1. Field of the Invention
The present invention relates to a display panel driving device that drives a display panel.
2. Description of Related Art
A liquid crystal display device includes a liquid crystal display panel. The liquid crystal display panel has a plurality of scan lines and a plurality of signal lines. The signal lines cross each of the scan lines. The liquid crystal display panel also has pixel units, which are formed at portions where the scan lines and signal lines cross each other. The liquid crystal display device also includes a display panel driving device. The driving device has a scan line driver, which supplies a selection signal to each of the scan lines, and a signal line driver, which supplies a pixel data signal to each of the signal lines.
The signal line driver is divided into a plurality of driver ICs (Integrated Circuits) (see FIG. 2 of Japanese Patent Application (Kokai) Publication No. 10-153760, for example). Each driver IC includes a semiconductor IC. The driver ICs are connected in cascade by a power line and a passage line (10). The power line extends along the driver ICs, and is connected to the passage line (10). The passage line (10) connects each two adjacent driver ICs. A clock line (CLK) is included in the passage line (10). The passage line (10) passes through the drivers IC, and is used to transmit a pixel data signal, a clock signal, and various control signals. Each driver IC (see FIG. 3 of Japanese Patent Application (Kokai) Publication No. 10-153760, for example) accepts a pixel data signal in synchronization with a clock signal supplied via the clock line (CLK) and a buffer (4). The driver IC then supplies the pixel data signal to a control logic CT. The control logic CT supplies to the signal lines of the liquid crystal panel a driving voltage corresponding to the pixel data signal.
Each driver IC receives the clock signal via the buffer (4) and sends the clock signal to a subsequent driver IC through another buffer (8) and the clock line (CLK). In this “subsequent driver IC,” the clock signal is supplied from the preceding driver IC via the clock line (CLK) and the buffer (4). This clock signal is then supplied to a next driver IC via the buffer (8) and the clock line (CLK).
As described above, a plurality of driver ICs are connected in cascade, and a clock signal is therefore transmitted through each driver IC. As a result, the duty ratio of the clock signal gradually changes. Therefore, the duty ratio of the clock signal in one driver IC could be different from the duty ratio of the clock signal in another downstream driver IC.
In order for the clock signal to be transmitted to the subsequent driver IC with the clock signal duty ratio kept at a constant level, a duty cycle regulator is provided in each driver IC (see FIG. 3 of Japanese Patent Application Publication No. 10-153760). The following duty cycle regulators have been proposed: a duty cycle regulator that uses a PLL (Phase-Locked Loop) circuit (see FIG. 4 of Japanese Patent Application Publication No. 10-153760); and a duty cycle regulator that uses a DLL (Delay Locked Loop) circuit (see FIG. 7 of Japanese Patent Application Publication No. 10-153760). If a duty cycle regulator is equipped with the PLL or DLL circuit in each driver IC, a clock signal supplied from a preceding driver IC undergoes a waveform shaping process in that driver IC and then transmitted to a next driver IC. Therefore, in all the driver ICs, the duty ratio of the clock signal remains unchanged at a constant level.
However, the PLL and DLL circuits are large in size, resulting in an increase in power consumption as well as in manufacturing costs.
An object of the present invention is to provide a display panel driving device which supplies a clock signal through a plurality of driver chips connected in cascade, with a duty ratio of the clock signal being kept stable and without leading to an increase in power consumption as well as in manufacturing costs.
