The present application relates to a display field, and particularly to a display panel and a manufacturing method of the display panel.
Compared with liquid crystal display technology, organic light emitting diode display technology has advantages of high reaction speed, high contrast, wide viewing angles, etc. In prior art, a silver layer is usually disposed in an anode layer as a reflective layer, and the reflectance is greater than 90%. However, the silver layer has a strong blue light absorption resulting in a low reflectance of blue light, thereby affecting display quality. Therefore, how to improve display quality of the display panel is an urgent problem to be solved.
The present application provides a display panel and a manufacturing method of the display panel to improve the display quality of the display panel.
The present application provides a display panel including:
a substrate;
a thin film transistor layer, wherein the thin film transistor layer is formed on the substrate; and
a light emitting layer, wherein the light emitting layer is formed on the thin film transistor layer, the light emitting layer comprises:
an anode layer, wherein the anode layer comprises a laminated structure and an electrode layer, the laminated structure is formed on the thin film transistor layer, the laminated structure comprises at least one first sub layer and at least one second sub layer, the first sub layer and the second sub layer are alternant formed on the thin film transistor, the electrode layer is formed on the laminated structure, the electrode layer are electrically connected to the thin film transistor layer;
a light emitting portion, wherein the light emitting portion is formed on and electrically connected to the anode layer; and
a cathode layer, wherein the cathode layer is formed on and electrically connected to the light emitting portion.
In the display panel of the present application, a refractive index of the first sub layer is different from a refractive index of the second sub layer.
In the display panel of the present application, a material of the first sub layer is Si, SiC, Si3N4, TiO2, Al2O3, BeO, CaF2, ZnSe, MgF2, LiF, MgF2, MgO, or combinations thereof.
In the display panel of the present application, a material of the second sub layer is Si, SiC, Si3N4, TiO2, Al2O3, BeO, CaF2, ZnSe, MgF2, LiF, MgF2, MgO, or combinations thereof.
In the display panel of the present application, a material of the first sub layer is SiNx, a material of the second sub layer is SiOx.
In the display panel of the present application, a thickness of the first sub layer is the same as a thickness of the second sub layer.
In the display panel of the present application, a thickness of the first sub layer is 50-250 nm, and a thickness of the second sub layer is 50-250 nm.
In the display panel of the present application, a thickness of the first sub layer is 50-250 nm, and a thickness of the second sub layer is 50-250 nm.
In the display panel of the present application, a layer number of the laminated structure ranges from 1 to 20.
In the display panel of the present application, a thickness of the laminated structure is less than 1000 nm.
The present application provides a manufacturing method of a display panel including:
providing a substrate;
forming a thin film transistor layer on the substrate;
forming a light emitting layer on the thin film transistor layer, wherein the light emitting layer comprises an anode layer, a light emitting portion, and a cathode layer successively laminated and formed on the thin film transistor layer, the step of forming a light emitting layer on the thin film transistor layer comprises:
forming the anode layer on the thin film transistor layer, wherein the anode layer comprises a laminated structure and an electrode layer, the laminated structure is formed on the thin film transistor layer, the laminated structure comprises at least one first sub layer and at least one second sub layer, the first sub layer and the second sub layer are alternant formed on the thin film transistor, the electrode layer is formed on the laminated structure, the electrode layer are electrically connected to the thin film transistor layer;
forming the light emitting portion on the anode layer; and
forming the cathode layer on the light emitting portion.
In the manufacturing method of the present application, a refractive index of the first sub layer is different from a refractive index of the second sub layer.
In the manufacturing method of the present application, a material of the first sub layer is Si, SiC, Si3N4, TiO2, Al2O3, BeO, CaF2, ZnSe, MgF2, LiF, MgF2, MgO, or combinations thereof.
In the manufacturing method of the present application, a material of the second sub layer is Si, SiC, Si3N4, TiO2, Al2O3, BeO, CaF2, ZnSe, MgF2, LiF, MgF2, MgO, or combinations thereof.
In the manufacturing method of the present application, a material of the first sub layer is SiNx, a material of the second sub layer is SiOx.
In the manufacturing method of the present application, a thickness of the first sub layer is the same as a thickness of the second sub layer.
In the manufacturing method of the present application, a thickness of the first sub layer is 50-250 nm, and a thickness of the second sub layer is 50-250 nm.
In the manufacturing method of the present application, a thickness of the first sub layer is 50-250 nm, and a thickness of the second sub layer is 50-250 nm.
In the manufacturing method of the present application, a layer number of the laminated structure ranges from 1 to 20.
In the manufacturing method of the present application, a thickness of the laminated structure is less than 1000 nm.
The benefit is: the present application provides a display panel and a manufacturing of the display panel, the display panel includes a substrate, a thin film transistor layer, and a light emitting layer. The thin film transistor layer is formed on the substrate, the light emitting layer is formed on the thin film transistor layer, the light emitting layer includes an anode layer, a light emitting portion, and a cathode layer. The anode layer includes a laminated structure and an electrode layer, the laminated structure is formed on the thin film transistor layer, the laminated structure includes at least one first sub layer and at least one second sub layer, the first sub layer and the second sub layer are alternant formed on the thin film transistor, the electrode layer is formed on the laminated structure, the electrode layer are electrically connected to the thin film transistor layer, the light emitting portion is formed on and electrically connected to the anode layer, the cathode layer is formed on and electrically connected to the light emitting portion, according to the first sub layer and the second sub layer alternant formed on the thin film transistor, two refractive index materials are repeatedly superposed to form a Bragg mirror, so that the absorption of light in different wavelength bands is very low, which solves a problem of a strong absorption and a weak reflection of a reflection layer on the blue light band, thereby improving the refractive index of the reflective layer and improving display quality of the display panel.
