1. Field of the Invention
The present invention relates to a display panel driving apparatus for display panel, such as plasma display panel, organic EL panel, field emission panel, etc.
2. Related Art
In U.S. Pat. No. 6,323,829 B1 (the disclosure of which is incorporated by reference in their entirety.), a display panel driving apparatus using a charge recovery type driving circuit is disclosed as a driving circuit for a plasma display panel. This charge recovery type driving circuit includes a plurality of switches. By turning on/off these switches at predetermined timing, predetermined pulses are generated (for example, see “Description of the Related Art” in U.S. Pat. No. 6,323,829 B1).
In the apparatus described in U.S. Pat. No. 6,323,829 B1, however, on/off control signals for the switches in the driving circuit are generated by a control section, and the control signals are supplied directly to a board for the driving circuit via a cable or the like. Therefore, the number of transmission lines becomes large, and there is a fear of occurrence of skew (timing deviation) on the transmission line. Furthermore, there is a fear that a control signal indicating an erroneous on/off state will be supplied to the driving circuit due to, for example, noise which comes from the outside and mixed with the signal on the transmission line.
The present invention has been achieved in order to solve the problems. An object of the present invention is to provide a display panel apparatus capable of reducing the number of transmission lines.
According to one aspect of the present invention, a display panel driving apparatus includes a display control section for controlling display on a display panel, a drive section for driving the display panel on the basis of a signal supplied from the display control section, and a data transfer device for transferring data between the display control section and the drive section, and the drive section includes a control signal conversion section for decoding signals supplied from the display control section and generating drive pulse generation control signals.
According to another aspect of the present invention, a display panel driving apparatus includes a display control section including a storage section for storing address data, a read section for reading address data stored in the storage section, and a shift clock generation section for generating a shift clock; a drive section including a shift register for sequentially storing the address data according to the shift clock, a latch enable generation section for generating a latch enable, and a driving circuit for driving a display panel with the address data stored in the shift register on the basis of the latch enable; and a data transfer device for transferring data between the display control section and the drive section, and the shift clock generation section generates the shift clock only during a period in which address data is being read from the storage section, and the latch enable generation section generates the latch enable on the basis of the shift clock.
First Embodiment
Hereafter, a first embodiment of a display panel driving apparatus according to the present invention will be described with reference to
As shown in
As shown in
The drive section 100B includes a decoder section 7 for decoding various control data transferred via the transmission lines L, an addressing driver section 40 including a shift register 41 for storing address data corresponding to one line, a latch circuit 42 for latching address data corresponding to one line when the address data corresponding to one line has been stored, and an addressing driver 43 for generating data pulses corresponding to one line to be generated in response to the address data corresponding to one line and applying the data pulses simultaneously to column electrodes Z1 to Zm of a plasma display panel 30, a latch enable generation section 16 for generating a latch enable on the basis of a shift clock, an address resonance power supply circuit 17 for outputting drive pulses toward the addressing driver 43, a sustaining driver 19 for simultaneously applying Y sustaining pulses to sustaining electrodes Y1 to Yn of the plasma display panel 30, a scan driver 20 for applying scan pulses sequentially to the sustaining electrodes Y1 to Yn, a sustaining driver 21 for simultaneously applying X sustaining pulses to sustaining electrodes X1 to Xn of the plasma display panel 30, a reset pulse generation circuit 20A and a reset pulse generation circuit 21A for generating a reset pulse, and a drive control section 22 for controlling the sustaining driver 19, the scan driver 20, the sustaining driver 21.
As shown in
A common clock output from the control section 5 and transferred via the transmission lines L is input to the decoder 71 and the decoder 72. Another common clock output from the control section 5 and transferred via the transmission lines L is input to the decoders 73 to 75.
As shown in
As shown in
Next, operation of the display panel driving apparatus 100 will be described.
One field functioned as a period for driving the plasma display panel 30 includes a plurality of subfields SF1 to SFN. As shown in
In the addressing period of each subfield shown in
When the address scan is thus completed, every cell in the subfield is set to either a lit cell or a put-out cell. In the subsequent sustaining period, only the lit cells repeat light emission every time a sustaining pulse is applied. In the sustaining period, an X sustaining pulse and a Y sustaining pulse are repetitively applied respectively to the row electrodes X1 to Xn and the row electrodes Y1 to Yn at predetermined timing as shown in
Signal processing for various control data and the clock used to drive the plasma display panel 30 will now be described.
As shown in
On the other hand, the latch enable generation section 16 generates a latch enable on the basis of the shift clock output from the AND circuit 6, and outputs it toward the latch circuit 42.