According to one aspect of the present invention, there is provided a display panel driving device that includes a signal line driver to apply, on the basis of an input image signal (video signal), a pixel driving voltage to each of signal lines of a display panel. The display panel has a plurality of scan lines and the signal lines. A number of pixel units are formed at crossing points of the scan lines and the signal lines. The signal lines are grouped into a plurality of signal line groups. The signal line driver includes a plurality of semiconductor chips, which correspond to the signal line groups respectively. The signal groups are connected in cascade through a clock line. Each of the semiconductor chips includes a pixel driving voltage generation unit, which applies the pixel driving voltage to each of signal lines belonging to the signal line group concerned at a timing corresponding to a clock signal supplied via the clock line. Each semiconductor chip also includes a clock transmission unit, which transmits the clock signal supplied via the clock line to a subsequent semiconductor chip via the clock line. The clock transmission unit includes a ½ frequency division circuit, which generates a frequency-half-divided clock signal by half-dividing a cycle of the supplied clock signal by 2. The clock transmission unit also includes a delay circuit, which generates a delayed frequency-divided clock signal by delaying the ½-frequency clock signal by a predetermined delay time. The clock transmission unit also includes an Exclusive NOR gate, which generates and transmits to the subsequent semiconductor chip via the clock line a shaped clock signal having a first level when a logic level of the delayed frequency-divided clock signal is equal to a logic level of the ½-frequency clock signal, and having a second level when the logic levels are different.
In each of the driver chips that are connected in cascade, the clock signal supplied is subjected to the following waveform shaping process before being transmitted to the subsequent driver chip. That is, a clock signal having a first level is generated when a logic level of a frequency-half-divided clock signal is equal to a logic level of a delayed frequency-divided clock signal whereas a clock signal having a second level is generated when the logic levels are different. Then, the resulting clock signal is supplied to the subsequent driver chip. In this manner, a waveform shaping process is performed so that an interval between the adjoining edges of the supplied clock signal is fixed by the predetermined delay time. The shaped clock signal, which is obtained by the waveform shaping process, is then transmitted to the subsequent driver chip.
Therefore, according to the display panel driving device of the present invention, even when a change in the duty ratio of a clock signal occurs in each driver chip, the change is not reflected in the clock signal transmitted to the subsequent driver chip. Accordingly, it is possible to align edge timings of the supplied clock signal in one and subsequent driver chips.
The waveform shaping process is carried out by the following three components: the frequency division circuit, which frequency-divides a cycle of the clock signal by 2; the delay circuit, which delays the frequency-divided clock signal by a predetermined delay time; and an Exclusive NOR gate, which generates a clock signal having logic level 1 when the logic levels of output signals from both these circuits are equal, and a clock signal having logic level 0 when the logic levels of the two output signals are different. Thus, when compared with those that successively adjust the duty ratio of the clock signal using the PLL circuit or DLL circuit, the circuitry size can be made smaller in the present invention. Therefore, it is possible to curb an increase in power consumption as well as in manufacturing costs.
These and other objects, aspects and advantages of the present invention will become apparent to those skilled in the art from the following detailed description when read and understood in conjunction with the appended claims and drawings.
In a display panel driving device of the present invention, a signal line driver, which applies a pixel driving voltage based on an input image signal to each signal line of a display panel at a timing corresponding to a clock signal, is built by a plurality of driver chips that are connected in cascade by the clock line. The clock transmission unit is provided in each driver chip in the following manner: The clock transmission unit transmits to a subsequent driver chip a shaped clock signal having a first level when a logic level of a ½ frequency clock signal is equal to a logic level of a delayed ½ frequency clock signal, or a shaped clock signal having a second level when the logic levels of the two clock signals are different.
Referring to
In
In response to a scan line control signal supplied from the controller 2, the scan line driver 3 sequentially supplies a scan line selection signal to each of the scan lines S1 to Sn in the liquid crystal display panel 1.
In response to a clock signal CLK supplied from the controller 2, the signal line driver 4 accepts the pixel data signal, and generates a pixel driving voltage of each pixel on the basis of the pixel data signal. Then, the signal line driver 4 applies the pixel driving voltage to each of the signal lines A1 to Am of the liquid crystal display panel 1.
Referring to
As shown in
The driver chips IC1 to IC5 have the same internal configuration. Each of the driver chips IC1 to IC5 includes a clock transmission circuit 40, latches 41 and 42, and a pixel driving voltage generation circuit 43.
