The present application claims priority to Chinese Patent Application No. 201811325088.9, filed on Nov. 8, 2018, the content of which is incorporated herein by reference in its entirety.
The present disclosure relates to the field of display technologies, and in particular, to a display panel and a display device including the display panel.
With the continuous development of display technologies, consumers' requirements on display panels keep increasing, and various types of displayers appear and have been rapidly developed, such as liquid crystal display panels, organic light-emitting display panels and other display screens. Based on this, display technologies such as 3D display, touch display, curved display, ultra-high resolution display and peep-proof display constantly appear to meet the demands of the consumers.
Due to its advantages such as light weight, high contrast and flexible design, the organic light-emitting display panel has gradually become a mainstream product of the current display industry, which has attracted great favor from the consumers. After the organic light-emitting display panel is shipped from a factory, a visual test (VT test) is generally performed. During the VT test, the data signal lines of the display units displaying a same color light are short-circuited by a short-circuiting bar. Thereby, a monochrome image can be displayed. Generally, the short-circuiting bar is located in a fan-out area at the periphery of the display area, but traces in the fan-out area have a very dense distribution, and a power line for supplying a power signal to the display unit in the display area is included herein. The power line and the short-circuiting bar are located in a same layer. In order to achieve the monochrome display function of the short-circuiting bar without influencing normal transmission of the signal on the power line, how to arrange the power line and the short-circuiting bar to insulate the two and achieve their respective functions is an urgent problem to be solved in this field.
In view of the above, the present disclosure provides a display panel, and a display device including the same, which insulate the short-circuiting bar from the power line, so that the two can achieve their respective functions without affecting normal operation of the display panel.
In an aspect, the present disclosure provides a display panel. The display panel has a display area, a fan-out area located at a periphery of the display area, and a binding area located at a side of the fan-out area facing away from the display area. The display panel includes: a first short-circuiting bar located in the fan-out area or the binding area and extending along a first direction; a second short-circuiting bar located in the fan-out area or the binding area and extending along the first direction; a third short-circuiting bar located in the fan-out area or the binding area and extending along the first direction; and at least one first power line extending along a second direction intersecting with the first direction. The at least one first power line extends from the binding area passing through the fan-out area to the display area, and is configured to provide a first power signal to a display unit in the display area. The first short-circuiting bar, the second short-circuiting bar, the third short-circuiting bar, and the at least one first power line are located in a first metal layer, and at least one of the first short-circuiting bar, the second short-circuiting bar and the third short-circuiting bar is insulated from the at least one first power line and does not intersect with the at least one first power line.
In another aspect, the present disclosure provides a display device, and the display device includes any display panel provided in the present disclosure.
In order to make the purposes, features and advantages of the present disclosure more understandable, the present disclosure will be further described with reference to the accompanying drawings and embodiments.
It should be noted that details are described as follows so as illustrate the present disclosure. However, the present disclosure can be implemented in various other ways than those described herein, and those skilled in the art can make similar promotion without departing from the scope of the present disclosure. The present disclosure is therefore not limited by the embodiments disclosed in the following.
It should be noted that, in this embodiment, the short-circuiting bar is used to short-circuit the display units of a same color and lighten them at the same time, so as to test the visual effect under a monochrome image and check whether each display unit is able to display normally.
The display panel provided in this embodiment further includes a driving chip 200. Alternatively, as shown in
In addition, the display panel 10 provided in this embodiment may be an organic light-emitting display panel, and the display units in the display area may be organic light-emitting elements. The basic structure of an organic light-emitting element is a cathode and an anode, and a light-emitting layer between the cathode and the anode. A certain voltage is applied to the anode and the cathode so as to generate a voltage difference that drives the organic light-emitting layer to emit light. In other embodiments, the display panel may also be another type of display panel, such as a quantum dot light-emitting display panel, a nano wafer light-emitting panel, etc., which is not limited herein by the embodiments.
In addition, it should be noted that the first short-circuiting bar 111, the second short-circuiting bar 112, the third short-circuiting bar 113, and the first power line 120 in this embodiment are all located in the first metal layer. The first metal layer may be located in a same layer as data lines in the display area. A material of the first metal layer may be a Ti/Al/Ti three-layer structure or other materials having a small resistivity, which is not limited herein by the embodiments.
