The present disclosure claims priority to Chinese Patent Application No. CN201910256049.6, filed on Mar. 29, 2019, the content of which is incorporated herein by reference in its entirety.
The present disclosure relates to the technical field of display technologies, and in particular, to a display panel and a display device including the same.
With newer display technologies continuously replacing old ones, consumers' desire for display panel shapes are no longer limited to display panels being rectangles or circles. They expect display areas meet practical needs. For example, to achieve a cellphone's higher screen occupancy ratio to accommodate devices such as a front camera, an earpiece, a light sensor and the like, a part of the display panel is cut out to form a special area. However, such a display panel is not a good way to increase the screen occupancy ratio. In order to further increase the screen occupancy ratio, people have designed a non-display hole in a display area of the display panel or outside of the display panel. In these cases, a data line may be cut off by the non-display hole. In order to allow normal transmission of data signals, this cut off data line needs to wind around a periphery of the non-display hole. It is also necessary to leave space around the periphery of the non-display hole for winding of the data line in the non-display area, which increases the area of the non-display area of the display panel and thus prevents the screen occupancy ratio of the display panel from increasing.
In view of this, embodiments of the present disclosure provide a display panel and a display device including the same, so as to solve the abovementioned technical problems.
In an aspect, an embodiment of the present disclosure provides a display panel. The display panel has a display area and a non-display area surrounding the display area. The display area has a first side and a second side disposed opposite to the first side, and the display area includes: a hollow area having a first edge and a second edge; a first display area extending from the first side of the display area to the second side of the display area; a second display area extending from the first side of the display area to the second edge of the hollow area; a third display area extending from the second edge of the hollow area to the second side of the display area; and a fourth display area extending from the first side of the display area to the first edge of the hollow area. The display panel includes: a driving chip arranged in the non-display area close to the first side of the display area; first data lines arranged in the first display area; second data lines arranged in the second display area; third data lines arranged in the third display area; and fourth data lines arranged in the fourth display area. The first edge of the hollow area is close to the driving chip and the second edge of the hollow area is away from the driving chip. One of the second data lines is connected to n third date lines of the third date lines through a set of signal switching circuits, n is an integer equal or larger than 2.
In order to more clearly illustrate technical solutions in embodiments of the present disclosure, the accompanying drawings used in the embodiments are briefly introduced as follows. It should be noted that the drawings described as follows are merely part of the embodiments of the present disclosure, other drawings can also be acquired by those skilled in the art without paying creative efforts.
For better illustrating technical solutions of the present disclosure, embodiments of the present disclosure will be described in detail as follows with reference to the accompanying drawings.
It should be noted that, the described embodiments are merely exemplary embodiments of the present disclosure, which shall not be interpreted as providing limitations to the present disclosure. All other embodiments obtained by those skilled in the art without creative efforts according to the embodiments of the present disclosure are within the scope of the present disclosure.
The terms used in the embodiments of the present disclosure are merely for the purpose of describing particular embodiments but not intended to limit the present disclosure. Unless otherwise noted in the context, the singular form expressions “a”, “an”, “the” and “said” used in the embodiments and appended claims of the present disclosure are also intended to represent plural form expressions thereof.
It should be understood that the term “and/or” used herein is merely an association relationship describing associated objects, indicating that there may be three relationships, for example, A and/or B may indicate that three cases, i.e., A existing individually, A and B existing simultaneously, B existing individually. In addition, the character “/” herein generally indicates that the related objects before and after the character form an “or” relationship.
It should be understood that, although the display area may be described using the terms of “first”, “second”, “third”, etc., in the embodiments of the present disclosure, the display area will not be limited to these terms. These terms are merely used to distinguish symmetric axes from one another. For example, without departing from the scope of the embodiments of the present disclosure, a first display area may alternatively be referred to as a second display area, similarly, a second display area may alternatively be referred to as a first display area.
