The present application claims priority to Chinese Patent Application No. 202110462282.7, filed on, Apr. 27, 2021, the content of which is incorporated herein by reference in its entirety.
This disclosure relates to the field of display technologies, and in particular, to a display panel and a display apparatus.
Full-screen display has gradually become the mainstream display technology with the increase in consumer demands. In the full-screen display in the related art, a transparent display region is usually provided in a display region, and an optical device is provided in the transparent display region. Because the transparent display region is not arranged in a non-display region, a bezel of a display screen becomes narrower, and the full-screen display can be achieved. At the same time, in order to improve visual experience, the transparent display region usually also has a display function. To improve the light transmittance of the transparent display region, a shading area of the transparent display region can be decreased as much as possible. However, in the design in the related art, a non-uniform display occurs while the shading area of the light transmission region is reduced. A problem to be resolved is to ensure that the transparent display region has both a good display effect and a relatively high light transmittance.
According to a first aspect, an embodiment of this disclosure provides a display panel having a conventional display region and a function display region. The function display region is region where an optical function element is provided. The display panel includes first pixel circuits and first fixed potential lines that are located in the conventional display region, and second pixel circuits and second fixed potential lines that are located in the function display region. Each first fixed potential line extends along a first direction, and the first fixed potential lines are arranged along a second direction and are electrically connected to the first pixel circuits. Each second fixed potential line extends along a third direction, and the second fixed potential lines are arranged along a fourth direction and are electrically connected to the second pixel circuits. There are m1 first pixel circuit groups are provided between two adjacent first fixed potential lines, and each first pixel circuit group includes first pixel circuits arranged along the first direction. There are m2 second pixel circuit groups are provided between two adjacent second fixed potential lines, each second pixel circuit group includes second pixel circuits arranged along the third direction, m1 and m2 are each a positive integer greater than or equal to 1, and m2>m1.
According to a second aspect, an embodiment of this disclosure provides a display apparatus, and the display apparatus includes the display panel according to the first aspect and the optical function element. The optical function element is provided at a position of the display apparatus corresponding to the function display region.
To describe the technical solutions of the embodiments of the present disclosure more clearly, the following briefly describes the accompanying drawings required in the embodiments. The accompanying drawings in the following description show merely some examples of the present disclosure, and a person of ordinary skill in the art can still derive other drawings from these accompanying drawings.
For better understanding of the technical solutions of the present disclosure, the following describes in detail the embodiments of the present disclosure with reference to the accompanying drawings.
It should be noted that, the described embodiments are merely some but not all of the embodiments of the present disclosure. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present disclosure shall fall within the protection scope of the present disclosure.
Terms used in the embodiments of the present disclosure are only for describing specific embodiments, and are not intended to limit this disclosure. Unless otherwise specified in the context, words such as “a”, “the”, and “said” in a singular form in the embodiments of the present disclosure and the appended claims include plural forms.
It should be understood that, the term “and/or” used in this specification describes only an association relationship of associated objects and represents that three relationships can exist. For example, A and/or B can represent the following three cases: A alone, both A and B, and B alone. In addition, the character “/” in this specification generally indicates an “or” relationship between the associated objects.
In the description of the present specification, it should be understood that the terms such as “substantially”, “approximate to”, “approximately”, “about”, “roughly”, and “in general” described in the claims and embodiments of the present disclosure mean general agreement within a reasonable process operation range or tolerance range, rather than an exact value.
It should be understood that although the terms such as first, second, and third can be used to describe fixed potential lines in the embodiments of the present disclosure, these fixed potential lines should not be limited to these terms. These terms are used only to distinguish the fixed potential lines from each other. For example, without departing from the scope of the embodiments of the present disclosure, a first fixed potential line can also be referred to as a second fixed potential line, and similarly, a second fixed potential line can also be referred to as a first fixed potential line.
The solutions to the problem in the related art are provided in the following disclosure.
The display panels and display apparatuses with full-screen display effects in the related art are researched and analyzed, and it is found that there are at least the following three reasons of an obvious difference in display brightness between a transparent display region and a conventional display region. The reasons are illustrated in the following cases.
In a first case, an area of an anode serving as a reflective electrode in the transparent display region can be reduced. However, in order to ensure that the transparent display region has a relatively high display brightness, a relatively large light-emitting driving current can be provided for a light emitting diode in the transparent display region, which can cause serious degradation of the performance of the luminescent materials in the light emitting diode and further cause serious degradation in the brightness in the transparent display region. Therefore, a significant difference in display brightness between the transparent display region and the conventional display region can occur after the display panel and the display apparatus with related design are used for a period of time.
In a second case, a width of at least one signal line in the transparent display region can be reduced. However, a resistance of the at least one signal line increases as the width of the at least one signal line reduces, and thus there is a relatively large voltage drop on the at least one signal line when transmitting a signal, resulting in a non-uniform display brightness of the pixels in the transparent display region and a significant difference between the display brightness of the transparent display region and the display brightness of the conventional display region.
In a third case, an area of a storage capacitor in a pixel circuit in the transparent display region can be reduced, which leads to a situation that the storage capacitor cannot stably store a potential. In this way, some transistors in the pixel circuit generate leakage currents, resulting in unstable display of the pixel brightness in the transparent display region and a significant difference between the display brightness of the transparent display region and the display brightness of the conventional display region.
With the foregoing cases, a problem of the non-uniform display occurs while the light transmittance of the transparent display region is increased. In view of the foregoing problem, a research on reducing overall pixel density of the display panel is performed, so as to achieve display uniformity between the transparent display region and the conventional display region. In the embodiments provided in the present disclosure, the number of pixel circuit groups between adjacent specific fixed potential lines is changed, thereby increasing the light transmittance of the transparent display region (hereinafter referred to as a function display region) while causing a little impact on display uniformity.
