 1997, pp. 1-6, Delco Electronics Corp., Kokomo, IN. |
Knoll, “The Use of Displays in Automotive Applications,” Journal of the SID 5/3 1997, pp. 165-172, 315-316, Stuttgart, Germany. |
Donofrio, “Looking Beyond the Dashboard,” SID 2002, pp. 30-34, Ann Arbor, MI. |
Stone, “Automotive Display Specification,” Proceedings of the Vehicle Display Symposium, 1995, pp. 93-96, Society for Information Display, Detroit Center, Santa Ana, CA. |
Number | Date | Country | |
---|---|---|---|
20160159287 A1 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
62086841 | Dec 2014 | US |