As mentioned in the background, in order to further increase a screen occupancy ratio, researchers design a non-display hole in the display area of the display panel or at a side of the display panel. In this case, a data line will be cut off by the non-display hole. In order to allow normal transmission of data signals, the data line needs to be wound around a periphery of the non-display hole. It is also necessary to leave a space around the periphery of the non-display hole for winding of the data line in the non-display area, which increases an area of the non-display area of the display panel and thus prevents the screen occupancy ratio of the display panel from increasing.
When the display panel is provided with the hollow area TH, the display panel in the present disclosure is divided into four areas. With reference to
Further, the first data line 11 in the first display area AA1 extends from the first side S1 to the second side S2 of the display area AA, the second data line 12 in the second display area AA2 is connected to the third data line 13 in the third display area AA3, but the fourth data line 14 in the fourth display area AA4 extends only from the first side S1 of the display area to the first edge E1 of the hollow area TH. Therefore, a length of the fourth data line 14 and a number of the pixels connected thereto are much smaller than those of other data lines, which causes its parasitic capacitance to be different from other data lines, thereby resulting in display evenness. In this embodiment, a compensation capacitor 40 connected to the fourth data line 14 is further provided, and the compensation capacitor has a capacitance of C1. A difference between a parasitic capacitance of the first data line 11 and a parasitic capacitance of the second data line is C2. Here, 0.8*C2<C1<1.2*C2. In this embodiment, the difference between the capacitances of the data lines is compensated for by the compensation capacitor 40. Moreover, when the difference between capacitances of the data lines is smaller than or equal to 20%, display unevenness can be avoided within a tolerance range for charging the data lines.
A gate driving circuit needs to be provided at a side of the hollow area TH close to the second display area AA2 to form the non-display area. Further, in order to balance a width of the non-display area around the hollow area TH, with reference to
Further, the signal switching circuits 30 include a plurality of transistors. If the signal switching circuits are arranged in the display area, the display area will be occupied by the transistors of the signal switching circuits. In this case, a non-display portion will be formed in the display area, which affects the display effect.
In another embodiment of the present disclosure, each second data line 12 corresponds to a set of signal switching circuits 30, and the signal switching circuits 30 are arranged between the third data lines 13 connected thereto.
The display panel of the present disclosure includes a plurality of pixels and a pixel driving circuit 61 connected to each of the plurality of pixels. Each pixel includes an anode 621, a cathode 623, and a light-emitting material layer 622 arranged between the anode 621 and the cathode 623. Each driving circuit 61 is connected to the corresponding anode 621. The driving circuit 61 is formed by a transistor and a capacitor. The display panel includes a semiconductor layer 611, a gate insulation layer 602, a gate metal layer 612, a first interlayer insulation layer 603, a capacitive metal layer 613, a second interlayer insulation layer 604, a source-drain metal layer 614, a planarization layer 605, the anode 621, a pixel definition layer 606, the light-emitting material layer 622, and the cathode 623 that are sequentially disposed on the substrate 601.
With reference to
Further, with the signal switching circuit 30, positions of the driving circuits 61 located in the third display area AA3 do not correspond to positions of the driving circuits 61 located in the first display area AA1. According to a conventional design, the position where the anode of the pixel is arranged with respect to the corresponding driving circuit is shown in
In the present disclosure, the hollow area TH may be located at an edge of the display area or in a middle area of the display area.
With reference to
In an embodiment, the display panel includes scan lines 70 extending in the first direction and arranged in the second direction, and data lines extending in the second direction and arranged in the first direction. The data lines include a first data line 11, a second data line 12, a third data line 13, and a fourth data line 14. The display area AA has a third side S3 adjacent to the first side S1 and the second side S2, and a fourth side S4 opposite to the third side S3. The hollow area TH is arranged at the third side S3 and forms a notch area. The notch area has a third edge E3 adjacent to both the first edge E1 and the second edge E2. In the embodiment as shown in
In the first direction, the first display area AA1 is close to the fourth side S4 of the display area, the second display area AA2 is disposed between the first display area AA1 and the third edge E3 of the notch area TH, the third display area AA3 is disposed between the first display area AA1 and the third side S3 of the display area, and the fourth display area AA4 is disposed between the third edge E3 of the notch area TH and the third side S3 of the display area. The first display area AA1 includes a first portion AA1a aligned with the third display area AA3 in the first direction, and a second portion AA1b aligned with the second display area AA2 in the first direction. Since at least two third data lines 13 located in the third display area AA3 share one second data line 12 through the signal switching circuit 30 for transmitting the data signal, the data lines located in the third display area AA3 should be provided with data signals in a time division manner. However, the other display areas than the third display area do not need to be provided with data signals in a time division manner.