The latch 41 accepts a pixel data signal supplied via the data line DL in synchronization with a clock signal supplied from the clock transmission circuit 40, and supplies the pixel data signal to the downstream latch 42 and the pixel driving voltage generation circuit 43. The latch 42 accepts the pixel data signal from the latch 41 in synchronization with a clock signal supplied from the clock transmission circuit 40, and supplies the pixel data signal to the subsequent driver chip through the data line DL.
The pixel driving voltage generation circuit 43 generates, on the basis of the pixel data signal supplied from the latch 41, a pixel driving voltage corresponding to the associated m/5 signal lines that this driver chip handles, and applies the pixel driving voltage to each of the signal lines concerned.
The clock transmission circuit 40 supplies to the latches 41 and 42 a clock signal CLK supplied via the clock line CL. The clock transmission circuit 40 also performs a waveform shaping process (will be described later) that brings the duty ratio of the clock signal CLK to a predetermined duty ratio (or to a fixed value), and transmits the resulting signal to the subsequent driver chip via the clock line CL. In one example shown in
Referring to
As shown in
The input buffer C11 supplies a clock signal CLK, which is received via a clock line CL, to the inverter C13, as well as to the latches 41 and 42. The inverter C13 inverts a logic level of the clock signal CLK to generate an inverted clock signal, and supplies the inverted clock signal to the inverter C14. The inverter C14 inverts a logic level of the inverted clock signal to generate a signal (i.e., clock signal CK), and supplies the clock signal CK to the ½ frequency division circuit C17.
The ½ frequency division circuit C17 divides a frequency of the clock signal CK by 2 to generate a ½ frequency-divided clock signal CKD as shown in
As show in
The delay circuit D1 delays the ½ frequency-divided clock signal CKD by a predetermined delay time DLY as shown in
With the above-described configuration, as shown in
As shown in
The clock generation circuit C18 supplies the shaped clock signal CKH to the output buffer C12.
The output buffer C12 recognizes the shaped clock signal CKH supplied from the clock generation circuit C18 as a clock signal CLK, and transmits the clock signal CLK to the subsequent driver chip IC via the clock line CL.
The following describes an operation of the above-described configuration.
The clock transmission circuit 40, which is provided in each of the five driver chips IC1 to IC5, receives the clock signal CLK from the previous driver chip IC or controller 2 and supplies the clock signal CLK via the clock line CL to the inside latches 41 and 42. Due to the capacity of a clock line inside the driver chip IC, the operations of the latches 41 and 42, and other factors, there is a concern that the duty ratio of the clock signal CLK could change. If the duty ratio changes in each of the driver chips IC1 to IC5, e.g., a period during which the logic level of the clock signal CLK remains 0 increases, the influences of such change are increasingly accumulated in the subsequent driver chips. As a result, a huge gap may arise between a rising edge timing of the clock signal CLK used in the most upstream driver chip IC1 and a rising edge timing of the clock signal CLK used in the most downstream driver chip IC5.
To avoid this, the clock transmission circuit 40 in each driver chip IC transmits the clock signal CLK to the subsequent driver chip IC, with the duty ratio of the clock signal CLK fixed on the basis of the delay time DLY of the delay circuit D1 by means of the ½ frequency division circuit C17 and the clock generation circuit C18.
According to the clock transmission circuits 40, the duty ratios of the clock signals CLK transmitted from the driver chips IC1 to IC5 are all brought to a predetermined value on the basis of the delay time DLY of the delay circuit D1 as shown in
The clock transmission circuits 40 have the simple configuration as shown in
The delay time DLY of the delay circuit D1 may vary according to manufacturing variations, changes in power supply voltage, and/or changes in ambient temperatures.
Accordingly, a delay circuit having the configuration shown in
As shown in
The inverters C1 to C4 have the same internal configuration. Each of the inverters C1 to C4 has a hysteresis inverter circuit C100 (referred to as an HS inverter circuit C100, hereinafter), a power supply potential applying circuit C101, and a ground potential applying circuit C102.
