This application claims priority to Korean Patent Application No. 2010-19732 filed on Mar. 5, 2010, the contents of which are herein incorporated by reference in its entirety.
1. Technical Field
Embodiments of the present invention relate to a display panel including a bead spacer and a method of manufacturing the display panel.
2. Discussion of the Related Art
In general, a liquid crystal display includes a liquid crystal display panel including a first substrate, a second substrate, and a liquid crystal layer interposed between the first and second substrates.
The liquid crystal display displays an image using the liquid crystal layer in which liquid crystal molecules are arranged in response to voltages applied to the first and second substrates. However, a nonuniform cell gap between the first and second substrates causes variations in thickness of the liquid crystal layer, thereby distorting the image.
To maintain the uniform cell gap, a spacer is disposed between the first and second substrates. The spacer may be classified as a column spacer and a bead spacer. When the bead spacer is applied to the liquid crystal display, there are situations where the uniform cell gap is not maintained because the bead spacer is difficult to form at a desired position.
Exemplary embodiments of the present invention provide a display panel including a bead spacer, and a method of manufacturing the display panel.
According to an exemplary embodiment, a method of manufacturing a display panel including a pixel formed on either a first substrate or a second substrate facing the first substrate to display an image is provided as follows. When an electrode is formed on the first substrate, a portion of the electrode is removed to form a spacer area. Then, a droplet including a bead spacer mixed with a solvent is provided to the spacer area, and the solvent is vaporized to move the bead spacer to a central portion of the spacer area. The second substrate is provided to face the first substrate while disposing the bead spacer between the first substrate and the second substrate. The spacer area has a dimension equal to or greater than a diameter of the droplet.
According to an exemplary embodiment, a method of manufacturing a display panel including a pixel formed on either a first substrate or a second substrate facing the first substrate to display an image is provided as follows. A light blocking material is provided on the first substrate, and the light blocking material is patterned to form a black matrix through which openings are formed in a matrix configuration. Then, a droplet including a bead spacer mixed with a solvent is provided at least above an area where the black matrix is formed, and the solvent is vaporized to move the bead spacer to above the area where the black matrix is formed. The second substrate is provided to face the first substrate while disposing the bead spacer between the first substrate and the second substrate. An end portion of the black matrix that defines the openings has a tapered shape.
According to an exemplary embodiment, a display panel, including a bead spacer provided from a droplet including the bead spacer mixed with a solvent, includes a first substrate including an electrode having a spacer area, a second substrate facing the first substrate while interposing the bead spacer in the spacer area between the first substrate and the second substrate, and a plurality of pixels disposed on either the first substrate or the second substrate. The spacer area has a dimension equal to or greater than a diameter of the droplet.
According to an exemplary embodiment, a display panel includes a first substrate including a black matrix through which a plurality of openings are formed, a second substrate facing the first substrate, and a plurality of pixels disposed on either the first substrate or the second substrate. An end portion of the black matrix that defines the openings has a tapered shape.
When the droplet is sprayed to a desired position by using an inkjet process and the solvent in the droplet is vaporized, the bead spacer may be easily gathered on the area where the droplet is sprayed. Accordingly, the cell gap between the first and second substrates may maintain a uniform distance, thereby improving display properties of the display panel.
The embodiments of the present invention will become readily apparent by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:
It will be understood that when an element or layer is referred to as being “on”, “connected to” or “coupled to” another element or layer, it can be directly on, connected or coupled to the other element or layer or intervening elements or layers may be present. Like numbers may refer to like elements throughout the drawings and the specification.
Referring to
The display panel 110 includes a first substrate 120, a second substrate 130 facing the first substrate 120, and a liquid crystal layer (not shown) disposed between the first and second substrates 120 and 130.
The printed circuit board 140 is connected with the display panel 110 by a plurality of tape carrier packages 150, and driving chips 151 are mounted on the tape carrier packages 150, respectively.
Each of the driving chips 151 may include a data driver therein to provide a data signal to the display panel 110. In this case, a gate driver (not shown) that provides a gate signal to the display panel 110 may be directly formed on the display panel 110 through a thin film process. In addition, the driving chips 151 may be mounted on the display panel 110 in a chip-on-glass manner, so that the driving chips 151 may be integrated in a single chip.
Referring to
According to an exemplary embodiment, the pixels have the same structure and function and for purposes of brevity, two pixels adjacent to each other, and gate and data lines associated with the two pixels have been shown in
The gate line GL and the data line DL cross each other and are insulated from each other on the first base substrate 121 of the first substrate 120. The gate line GL extends in a first direction D1 and the data line DL extends in a second direction D2 substantially perpendicular to the first direction D1. An insulating layer 122 is disposed between the gate line GL and the data line DL.
The thin film transistor TFT includes a gate electrode GE, a source electrode SE, and a drain electrode DE and is electrically connected to the gate line GL and the data line DL. In detail, the gate electrode GE is branched from the gate line GL, the source electrode SE is branched from the data line DL, and the drain electrode DE is disposed apart from the source electrode SE and connected to the pixel electrode PE through a contact hole CH.