Therefore, there is a difference in driving time. In particular, the data signal is written when the scan line 70 provides an effective level. However, the effective level provided by one scan line in the third display area AA3 needs to allow at least two data signals to be written in a time division manner. Therefore, the effective level of the scan signal required in the third display area AA3 needs to have a width that is at least twice the width of the effective level of the scan signal in the other display areas. If the entire display area uses the effective level with such a width, the time for scanning the entire display panel will be doubled, which will reduce the number of frames for the display panel. Taking the display panel with a 1920*1080 resolution at 60 frames per second as an example, each frame is 16.7 ms, and the time (the width of the effective level) for scanning each row is shorter than or equal to 16.7 ms/1920≈8.7 μs. On one hand, in the third display area AA3, the data signal needs to be written into two third data lines 13 in a time division manner during the time for scanning one row; and on the other hand, it takes a minimum time, for example 5 μs, to allow the data signal to be sufficiently written. Therefore, in this case, the time for scanning each row in the third display area AA3 must be longer than or equal to 10 μs. If each row is scanned according to this time, an overall frame rate for the display penal will be 1 s/(10 μs*1920)=52 frames, which is significantly lower than 60 frames and therefore will affect an image quality of the display panel.
Accordingly, an embodiment of the present disclosure provides a driving method. In a first period T1, the first portion AA1a of the first display area AA1 and the third display area AA3 are simultaneously driven; and in a second period T2, the second portion AA1b of the first display area AA1 and the second display area AA2 are simultaneously driven. Moreover, the fourth display area AA4 is driven simultaneously with the second portion AA1b of the first display area AA1 and the second display area AA2 during at least a portion of the second period T2. Taking the display panel with a 1920*1080 resolution as an example, if the third display area has x rows, the second display area will have (1920−x) rows. The time for scanning each of the x rows is 10 μs, and the time for scanning each of the (1920−x) rows is 5 μs. Then the total time of scanning one frame is 10x+1920*5−5x=5*(1920+x) μs. If the frame rate for the display panel is higher than 60 frames, it is required to satisfy 5*(1920+x) μs≤16.7 ms, i.e., x≤1420. That is, taking the display panel with a 1920*1080 resolution as an example, if it requires to maintain 60 frames, according to the driving method in this embodiment, the number of rows in the third display area AA3 needs to be smaller than 1420. In other words, according to the driving method in this embodiment, the display panel of the present disclosure can achieve driving at a high frame rate. In addition, the pixels located in one row are driven at the same time, so as to achieve the shortest total driving time for one frame. In this embodiment, each scan line 70 simultaneously drives a row of pixels, and the pixels located in the first portion AA1a of the first display area AA1 and the pixels located in the third display area AA3 are connected to one set of scan lines. Therefore, in this embodiment, the first display area AA1 is divided into the first portion AA1a and the second portion AA1b, and the first portion AA1a of the first display area and the third display area AA3 are simultaneously driven. Similarly, the fourth display area, a portion of the first display area, and the second display area are connected to one set of scan lines. Therefore, the fourth display area AA4 is driven simultaneously with the second portion AA1b of the first display area AA1 and the second display area AA2 during at least a portion of the second period T2.
Referring to
Therefore, in this embodiment, the second set of scan lines 72 is connected to a load compensation unit 41.