In the present embodiment, a signal HA is output from the read control section 3 only while the address data is being read out from the frame memory 1. Since the signal HA and the clock output from the control section 5 are input to the AND circuit 6, the clock is passed only during a period in which the signal HA is output (the signal HA is “H”) and output as the shift clock, as shown in
The pulse generation control data output from the control section 5 is data for controlling on/off of a switching element provided in an address resonance power supply circuit 17 (
On the other hand, the scan driver control data, the sustaining driver control data and other pulse generation control data, which are output from the control section 5, are input to the decoder 73, the decoder 74 and the decoder 75, respectively, as shown in
Concrete processing of the decoding in the decoder section 7 will be further described later.
The drive control section 22 generates a signal for turning on/off switching elements provided in the scan driver 20 on the basis of the scan driver control data, generates a signal for turning on/off switching elements provided in the sustaining drivers 19 and 21 on the basis of the sustaining driver control data, and generates a signal for turning on/off switching elements that generate a reset pulse, an erase pulse, and so on, on the basis of other pulse generation control data.
A concrete example of the address resonance power supply circuit 17 and the addressing driver 43 will now be described with reference to
The address resonance power supply circuit 17 shown in
As shown in
Hereafter, the operation conducted by the address resonance power supply circuit 17 and the addressing driver 43 in the addressing period will be described with reference to
As shown in
At this time, pixel data bits DB corresponding to predetermined column electrodes Z1 to Zm are input to the switching elements SWZ1 to SWZm and SWZ10 to SWZm0 in the addressing driver 43 according to timing of potential rising on the power supply line Z.
A concrete example of the sustaining drivers 19 and 21 and the scan driver 20 will now be described with reference to
The sustaining driver 21 includes a DC power supply B1 for generating a DC voltage VS, switching elements S1 to S4, coils L1 and L2, diodes D1 and D2, and a capacitor C1. When the switching element S1 is in the on-state, a potential on a first end of the capacitor C1 is applied to a row electrode Xi via the coil L1 and the diode D1. When the switching element S2 is in the on-state, the potential on the row electrode Xi is applied to the first end of the capacitor C1 via the coil L2 and the diode D2. When the switching element S3 is in the on-state, the voltage VS generated by the DC power supply B1 is applied to the row electrode Xi. When the switching element S4 is in the on-state, then the row electrode Xi is grounded.
The switching elements S1 to S4 in the sustaining driver 21 are controlled to turn on/off on the basis respectively of data SW1 to SW4 obtained by decoding the sustaining driver control data output from the control section 5 and transferred thereto.
The reset pulse generation circuit 21A includes a DC power supply B2 for generating a DC voltage VRx, a switching element S7, and a resistor R1. The positive side terminal of the DC power supply B2 is grounded, and the negative side terminal thereof is connected to the switching element S7. When the switching element S7 is in the on-state, a voltage −VR, which is the negative side terminal voltage of the DC power supply B2, is applied to the row electrode Xi via the resistor R1.
The switching element S7 in the reset pulse generation circuit 21A is controlled to turn on/off on the basis of data SW7 obtained by decoding the other pulse generation control data output from the control section 5 and transferred thereto.
The sustaining driver 19 includes a DC power supply B3 for generating a DC voltage VS, switching elements S11 to S14, coils L3 and L4, diodes D3 and D4, and a capacitor C2. When the switching element S11 is in the on-state, a potential on a first end of the capacitor C2 is applied onto a line 31 via the coil L3 and the diode D3. When the switching element S12 is in the on-state, then the potential on the line 31 is applied to the first end of the capacitor C2 via the coil L4 and the diode D4. When the switching element S13 is in the on-state, the voltage VS generated by the DC power supply B3 is applied to the line 31. When the switching element S14 is in the on-state, the line 31 is grounded.
The switching elements S11 to S14 in the sustaining driver 19 are controlled to turn on/off on the basis respectively of data SW11 to SW14 obtained by decoding the sustaining driver control data output from the control section 5 and transferred thereto.
The reset pulse generation circuit 20A includes a DC power supply B4 for generating a DC voltage VRy (where |VRy|<|VRx|), switching elements S15 and S16, and a resistor R2. The positive side terminal of the DC power supply B4 is grounded, and the negative side terminal thereof is connected to the switching element S16. When the switching element S16 is in the on-state, the voltage VRy, which is the positive side terminal voltage of the DC power supply B4, is applied onto a line 32. When the switching element S15 is in the on-state, the line 31 is connected to the line 32.
The switching elements S15 and S16 in the reset pulse generation circuit 20A are controlled to turn on/off on the basis respectively of data SW15 and SW16 obtained by decoding the other pulse generation control data output from the control section 5 and transferred thereto.