A spacer area SA, in which a droplet including bead spacers BS and a solvent (not shown) is formed is defined between two pixel electrodes PE adjacent to each other. The spacer area SA may have various shapes, such as, for example, a circular shape, a square shape, a rectangular shape, a polygonal shape, etc. When the spacer area SA is provided in the circular shape, the spacer area SA has a diameter equal to or greater than a diameter of the droplet. In addition, when the spacer area SA is provided in the square shape, the spacer area SA has a side length equal to or greater than the diameter of the droplet.
Hereinafter, the term “dimension” will be used to indicate the diameter or one side length of the spacer area SA. For instance, when the spacer area SA has the rectangular shape, an expression that the dimension of the spacer area SA is equal to or greater than the diameter of the droplet means that a short side of the rectangular shape is equal to or greater than the diameter of spacer area SA. In other words, the spacer area SA may have a size sufficient to receive the droplet therein.
The bead spacers BS are positioned in the spacer area SA to maintain the cell gap of the liquid crystal layer (not shown) disposed between the first and second substrates 120 and 130. In general, when the bead spacer BS is disposed on the pixel electrode PE, the pixel electrode PE may be damaged when the bead spacer BS is overloaded. Therefore, when the bead spacer BS is positioned in the spacer area SA rather than on the pixel electrode PE, the pixel electrode PE may be prevented from being damaged, thereby preventing defects of the pixels.
According to an exemplary embodiment, nine bead spacers may be included in one spacer area SA as shown in
The first thin film transistor 120a may be covered by a passivation layer 123. In addition, an organic insulating layer 124 may be further formed on the passivation layer 123.
The passivation layer 123 and the organic insulating layer 124 have the contact hole CH formed therethrough, so that the drain electrode DE of the thin film transistor TFT is exposed through the contact hole CH. The pixel electrode PE is formed on the organic insulating layer 124 and electrically connected to the drain electrode DE through the contact hole CH.
In
Referring to
The color filters have the same structure and function except for colors thereof, and thus, for purposes of brevity, two color filters adjacent to each other and a surrounding area have been shown in
The second base substrate 131 of the second substrate 130 may include a transparent insulative material, such as glass, and a black matrix BM including a light blocking material is disposed on the second base substrate 131 in a matrix configuration to prevent light leakage in a non-display area. The non-display area corresponds to an area between adjacent pixel electrodes of the first base substrate 121.
Red, green, and blue color filters CFR, CFG, and CFB are disposed on the second base substrate 131 to correspond to a display area. The display area indicates an area corresponding to the pixel electrode PE of the first base substrate 121.
The red, green, and blue color filters CFR, CFG, and CFB have red, green, and blue color pixels R, G, and B, respectively, and selectively transmit light having a specific wavelength. In addition, the color filters CFR, CFG, and CFB may be formed such that their end portions overlap the black matrix BM.
The leveling layer 132 may be disposed on the color filters CFR, CFG, and CFB and the black matrix BM to planarize the surface of the second base substrate 131 on which the color filters CFR, CFG, and CFB and the black matrix BM are formed. To this end, the leveling layer 132 has a predetermined thickness and reduces the step difference between the black matrix BM and the color filters CFR, CFG, and CFB.
The common electrode CE is formed on the leveling layer to have a uniform thickness. The common electrode CE may include a transparent conductive material, such as indium tin oxide or indium zinc oxide, and face the pixel electrode PE to form an electric field.
The common electrode CE includes a spacer area SA in which the droplet (not shown) including the bead spacers BS and the solvent is formed. The spacer area SA has a dimension equal to or greater than a diameter of the droplet. The bead spacers BS are arranged in the spacer area SA to maintain the cell gap of the liquid crystal layer (not shown) disposed between the first and second substrates 120 and 130.
As shown in
Referring to
The black matrix BM including a light blocking material is disposed between the adjacent pixels PE. The black matrix BM is disposed on the organic insulating layer 124 and absorbs or reflects light from an external source, thereby preventing the light from leaking between the two adjacent pixel electrodes PE.
In addition, the black matrix BM has a tapered portion TP at its end portion of which an upper surface is tapered toward the first substrate 120. That is, a distance between the upper surface of the black matrix BM and the upper surface of the first substrate 120 gradually decreases toward the end portion of the black matrix BM. In other words, as the black matrix BM is closer to a pixel electrode adjacent thereto, the upper surface of the black matrix BM becomes closer to the surface of the first substrate 120. The above-described shape of the end portion of the black matrix BM will be referred to as a “tapered shape” and the portion having the tapered shape will be referred to as the “tapered portion TP”. According to an exemplary embodiment, an angle between the upper surface of the end portion of the black matrix BM and a surface of the first substrate 120 is equal to or greater than 35 degrees and smaller than 90 degrees.