Further, on one hand, the third data line 13 located in the third display area is connected to the second data line 12 located in the second display area through the signal switching circuit 30, and the data signal has a voltage drop after passing through the signal switching circuit 30. On the other hand, the first data line 11 has no voltage drop between the second portion AA1b of the first display area AA1 and the first portion AA1a of the first display area AA1. Therefore, the same data signal has different voltage drops when being transmitted to the first portion AA1a of the first display area AA1 and to the third display area AA3, and thus the resulting driving currents are different. In order to solve this problem, in this embodiment, in the first display area AA1, the data lines located in the first portion AA1a are connected to the data lines located in the second portion AA1b in a one-to-one correspondence by an active layer resistance line 6110. The active layer resistance line herein refers to a resistance unit arranged in the same layer as the active layer. Moreover, a resistance value of the active layer resistance line 6110 can be set based on an equivalent resistance of the signal switching circuit 30, so as to avoid display abnormality caused by different voltage drops.
With reference to
In an embodiment of the present disclosure, an equivalent circuit diagram of the multiplexer 80 is illustrated in
Further, since the third display area AA3 is driven in a time division manner, the scan signal for driving the third display area AA3 is different from the scan signal for driving the second display area. In an embodiment of the present disclosure, the driving circuit can be divided into two parts for providing a start signal and a clock signal, respectively, to adjust the width of the effective level of the scan signal output from the scan driving circuit. In particular, a first driving circuit 20a is arranged in the non-display area of the display panel and drives the first portion AA1a of the first display area AA1 and the third display area AA3. A second driving circuit 20b is arranged in the non-display area of the display panel and drives the second portion AA1b of the first display area AA1, the second display area AA2 and the fourth display area AA4. The first driving circuit 20a is provided with a first start signal and a first clock signal. The second driving circuit 20b is provided with a second start signal and a second clock signal. In the first period T1, the first start signal and the first clock signal are provided, and the first driving circuit 20a performs driving row by row. In the second period T2, the second start signal and the second clock signal are provided, and the second driving circuit 20b performs driving row by row.
Further, a width of an effective level of the first start signal is larger than a width of an effective level of the second start signal. A cycle of the first clock signal is equal to twice a cycle of the second clock signal. This embodiment is applicable to the signal switching circuit with a ratio of 1:2, in which case the width of the effective level of the scan signal outputted from the first driving circuit 20a can be twice the width of the effective level of the scan signal outputted from the second driving circuit 20b.
With reference to
In an embodiment of the present disclosure, an effective level of the second control signal line 512 occurs after an effective level of the first control signal line 511, the effective level of the first control signal line 511 does not overlap an effective level of the scan line, and the effective level of the scan line covers the effective level of the second control signal line 512. In this case, when the first control signal line 511 is at an effective level, a data signal is written into the third data line 13a in the first group of third data lines, but the signal is not written into the driving transistor, and no data signal is written into the third data line 13b in the second group of third data lines. When the second control signal line 512 is at an effective level, a data signal is continuously written into the driving transistor connected to the third data line 13a in the first group of third data lines due to the parasitic capacitance of the third data line 13a in the first group of third data lines, and a data signal is also written into the third data line 13b in the second group of third data lines. Therefore, the time during which a data signal is written into the driving transistor connected to the third data line 13a in the first group of third data lines is the same as the time during which a data signal is written into the driving transistor connected to the third data line 13b in the second group of third data lines, thereby avoiding display abnormality.
An embodiment of the present disclosure further provides another driving method. Please refer to
In an embodiment, the display panel includes scan lines 70 extending in the first direction and arranged in the second direction, and data lines extending in the second direction and arranged in the first direction. The data lines include a first data line 11, a second data line 12, a third data line 13, and a fourth data line 14. The display area AA has a third side S3 adjacent to the first side S1 and the second side S2, and a fourth side S4 opposite to the third side S3. The hollow area TH is arranged at the third side S3 and forms a notch area. The notch area has a third edge E3 adjacent to both the first edge E1 and the second edge E2. In an embodiment as shown in
In the first direction, the first display area AA1 is close to the fourth side S4 of the display area, the second display area AA2 is arranged between the first display area AA1 and the third edge E3 of the notch area TH, the third display area AA3 is arranged between the first display area AA1 and the third side S3 of the display area, and the fourth display area AA4 is arranged between the third edge E3 of the notch area TH and the third side S3 of the display area. The first display area AA1 includes a first portion AA1a aligned with the third display area AA3 in the first direction, and a second portion AA1b aligned with the second display area AA2 in the first direction. Since at least two third data lines 13 located in the third display area AA3 share one second data line 12 through the signal switching circuit 30 for transmitting the data signal, the frame rate is reduced, thereby affecting an image quality of the display panel. The reason thereof has been described in details in the above embodiments, and will not be further described herein.