The HS inverter circuit C100 includes transistors MP21 and MP22, which are P-channel MOS (Metal-Oxide Semiconductor) FETs (Field Effect Transistors). The transistors MP 21 and MP22 in combination serve as a high potential generation unit of the inverter. The HS inverter circuit C100 also includes transistors MN21 and MN22, which are N-channel MOS FETs. The transistors MN21 and MN 22 in combination serve as a low potential generation unit of the inverter. The gate terminals of the transistors MP21, MP22, MN21 and MN22 are all connected to an input line L1. A power supply potential VDD is applied to the source terminal of the transistor MP21, and the drain terminal of the transistor MP21 is connected to the source terminal of the transistor MP22. A ground potential GND is applied to the source terminal of the transistor MN21, and the drain terminal of the transistor MN21 is connected to the source terminal of the transistor MN22. The drain terminals of the transistors MP22 and MN22 are both connected to an output line L2.
In the HS inverter circuit C100, when a signal supplied via the input line L1 has a high potential level corresponding to the power supply potential VDD, the two transistors MN21 and MN22, out of the four transistors MP21, MP22, MN21 and MN22, are turned on, and the ground potential GND is applied to the output line L2. When a signal supplied via the input line L1 has a low potential level corresponding to the ground potential GND, the two transistors MP21 and MP22 among the four transistors MP21, MP22, MN21 and MN22 are turned on, and the power supply potential VDD is applied to the output line L2. That is, when a high-potential (VDD) signal is supplied via the input line L1, i.e., when a signal corresponding to logic level 1 is supplied, the HS inverter circuit C100 inverts the signal to logic level 0 or to low-potential (GND), and transmits a resultant signal to the output line L2. On the other hand, when a low-potential (GND) signal, i.e., a signal corresponding to logic level 0, is supplied, the HS inverter circuit C100 inverts the signal to logic level 1 or to high-potential (VDD), and transmits a resultant signal to the output line L2.
The power supply potential applying circuit C101 includes a transistor MN11, which is a N-channel MOS FET. The power supply potential VDD is applied to the drain terminal of the transistor MN11. The gate terminal of the transistor MN11 is connected to the output line L2, and the source terminal of the transistor MN11 is connected to a connection point or node CL1 where the drain terminal of the transistor MN21 of the HS inverter circuit C100 is connected with the source terminal of the transistor MN22.
In the power supply potential applying circuit C101, the transistor MN11 is turned on only when the HS inverter circuit C100 transmits a high-potential (VDD) signal to the output line L2. Upon turning on of the transistor MN11, the power supply potential applying circuit C101 applies the power supply potential VDD to the connection point CL1 between the transistors MN21 and MN22 of the HS inverter circuit C100.
The ground potential applying circuit C102 includes a transistor MP11, which is a P-channel MOS FET. The ground potential GND is applied to the drain terminal of the transistor MP11. The gate terminal of the transistor MP11 is connected to the output line L2, and the source terminal of the transistor MP11 is connected to a connection point CL2 where the drain terminal of the transistor MP21 of the HS inverter circuit C100 is connected with the source terminal of the transistor MP22.
In the ground potential applying circuit C102, the transistor MP11 is turned on only when the HS inverter circuit C100 transmits a low-potential (GND) signal to the output line L2. Upon turning on of the transistor MP11, the ground potential applying circuit C102 applies the ground potential GND to the connection point CL2 between the transistors MP21 and MP22 of the HS inverter circuit C100.
The following describes an operation of a single inverter C, which includes the HS inverter circuit C100, the power supply potential applying circuit C101, and the ground potential applying circuit C102.