Due to the tapered portion TP, the bead spacers BS may be easily gathered on the black matrix BM. Accordingly, the bead spacers BS may be stably disposed on the black matrix BM and maintained on the black matrix BM by the tapered portion TP, thereby maintaining the cell gap of the liquid crystal layer (not shown) between the first and second substrates 120 and 130.
Referring to
The step differences in the color filters CFR, CFG, and CFB, the leveling layer 132, and the common electrode CE have been exaggerated for purposes of explanation.
The black matrix BM including a light blocking material is disposed on the second base substrate 131 of the second substrate 130 in a matrix configuration to prevent light leakage in a non-display area. The black matrix BM has a tapered portion TP at its end portion of which an upper surface is tapered toward the second substrate 130. According to an exemplary embodiment, an angle between the upper surface of the end portion of the black matrix BM and a surface of the second substrate 130 is equal to or greater than 20 degrees and smaller than 90 degrees.
The color filters CFR, CFG, and CFB are disposed on the second base substrate 131. Due to the tapered portion TP of the black matrix BM, the step difference between color filters CFR, CFG, and CFB disposed on the substrate 131 and on the tapered portion TP may be reduced.
The leveling layer 132 may be disposed on the color filters CFR, CFG, and CFB and the black matrix BM. The step differences occur in the leveling layer 132 due to the step differences in the color filters CFR, CFG, and CFB, and the step differences in the leveling layer 132 may be reduced by the tapered portion TP of the black matrix BM.
The common electrode CE is disposed on the leveling layer 132. The common electrode CE faces the pixel electrode PE to form an electric field.
The step differences in the common electrode CE corresponding to the end portions of the black matrix BM may be reduced by the tapered portion TP, so that the bead spacers BS may be easily gathered on the common electrode CE disposed on the black matrix BM. Thus, the bead spacers BS may be positioned on the common electrode CE corresponding to the black matrix BM, to thereby uniformly maintain the cell gap of the liquid crystal layer (not shown) disposed between the first substrate 120 and the second substrate 130.
As shown in
The black matrix BM, the color filters CFR, CFG, and CFB, the leveling layer 132, and the common electrode CE are formed on the second base substrate 131.
Then, the droplet LD including the bead spacers BS and the solvent Sol is positioned in the spacer area SA as shown in
Thereafter, when the solvent Sol is dried by baking the droplet LD, the bead spacers BS are gathered to a center of the spacer area SA and attached to the second substrate 130.
As shown in
In
The black matrix BM having the tapered portion TP at its end portion, the color filters CFR, CFG, and CFB, the leveling layer 132, and the common electrode CE are formed on the second base substrate 131. In
Then, the droplet LD including the bead spacers BS and the solvent Sol is positioned on the common electrode CE over at least the black matrix BM.
Next, when the solvent Sol is dried as shown in
As shown in
In
Referring to
A mask 160 is disposed above the photoresist layer PR to pattern the photoresist layer PR. The mask 160 includes a first area A1 in which an opening pattern is formed to expose the photoresist layer PR to light, a second area A2 in which a slit pattern is formed to partially expose the photoresist layer PR to the light, and a third area A3 in which no pattern is formed to block the light traveling to the photoresist layer PR.
In
Then, when the photoresist layer PR is exposed and developed after disposing the mask 160 above the photoresist layer PR, the black matrix BM is formed on the second base substrate 131 corresponding to the first and second areas A1 and A2. Specifically, the tapered portion TP of the black matrix BM is formed corresponding to the second area A2, and the second base substrate 131 is exposed since the photoresist layer PR corresponding to the third area A3 is removed from the second base substrate 131.
According to an exemplary embodiment, the black matrix BM includes an organic material, such as carbon, but the present invention should not be limited thereto. For example, according to an embodiment, the black matrix BM may be formed of a metal material, such as chromium (Cr), chromium oxide (Cr2O3).
Referring to
A mask 160 used to pattern the photoresist layer PR includes two areas. In detail, the mask 160 includes a first area A1 in which an opening pattern is formed to expose the photoresist layer PR to light and a second area A2 in which no pattern is formed to block the light traveling to the photoresist layer PR.
Then, when the photoresist layer PR is exposed and developed after disposing the mask 160 above the photoresist layer PR, the black matrix BM is formed on the second base substrate 131 corresponding to the first area A1 and the second base substrate 131 is exposed since the photoresist layer PR corresponding to the second area A2 is removed from the second base substrate 131.
Next, an ashing process is performed on the black matrix BM using an ultraviolet ray, and thus the tapered portion TP is formed at the end portion of the black matrix BM. According to an exemplary embodiment, the black matrix BM may be ashed by using plasma.
Although the exemplary embodiments of the present invention have been described, it is understood that the present invention should not be limited to these exemplary embodiments but various changes and modifications can be made by one ordinary skilled in the art within the spirit and scope of the present invention as hereinafter claimed.
Number | Date | Country | Kind |
---|---|---|---|
10-2010-0019732 | Mar 2010 | KR | national |