In this embodiment, in a third period T3, a portion of the third display area is driven; in a fourth period T4, the first portion AA1a of the first display area and another portion of the third display area are simultaneously driven; and in a fifth period T5, the second portion AA1b of the first display area and the second display area AA2 are simultaneously driven. Moreover, the fourth display area AA4 is driven simultaneously with the second portion AA1b of the first display area and the second display area AA2 during at least a portion of the fifth period T5. Here, a portion of the third display area may refer to an area where the pixels connected to the third data lines in the first group of third data lines are located, and another portion of the third display area may refer to an area where the pixels connected to the third data lines in the second group of third data lines are located. Alternatively, a portion of the third display area may refer to an area where the pixels connected to the third data lines in the second group of third data lines are located, and another portion of the third display area may refer to an area where the pixels connected to the third data lines in the first group of third data lines are located. The third data line in the first group of third data lines may be an odd-numbered third data line, and the third data line in the second group of third data lines may be an even-numbered third data line. Taking signal switching circuit with a ratio of 1:2 as an example, for example, the first transistor of the signal switching circuit is connected to the odd-numbered third data line, and the second transistor of the signal switching circuit is connected to the even-numbered third data line, then the pixels connected to the odd-numbered third data lines in the third display area are driven in the third period T3, and the pixels connected to the even-numbered third data lines in the third display area are driven in the fourth period T4.
On the one hand, taking the display panel with a 1920*1080 resolution as an example, if the third display area has x rows, the second display area will have (1920−x) rows. The time for scanning each of the x rows is 10 μs, and the time for scanning each of the (1920−x) rows is 5 μs. Then the total time for scanning one frame is 10x+1920*5−5x=5*(1920+x) μs. If the frame rate for the display panel is higher than 60 frames, it is required to satisfy 5*(1920+x) μs≤16.7 ms, i.e., x≤1420. That is, taking the display panel with a 1920*1080 resolution as an example, if it requires to maintain 60 frames, according to the driving method in this embodiment, the number of rows in the third display area AA3 needs be smaller than 1420. In other words, according to the driving method in this embodiment, the display panel of the present disclosure can achieve driving at a high frame rate. In addition, the pixels located in one row needs be driven at the same time, so as to achieve the shortest driving time for one frame. In this embodiment, each scan line 70 simultaneously drives a row of pixels, and the pixels located in the first portion AA1a of the first display area AA1 and the pixels located in the third display area AA3 are connected to one set of scan lines. Therefore, the first display area AA1 is divided into the first portion
AA1a and the second portion AA1b, and the first portion AA1a of the first display area and the third display area AA3 are simultaneously driven Similarly, the fourth display area, a portion of the first display area, and the second display area are connected to one set of scan lines. Therefore, the fourth display area AA4 is driven simultaneously with the second portion AA1b of the first display area AA1 and the second display area AA2 during at least a portion of the second period T2.
On the other hand, in this embodiment, instead of requiring the data signal to be transmitted in a time division manner during the scanning period, scanning is performed in two periods and the data signals are transmitted respectively, so that the scanning time of each stage is the same and thus it is not necessary to set different widths for the effective levels of different scanning signals based on different areas, thereby greatly reducing complexity of the IC.