Referring to
The substrate 100 can be a transparent alkali-free glass substrate or a quartz substrate, or other transparent substrates with a certain hardness.
The thin film transistor layer 200 includes a first gate electrode 211, a second gate electrode 212, a source electrode 221, and a drain electrode 222.
Referring to
In one embodiment, a reflective index of the first sub layer 3111 is different from a reflective index of the second sub layer 3112. Material of the first sub layer can be SiN. Material of the second sub layer can be SiOx. A reflective index of SiNx is 1.87. A reflective index of SiOx is 1.45. In some embodiments, materials of the first sub layer 3111 and the second sub layer 3112 can be one or a group selected from Si, SiC, Si3N4, TiO2, Al2O3, BeO, CaF2, ZnSe, MgF2, LiF, MgF2, and MgO. In the present application, two kinds of materials with different refractive indexes are overlapped to form a Bragg mirror, and reflected light will have a very obvious variation of peaks and valleys, so that a reflectivity index of the laminated structure is as high as 99% or more, and the display quality is improved.
In some embodiments, in order to avoid an influence of a manufacturing process caused by an excessive thickness of film layer, a thickness of the laminated structure 311 can be less than 1000 nm, the number of layers can range from 1 to 20, the first sub layer 3111 and the second sub layer 3112 are alternately arranged, and a thicknesses of the first sub layer 3111 and the second sub layer 3112 can be the same. In some embodiments, the thickness of the first sub layer 3111 can range from 50 nm to 250 nm, and the second sub layer 3112 can range from 50 nm to 250 nm, and each layer has a thickness of one quarter of a blue light wavelength, which can improve the reflectance index of the blue light.
Referring to
Referring to
It should be noted that the refractive index difference between the first sub layer 3111 and the second sub layer 3112 is larger, the reflection bandwidth of the Bragg mirror is wider, and the number of layers is less, on the contrary, the refractive index difference between the first sub layer and the second sub layer is less, the reflection bandwidth of the Bragg mirror is narrower, and the number of layers is larger, so according to the refractive index difference between the first sub layer 3111 and the second sub layer 3112, a reasonable number of layers is set, that does not affect the manufacturing process of the display panel, and can obtain the highest reflection effect.
In prior art, the anode layer is a structure of a silver layer sandwiched between two indium tin oxide layers(ITO/Ag/ITO), the reflective index is more than 90%, but silver has a strong absorption in blue light band to reduce the reflective index of blue light, and silver material costs are higher. In the present application, two kinds of materials with different refractive indexes are overlapped to form a Bragg mirror, and reflected light will have a very obvious variation of peaks and valleys, so that a reflectivity index of the laminated structure is as high as 99% or more, so that the absorption of light in different wavelength bands is very low, thereby improving the refractive index, improving display quality of the display panel, and reducing costs.
A manufacturing method of the display panel 10 includes:
501, a substrate 100 is provided.
A buffer layer 110 is deposited on the substrate 100.
502, a thin film transistor layer 200 is formed on the substrate 100.
The thin film transistor layer 200 includes a first gate electrode 211, a second gate electrode 212, a source electrode 221, and a drain electrode 222.
503, a light emitting layer 300 is formed on the thin film transistor layer 200.
The light emitting layer 300 successively laminated and formed on the thin film transistor layer 200, an anode layer anode layer 310, a light emitting portion 320, and a cathode layer 330 of the thin film transistor layer 200.
In some embodiments, the laminated structure 311 can be deposited by chemical vapor deposition to form a film, the anode layer 310 can be etched to a patterned anode by an etching solution containing phosphoric acid, nitric acid, acetic acid, and deionized water, or by a dry etching process.
The step of forming a light emitting layer 300 on the thin film transistor layer 200 includes:
5031, the anode layer 310 is formed on the thin film transistor layer 200, the anode layer 310 includes a laminated structure 311 and an electrode layer 312, the laminated structure 311 is formed on the thin film transistor layer 200, the laminated structure 311 includes at least one first sub layer 3111 and at least one second sub layer 3112, the first sub layer 3111 and the second sub layer 3112 are alternant formed on the thin film transistor layer 200, the electrode layer 312 is formed on the laminated structure 311, and the electrode layer 312 is electrically connected to the thin film transistor layer 200.
5032, a light emitting portion 320 is formed on the anode layer 310.
5033, an anode layer 310 is formed on the light emitting portion 320.
A thin film encapsulation (TFE) 400 is formed on the anode layer 310, the thin film encapsulation 400 is an inorganic layer-organic layer-inorganic layer cross-stacked film layer, which can effectively prevent the infiltration of moisture and oxygen, and ensure the normal use of the display device.
In the above, various other changes and modifications can be made by those skilled in the art in accordance with the technical solutions and technical concept of the present application, and all such changes and modifications are subject to the protection scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
201910719568.1 | Aug 2019 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2019/101678 | 8/21/2019 | WO | 00 |