It is known from the above description that, for the display panel provided by this embodiment, at least one of the first short-circuiting bar 111, the second short-circuiting bar 112, and the third short-circuiting bar 113 that are located in a same layer and each extend along the first direction is insulated from and does not intersect with the first power line 120 that extends along the second direction, thereby preventing the short-circuiting bar from intersecting with the first power line 120. In this way, it avoids cross-bridge or winding operations in the intersecting area, which may affect the resistance of the short-circuiting bar and lead to split screen due to uneven voltage drop on the short-circuiting bar during VT test, which affects the test result. In this way, the structure of the display panel is optimized, and the VT test effect is improved.
In this embodiment, as shown in
In this embodiment, with reference to
In an embodiment, it is possible that neither of the first short-circuiting bar 111, the second short-circuiting bar 112, and the third short-circuiting bar 113 intersects with the first power line 120, and all of the first short-circuiting bar 111, the second short-circuiting bar 112, and the third short-circuiting bar 113 are located in the binding area 102. This design can be used when the binding area 102 has a large area. However, in some cases, the binding area has a smaller area. When the binding area is not large enough to accommodate three short-circuiting bars, the following design can be adopted.
As shown in
Further, the second short-circuiting bar 112 and the third short-circuiting bar 113 are located in the binding area 102, and neither the second short-circuiting bar 112 nor the third short-circuiting bar 113 intersects with the first power line 120.
In this case, the first short-circuiting bar 111 can be located in the fan-out area 101, and the second short-circuiting bar 112 and the third short-circuiting bar 113 can be located in the binding area 102, thereby avoiding a situation in which the binding area is too small to accommodate three short-circuiting bars.
In the abovementioned design, the first short-circuiting bar 111 controls light emission of a green display unit in the display area, and the second short-circuiting bar 112 and the third short-circuiting bar 113 respectively control light emission of a red display unit and a blue display unit. The green light has a higher visual sensitivity in the human eyes, and the red light and the blue light has a lower visual sensitivity in the human eyes. Therefore, the green display unit has a relatively small area but can generate light with enough intensity, so that the driving voltage of the green display unit is small. Therefore, during the VT test, when a cross-bridge is designed due to the short-circuiting bar that controls the green display unit intersecting with the power line, changing of its resistance has a small influence on the lightening of the green display unit. Therefore, the first short-circuiting bar 111 can be designed as such. However, if the short-circuiting bar that controls the red display unit and the short-circuiting bar that controls the blue display unit are designed with a cross-bridge, an obvious split screen may happen. Therefore, the second short-circuiting bar 112 and the third short-circuiting bar 113 are arranged in the binding area 102, so as to avoid split screen.
Further, as shown in
In an embodiment, the first cross-bridge has a larger resistivity than the first short-circuiting bar. Since the material of the first short-circuiting bar is usually a Ti/Al/Ti three-layer structure, the resistivity is relatively small, when it is switched to another metal layer through the across-bridge, the other metal layer has a larger resistivity than the first metal layer, and therefore, the resistivity of the first cross-bridge is larger than the that of the first short-circuiting bar. However, in other implementations of this embodiment, it is also possible that the resistivity of the first cross-bridge is smaller than that of the first short-circuiting bar, thereby improving the monochrome display effect during the VT test.
In addition, in other implementations of the embodiment, the width of the first short-circuiting bar 111, the width of the second short-circuiting bar 112, and the width of the third short-circuiting bar 113 have a same value in the second direction Y. When the short-circuiting bars corresponding to red color, green color, and blue color display units are not provided with a cross-bridge, since the green color has the highest visual sensitivity in the human eye, the green display unit can display a relatively strong light without the need of a large driving voltage. Therefore, the width of the short-circuiting bar corresponding to the green display unit is smaller than the width of each of the short-circuiting bars corresponding to the other color display units. When the first short-circuiting bar 111 has a cross-bridge and the other short-circuiting bars do not have a cross-bridge, the width of the first short-circuiting bar 111 may be appropriately increased, such that it is equal to the width of each of the other short-circuiting bars, thereby effectively balancing the resistance.
In addition, in an embodiment, as shown in
In addition, the above situation is for the case where the first short-circuiting bar 111 is located in the fan-out area 101, and the second short-circuiting bar 112 and the third short-circuiting bar 113 are located in the binding area 102. When the space of the binding area 102 is small, it is possible that one of the second short-circuiting bar 112 and the third short-circuiting bar 113 is arranged in the binding area 102, and the other one is arranged in the fan-out area 101, thereby avoiding a dense distribution of the traces in the binding area 102.