Further, with reference to
In the third period T3, in a direction along which the second edge E2 of the notch area TH points to the second side S2 of the display area, the first driving circuit 20a outputs a driving signal stage by stage. In the fourth period T4, in a direction along which the second side S2 of the display area points to the second edge E2 of the notch area TH, the first driving circuit 20a outputs a driving signal stage by stage. In other words, the third period T3 and the fourth period T4 share the first driving circuit 20a, and the time division driving can be achieved by the first driving circuit 20a performing reverse scanning during the third period T3 and forward scanning during the fourth period T4. In this embodiment, one driving circuit is used to achieve scanning in two periods, thereby reducing the number of driving circuits, and thus facilitating providing a display panel with a narrow border.
Further, a conventional driving circuit cannot perform forward scanning and reverse scanning at the same time. With reference to
Further, generally the forward scanning and the reverse scanning require separate start signals for staring the scanning, and thus an additional start signal line is required. Moreover, the driving circuit needs to perform timing sequence matching so that the start signal for starting the forward scanning is inputted just after the reverse scanning has completed, and such timing sequence matching is very difficult. Therefore, an embodiment of the present disclosure provides a technical solution, in which a first dummy driving circuit unit Dummy is arranged to precede the 1st stage of first driving circuit unit 200. The first dummy driving circuit unit Dummy has an input terminal IN connected to the output terminal OUT of the 1st stage of driving circuit unit through the reverse-scanning switching unit 312, and an output terminal OUT connected to the input terminal IN of the 1st stage of driving circuit unit through the forward-scanning switching unit 311.
Further, in the third period T3, only a portion of the third display area AA3 needs to be driven, and the third display area AA3 and the first portion AA1a of the first display area AA1 are connected to one set of scan lines. Thus, a data signal is also written into the first portion AA1a of the first display area AA1 during the third period T3. The data signal at this time is a parasitic capacitance of the first data line 11, not a real data signal, and thus a display error will occur. Therefore, the scan lines include a fourth set of scan lines 71a arrange in the first portion of the first display area and a fifth set of scan lines 71b arranged in the third display area. Each scan line of the fourth set of scan lines 71a and each scan line of the fifth set of scan lines 71b are connected in a one-to-one correspondence by a switch unit 90. The switch unit 90 is turned off in the third period and turned on in the fourth period. The switching unit 90 has a gate connected to a switch signal line 901.
The driving method in this embodiment will be described in the following with reference to the
In the third period T3, the first control signal line 511 continuously outputs an effective level, the second control signal line 512 continuously outputs a cut-off level, the switch signal line 901 continuously outputs a cut-off level, the forward-scanning signal controlling line 3110 outputs a cut-off level, and the reverse-scanning signal controlling line 3120 outputs an effective level. At this time, a portion of the third display area is driven; and the scan signal drives only the third display area.
In the fourth period T4, the first control signal line 511 continuously outputs a cut-off level, the second control signal line 512 continuously outputs an effective level, the switch signal line 901 continuously outputs an effective level, the forwarding-scanning signal controlling line 3110 outputs an effective level, and the adverse-scanning signal controlling line 3120 outputs a cut-off level. At this time, the first portion AA1a of the first display area and another portion of the third display area are simultaneously driven.
In the fifth period T5, the first control signal line 511 continuously outputs a cut-off level, the second control signal line 512 continuously outputs a cut-off level, the switch signal line 901 continuously outputs a cut-off level, the forwarding-scanning signal controlling line 3110 outputs a cut-off level, and the reverse-scanning signal controlling line 3120 outputs a cut-off level. At this time, the second portion AA1b of the first display area and the second display area AA2 are simultaneously driven, and the fourth display area AA4 is driven simultaneously with the second portion AA1b of the first display area and the second display area AA2 during at least a portion of the fifth period T5.
In this embodiment, it can be seen that the signals of the second control signal line 512, the switch signal line 901, and the forwarding-scanning signal controlling line 3120 have the same waveform and can be reused. Therefore, the number of signal lines can be reduced, and thus the layout difficulty can be reduced, which is advantageous for achieving a narrow border.
The above-described embodiments are merely preferred embodiments of the present disclosure and are not intended to limit the present disclosure. Any modifications, equivalent substitutions and improvements made within the principle of the present disclosure shall fall into the protection scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201910256049.6 | Mar 2019 | CN | national |