The scan driver 20 is provided for each of the row electrodes Y1 to Yn. The scan driver 20 includes a DC power supply B5 for generating a DC voltage Vh, switching elements S21 and S22, and diodes D5 and D6. When the switching element S21 is in the on-state, a positive side terminal of the DC power supply B5, the row electrode Yi, and a cathode end of the diode D6 are connected together. When the switching element S22 is in the on-state, then a negative side terminal of the DC power supply B5, the row electrode Yi, and an anode end of the diode D5 are connected together.
The switching elements S21 and S22 in the scan driver 20 are controlled to turn on/off on the basis respectively of data SW21 and SW22 obtained by decoding the scan pulse control data output from the control section 5 and transferred thereto.
As shown in
In an addressing period Wc, the addressing driver 43 applies a pixel data pulse group for each row sequentially to the column electrodes Z1 to Zm. The pixel data pulse group corresponds to the bit sequence of the pixel data bit DB. At this time, the scan driver 20 generates a scan pulse SP at the same timing as that of application of the pixel data pulse group, and applies the scan pulse SP sequentially to the row electrodes Y1 to Yn. At this time, only when the scan pulse SP is applied to one row electrode and the pixel data pulse of high voltage is applied to the address electrode, discharge (selective erased discharge) is caused in the cell between the row electrode and the address electrode and the wall charge remaining in the cell is erased, the cell being changed to a put-out cell. The wall discharge remains in other cells, and those cells remain to be lit cells. Thus, in the addressing period Wc, all cells are set to lit cells or put-out cells according to the address data.
In the sustaining period Ic, the sustaining drivers 21 and 19 alternately apply sustaining pulses IPX and IPY each having pulse amplitude Vs to the row electrodes X1 to Xn and Y1 to Yn. At this time, only lit cells having remaining wall charge repetitively emit light in the addressing period.
In a final subfield (a subfield SF14 in
Detailed description of
In the present embodiment, various control data output from the control section 5 are decoded in the decoder section 7 as described above. Each of the decoders in the decoder section 7 executes decoding by using a look-up table (LUT).
As shown in
As for the combination of the states (on/off) of the switching elements S1P to S3P, 23=8 combinations are conceivable. In the present embodiment, however, the states of the switching elements S1P to S3P are determined by referring to the look-up table. Therefore, combinations other than the above-described four combinations are inhibited. Therefore, occurrence of an abnormal combination in on/off states of the switching elements (for example, a state in which the switching element S1P and the switching element S3P are simultaneously in the off-state) can be prevented, and the role of a protection function can be played.
As shown in
As for the state combination for controlling the switching elements in the addressing driver 43, combinations other than the above-described four kinds are also conceivable. In the present embodiment, however, the states of the switching elements are determined by referring to the look-up table. Therefore, other combinations are inhibited.
As shown in
As for the combination of the states (on/off) of the switching elements S1 to S4, 24=16 combinations are conceivable. In the present embodiment, however, the states of the switching elements S1 to S4 are determined by referring to the look-up table. Therefore, combinations other than the above-described four combinations are inhibited.
In the display panel driving apparatus 100 in the first embodiment, the encoded data are transferred and the data are decoded in the drive section 100B, as heretofore described. Unlike the case where data indicating on/off states of respective switching elements are transferred respectively, therefore, it is sufficient to represent only actually executed combinations of on/off states of switching elements, and consequently the amount of transferred data can be reduced. As a result, the number of transmission lines can be reduced. Furthermore, since output timing of data after decoding can be aligned, a skew occurrence can be suppressed efficiently. In addition, since data indicating an abnormal state can be prevented from being output in decoding, false operation due to noise mixed on the transmission line from the outside can be prevented.
Furthermore, in the panel drive apparatus 100 in the first embodiment, the shift clock is generated only during a period in which address data is being read. Therefore, the data in the shift register 41 is not updated during a period in which the address data is not being read, and data latched by noise after the latch enable becomes the same as the normal data. Even if address data is latched at false timing by noise, normal address data can be supplied to the plasma display panel 30. The latch enable generation section 16 generates the latch enable on the basis of the shift clock supplied to shift register 41. As a result, the generation timing of the latch enable can be certainly synchronized to the shift operation. In addition, since it is not necessary to separately generate a clock that prescribes timing for generating the latch enable and transmit the clock, the number of transmission lines can be reduced.