As shown in
More specifically, immediately before the rising of the input signal, the HS inverter circuit C100 is generating the signal of the high potential (VDD) to the output line L2. This keeps the transistor MN11 of the power supply potential application circuit C101 in an on condition. During this on-condition period the power supply potential VDD is applied to the connection node CL1 between the transistors MN21 and MN22 of the HS inverter circuit C100 through the transistor MN11. The transistor MN21 is subsequently turned on when the voltage applied to the gate terminal of the transistor MN21 exceeds the threshold of the transistor MN21 itself in the rise-up period of the input signal. As a result, the ON resistances of the transistors MN11 and MN21 constitute a voltage division circuit. The voltage division circuit generates a high potential based on the power supply potential VDD, and the generated high potential is applied to the source terminal of the transistor MN22. This increases the apparent threshold of the transistor MN22 by a back-gate bias effect. Thus, the threshold of the inverter is increased. As a consequence, the HS inverter circuit C100 determines that a high potential corresponding to the logic level 1 has been applied, and decreases the level of the output signal for inversion when the signal level of the input signal exceeds the first threshold T1 in the rise-up period of the input signal.
Immediately before the falling of the input signal, the HS inverter circuit C100 is generating the signal of the low potential (GND) to the output line L2. This keeps the transistor MP11 of the ground potential application circuit C102 in an on condition. During this on-condition period the ground potential GND is applied to the connection node CL2 between the transistors MP21 and MP22 of the HS inverter circuit C100 through the transistor MP11. The transistor MP21 is subsequently turned on when the voltage applied to the gate terminal of the transistor MP21 reaches the threshold of the transistor MP21 itself in the fall-down period of the input signal. As a result, the ON resistances of the transistors MP11 and MP21 form a voltage division circuit. The voltage division circuit generates a low potential based on the ground potential GND, and the generated low potential is applied to the source terminal of the transistor MP22. This lowers the apparent threshold of the transistor MP22 by a back-gate bias effect, and accordingly the threshold of the inverter is lowered. As a consequence, the HS inverter circuit C100 determines that a low potential corresponding to the logic level 0 has been applied, and increases the level of the output signal for inversion when the signal level of the input signal falls below the second threshold T2 in the fall-down period of the input signal.
As shown in
In the rise-up period of the input signal, the inverter C therefore decreases the level of the output signal for level inversion with a delay dly1 as shown in
The difference between the first threshold T1 and the second threshold T2 shown in
The delay circuit shown in
It should be noted that the number of stages of inverters C to be connected in series is not limited to four. Two, three, five or more inverts C may be connected in series. Alternatively, a single inverter C may be used alone. The delay time varies in proportion to the number of inverters C, and inverters C may be connected in series as many as a desired delay time (i.e., the delay time DLY shown in
Semiconductor integrated devices of MOS structures vary in operating speed depending on the ambient temperature.
For example, an input signal having a waveform indicated by the curve (A) in
At low ambient temperature, the transistor MP41 has a lower ON resistance, which in turn increases the potential of the source terminal of the transistor MN22. On the other hand, at high ambient temperature, the transistor MN11 has a higher ON resistance, which in turn decreases the potential of the source terminal of the transistor MN22. Consequently, when the ambient temperature is high as shown by the curve (C) in
Similarly, at low ambient temperature, the transistor MP11 has a lower ON resistance, which in turn decreases the potential of the source terminal of the transistor MP22. At high ambient temperature, the transistor MP11 has a higher ON resistance, which in turn increases the potential of the source terminal of the transistor MP22. Consequently, when the ambient temperature is high as shown by the curve (C) in
At high ambient temperature, the level transitions in the rising and falling periods of the input signal are gentler and the delay time is longer than at low ambient temperature. The increase in delay time, however, is suppressed since the hysteresis width Δh decreases with the increasing ambient temperature. This reduces a difference between the delay time dly2 of the output signal at low temperature shown by the curve (B) in
As described above, the inverter C utilizes the changes in the ON resistances of the transistors MN11 and MP11 with ambient temperature to self-adjust the delay time to a constant value regardless of changes in ambient temperature.