In this embodiment, with reference to
As shown in
Further, the plurality of data lines includes a first data line Data1 and a second data line Data2. The first data line Data1 is connected to the first short-circuiting bar 111 through the first transistor T1, the second data line Data2 is connected to the second short-circuiting bar 112 through the second transistor T2, or the second data line Data2 is connected to the third short-circuiting bar 113 through the third transistor T3. In this case, in the display area, the first data line Data1 may control the green display units, and the green display units are arranged in a column along the second direction Y, the second data line Data2 may control the blue display units or the red display units, and a red display unit and a blue display units are alternatively arranged in a column along the second direction.
When the display panel is during the VT test, the short-circuiting bar needs to be connected to the data line through a transistor, and all the display units displaying a same color are short-circuited together to display a monochrome image. The enable signal line and the short-circuiting bar may be located in a same layer, that is, both of them are located in the first metal layer, and the materials thereof are the same. Or, the enable signal line and the short-circuiting bar may be located in different layers, for example, the enable signal line is located in the same layer as the first cross-bridge, i.e., the second metal layer. The arrangement depends on the actual structure, and is not limited herein by the embodiments.
Further, at least one of the first enable signal line SW1, the second enable signal line SW2, and the third enable signal line SW3 is insulated from and does not intersect with the first power line 120. Since the first enable signal line SW1, the second enable signal line SW2, and the third enable signal line SW3 each extend along the first direction X, if the enable signal line intersects with the first power line 120, the signal line needs to be provided with a cross-bridge. In this case, during the VT test, the resistance of the signal line is relatively large, thereby leading to response delay and split screen, which may cause misjudgment of the VT test result and thus not conducive to the improvement of the yield. Therefore, it is necessary to make the enable signal line not intersect with the second power line 120, thereby avoiding the above problem and achieving the effect of the VT test.
Further, the enable signal line among the first enable signal line SW1, the second enable signal line SW2, and the third enable signal line SW3 that does not intersect with the first power line 120 is located in the binding area 102. As described above, since the binding area 102 is located between two adjacent first power lines 120, the enable signal line that does not intersect with the first power line 120 is located in the binding area 102, thereby effectively avoiding the problem of intersecting with the first power line 120.
In an embodiment, as described above, a display stage of the display panel 10 includes a visual test stage, i.e., a VT test stage, and the first transistor T1 or the second transistor T2 or the third transistor T3 is turned on only during the VT test stage. During other display stages, the abovementioned transistors are all turned off. The short-circuiting bar is only turned on during the VT test stage, so that the display panel displays a monochrome image, thereby checking whether the display unit of each color is able to display normally. The short-circuiting bar is not in operation during the normal display stage of the display panel, and thus each transistor is turned off.
Another aspect of the present disclosure further provides a display device including the display panel described in any of the above embodiments.
It is known from the above description that, for the display panel and display device provided by the embodiments, at least one of the first short-circuiting bar 111, the second short-circuiting bar 112, and the third short-circuiting bar 113 that are located in a same layer and each extend along the first direction is insulated from and does not intersect with the first power line 120 extending along the second direction, thereby preventing the short-circuiting bar from intersecting with the first power line 120. In this way, it avoids cross-bridge or winding operations in the intersecting area, which may affect the resistance of the short-circuiting bar and lead to split screen due to uneven voltage drop on the short-circuiting bar during VT test, which affects the test result. In this way, the structure of the display panel is optimized, and the VT test effect is improved.
The above is merely a further description of the present disclosure in connection with preferred embodiments, which shall not limit the present disclosure. Those skilled in the art may make some simple deductions or substitutions without departing from the concept of the present disclosure, but these deductions or substitutions should shall fall into the protection scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2018 1 1325088 | Nov 2018 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
20160187750 | Tang | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
1573892 | Feb 2005 | CN |
108493226 | Sep 2018 | CN |
Entry |
---|
Chinese Office Action dated Apr. 7, 2020 for corresponding CM Application No. 201811325088.9, and English translation thereof. |
Number | Date | Country | |
---|---|---|---|
20200152120 A1 | May 2020 | US |