In the description of the first embodiment and Claims annexed hereto, the frame memory 1 corresponds to “storage section,” and the read control section 3 corresponds to “read section.” The control section 5 corresponds to “shift clock generation section,” and the AND circuit 6 corresponds to “shift clock generation section.” The decoder section 7 corresponds to “control signal conversion section,” and the sustaining drivers 19 and 21 correspond to “drive pulse generation circuit.” The scan driver 20 corresponds to “drive pulse generation circuit,” and the reset pulse generation circuits 20A and 21A correspond to “drive pulse generation circuit.” The drive control section 22 corresponds to “drive pulse generation circuit,” and the plasma display panel 30 corresponds to “display panel.” The addressing driver section 40 corresponds to “drive section” and “drive pulse generation circuit,” and the addressing driver 43 corresponds to “driving circuit.” The transmission lines L correspond to “data transfer device.”
Second Embodiment
Hereafter, a second embodiment of a display panel driving apparatus according to the present invention will be described with reference to
In the display panel driving apparatus 200 in the second embodiment, a system (differential serial transmission system) using LVDS (Low Voltage Differential Signaling) is used for transmission of the address data and the shift clock from a display control section 200A to a drive section 200B.
The transmission system using LVDS is a system that drives two signal lines symmetrically with opposite phases and transmits a difference between signals on the two signal lines. Therefore, the system has a feature that noises mixed from the outside can cancel each other out and the signal is not susceptible to the noises. As shown in
As shown in
The address data and the shift clock input to the serializer 8 correspond to the address data and the shift clock (
The de-serializer 9 includes a reception section 91 for receiving the differential serial signal transferred via the transmission line L1, a PLL section 92 for receiving a transfer clock transferred via the transmission line L1 and generating a clock, a serial-to-parallel conversion section 93 for converting a serial signal output from the reception section 91 to parallel data on the basis of a clock that is supplied from the PLL section 92 and that is n times in frequency the transfer clock, and an output latch section 94 for latching the parallel data output from the serial-to-parallel conversion section 93 on the basis of the clock supplied from the PLL section 92. The transfer clock and the clock supplied to the output latch section 94 have the same frequency as that of the clock input to the PLL section 81.
Address data shift operation and latch enable generation operation similar to those in the first embodiment are executed on the basis of the address data and the shift clock output from the output latch section 94.
In other words, the address data read out from the frame memory 1 are sequentially written into the shift register 41 (
As regards the transmission and processing of various control data and clocks output from the control section 5 (
In the display panel driving apparatus 200 in the second embodiment, the address data and the shift clock are converted to a series of serial data by the serializer 8, and transferred out. So to speak, the address data and the shift clock are simultaneously converted to data and both of them are transferred in a batch. Therefore, the number of transmission lines can be reduced, and a skew can be prevented from occurring between the address data and the shift clock. In addition, since the differential serial transmission system is adopted, mixture of noise on the transmission line L from the outside can be suppressed efficiently. Therefore, the false operation caused by noise can be suppressed efficiently.
Furthermore, in the display panel driving apparatus 200 in the second embodiment, the shift clock is generated only during a period in which address data is being read from the frame memory 1. Therefore, the data in the shift register 41 is not updated during a period in which the address data is not being read, and data latched by noise after the latch enable becomes the same as the normal data. Even if address data is latched at false timing by noise, normal address data can be supplied to the plasma display panel 30. The latch enable generation section 16 generates the latch enable on the basis of the shift clock supplied to shift register 41. As a result, the generation timing of the latch enable can be certainly synchronized to the shift operation. In addition, since it is not necessary to separately generate a clock that prescribes timing for generating the latch enable and transmit the clock, the number of transmission lines can be reduced.
In the description of the second embodiment and Claims annexed hereto, the parallel-to-serial conversion section 83 corresponds to “parallel-to-serial converter” and “data transfer device,” and the transmission output section 84 corresponds to “transmission section” and “data transfer device.” The serial-to-parallel conversion section 93 corresponds to “serial-to-parallel converter” and “data transfer device,” and the transmission line L1 corresponds to “data transfer device.”
In the above-described first and second embodiments, a plasma display panel is exemplified as the display panel. However, the present invention can be applied to various panels, such as liquid crystal display panels and EL display panels, as the display panels.
Further, it should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. Thus, it is intended that the following claims define the scope of the invention and that structures within the scope of these claims and their equivalents be covered thereby.
The entire disclosure of Japanese Patent Application No. 2003-40527 filed on Feb. 19, 2003 including the specification, claims, drawings and summary is incorporated herein by reference in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
P2003-040527 | Feb 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5329275 | Solomon | Jul 1994 | A |
5784037 | Inoue | Jul 1998 | A |
6323829 | Hosoi et al. | Nov 2001 | B1 |
6452590 | Awamoto et al. | Sep 2002 | B1 |
Number | Date | Country |
---|---|---|
0 895 217 | Feb 1999 | EP |
11-052910 | Feb 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20040160391 A1 | Aug 2004 | US |