The inverter C shown in
As described above, the delay circuit D1 adopts the structure in which the inverters C are connected in series as shown in
Since the structure shown in
In the inverter C shown in
The configuration of the HS inverter circuit C200 shown in
In the HS inverter circuit C200, it is possible to set arbitrary delay times dly1 and dly2 using the resistance values of the resistors RP1 and RN1. That is, as the resistance values of the resistors RP1 and RN1 increase, the changes in the level of the output signal over time become moderate, and therefore the delay times dly1 and dly2 become longer. On the other hand, as the resistance values of the resistors RP1 and RN1 decrease, the changes in the level of the output signal over time become sharp, and therefore the delay times dly1 and dly2 become shorter. In this manner, when the delay times dly1 and dly2 are set by the resistors RP1 and RN1, the influences of manufacturing variations become smaller than when the delay times dly1 and dly2 are set by the drain current of a transistor. Accordingly, it is possible to set the desired delay times dly1 and dly2 with high accuracy.
Instead of the power supply potential applying circuit C101 and the ground potential applying circuit C102 of the inverter C shown in
The power supply potential applying circuit C201 shown in
In the power supply potential applying circuit C201, the power supply potential VDD is applied to the drain terminal of the transistor MN11 via the transistor MP41. In order to maintain the transistor MP41 in the on condition always, the ground potential GND is applied to the gate terminal of the transistor MP41 via the transistors MN12 and MP42.
Accordingly, like the power supply potential applying circuit C101, the transistor MN11 in the power supply potential applying circuit C201 is turned on only when the output line L2 is at high potential (VDD). Upon turning of of the transistor MN11, the power supply potential VDD is applied to the connection point CL1 of the HS inverter circuit C200 via the transistors MP41 and MN11.
The ground potential applying circuit C202 includes transistors MP11 and MP12, which are P-channel MOS FETs, and transistors MN41 and MN42, which are N-channel MOS FETs. The ground potential GND is applied to the source terminal of the transistor MN42. The gate and drain terminals of the transistor MN42 are connected to the gate terminal of the transistor MP12. The power supply potential VDD is applied to the source terminal of the transistor MP12, and the drain terminal of the transistor MP12 is connected to the gate terminal of the transistor MN41. The ground potential GND is applied to the source terminal of the transistor MN41, and the drain terminal of the transistor MN41 is connected to the drain terminal of the transistor MP11. Accordingly, the transistors MN41, MN42 and MP12 are always in an on condition. As a result, the ground potential GND is constantly applied to the drain terminal of the transistor MP11 via the transistor MN41. The gate terminal of the transistor MP11 is connected to the output line L2, and the source terminal of the transistor MP11 is connected to a connection point CL2 between the drain terminal of the transistor MP21 of the HS inverter circuit C200 and the source terminal of the transistor MP22.
In the ground potential applying circuit C202, the ground potential GND is applied to the drain terminal of the transistor MP11 via the transistor MN41. In order to always keep the transistor MN41 in the on condition, the power supply potential VDD is applied to the gate terminal of the transistor MN41 via the transistors MP12 and MN42.
Accordingly, like the ground potential applying circuit C102, the transistor MP11 in the ground potential applying circuit C202 is turned on only when the output line L2 is at low potential (GND). Upon turning on of the transistor MP11, the ground potential GND is applied to the connection point CL2 of the HS inverter circuit C200 via the transistors MN41 and MP11.
Even when the inverter C shown in
The inverter shown in
In the inverter C shown in
Therefore, even when electrostatic discharge occurs, it is possible to avoid electrostatic breakdowns from the gate terminals of the transistors MP41 and MN41.
In the power supply potential applying circuit C201 and ground potential applying circuit C202, there is no element that constantly consumes large amounts of current as direct current does not always flow therethrough. Therefore, it is possible to reduce power consumption.
This application is based on Japanese Patent Application
No. 2010-224816 filed on Oct. 4, 2010 and the entire disclosure thereof is incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
2010-224816 | Oct 2010 | JP | national |