The embodiments of the present disclosure provide a display panel and a display apparatus.
As shown in
It should be noted that, the function display region 02 can be in a rectangular shape as shown in
Referring to
Referring to
As shown in
In an embodiment of the present disclosure, m1 and m2 are each a positive integer greater than or equal to 1, and m2>m1. In other words, the number of the first pixel circuit groups 11A corresponding to one first fixed potential line 13 is less than the number of the second pixel circuit groups 21A corresponding to one second fixed potential line 23. For example, as shown in
In this embodiment of the present disclosure, the light transmittance of the function display region 02 can be improved by reducing the number of the second fixed potential lines 23 in the function display region 02, thereby improving reliability of optical signal transmission in the function display region 02.
There is a small impact on a display effect of the function display region 02 when reducing the number of second fixed potential lines 23. In an aspect, the second fixed potential line 23 transmits a fixed potential signal, and a substantially same attenuation of the fixed potential signal on the second fixed potential line 23 remains at different moments. Therefore, it is relatively easy to compensate the fixed potential signal on the second fixed potential line 23. In another aspect, the second fixed potential line 23 can be maintained to transmit the fixed potential signal within a period, without being frequently charged and discharged, thereby avoiding charging delay due to potential climbing (increasing) during a charging process. In still another aspect, compared with reducing the width of the second fixed potential line 23, reducing the density of the second fixed potential lines 23 does not change resistance and parasitic capacitance of the second fixed potential line 23, which has a relatively small impact on the display effect.
The first direction X can be parallel to the third direction X′, and the second direction Y can be parallel to the fourth direction Y′.
In an embodiment of the present disclosure, referring to
In an embodiment of the present disclosure, as shown in
In this embodiment, the light transmittance of the function display region 02 can be increased by reducing an area of the second pixel circuit 21 or by reducing shading traces in the function display region 02, and at the same time, a display resolution of the function display region 02 can be ensured.
In another embodiment of the present disclosure, as shown in
In the foregoing embodiment, that the first pixel circuits 11 are uniformly distributed indicates that the first pixel circuits 11 are substantially uniformly distributed, and that the second pixel circuits 21 are uniformly distributed indicates that the second pixel circuits are substantially uniformly distributed. For example, a distance between two first pixel circuits 11 that are adjacent to the first fixed potential line 13 and that are arranged along the second direction Y is greater than a distance between two first pixel circuits 11 that are not adjacent to the first fixed potential line 13 and that are arranged along the second direction Y, and a distance between two second pixel circuits 21 that are adjacent to the second fixed potential line 23 and arranged along the second direction Y is greater than a distance between two second pixel circuits 21 that are not adjacent to the second fixed potential line 23 and that are arranged along the second direction Y. In this case, without taking the space occupied by the first fixed potential lines 13 and the second fixed potential lines 23 into consideration, the first pixel circuits 11 are substantially uniformly arranged and the second pixel circuits 21 are also substantially uniformly arranged.
In this embodiment, the light transmittance of the function display region 02 can be increased by setting the density of the second pixel circuits 21 in the function display region 02 to be relatively small.
In still another embodiment of the present disclosure, as shown in
In an embodiment of the present disclosure, the second pixel circuits 21 in the function display region 02 are not uniformly distributed in a form of a single second pixel circuit 21, but can be uniformly distributed in a form of pixel circuit clusters 021. In an embodiment, that the density of the second pixel circuits 21 is smaller than the density of the first pixel circuits 11 can be understood as follows: if an area value corresponding to the function display region 02 is a first area, the number of the second pixel circuits 21 provided in the first area is smaller than the number of the first pixel circuits 11 provided in the first area.
For example, as shown in
In the conventional display region 01, in the first pixel circuits 11 arranged along the first direction X, spacing distances between adjacent first pixel circuits 11 are substantially the same, and in the first pixel circuits 11 arranged along the second direction Y, spacing distances between adjacent first pixel circuits 11 are also substantially the same. The term “substantially the same” indicates that without considering the space occupied by the first fixed potential lines 13 and the second fixed potential lines 23, the spacing distances between first pixel circuits 11 are substantially the same, and the spacing distance is significantly smaller than the width of the pixel circuit cluster 021.
In an embodiment, still referring to
In the conventional display region 01, the first pixel circuits 11 are arranged in a matrix, that is, the first pixel circuits 11 are arranged in sequence along the first direction X and the first pixel circuits 11 are arranged in sequence along the second direction Y. In this case, the first pixel circuits 11 respectively providing red sub-pixels with light-emitting driving currents are arranged in a matrix, the first pixel circuits 11 respectively providing green sub-pixels with light-emitting driving currents are arranged in a matrix, and the first pixel circuits 11 respectively providing blue sub-pixels with light-emitting driving currents are also arranged in a matrix.
In an embodiment, a distance between two adjacent second fixed potential lines 23 are increased, which can reduce an impact of a diffraction phenomenon on the optical signal collection in the function display region 02. According to the principle of proximity, a distance between each second fixed potential line 23 and the second pixel circuit 21 carried by the second fixed potential line 23 does not increase, but the light transmittance of the function display region 01 increases.
In an embodiment, at least two second pixel circuits 21 in the pixel circuit cluster 021 are electrically connected to the second light-emitting diodes 12 emitting light of at least two colors, respectively. In this case, it can be ensured that the function display region 01 has a better white balance effect while the function display region 02 has a larger light transmittance by reducing the density of second pixel circuits 21.
In an embodiment, if pixel circuit clusters 021 arranged along the first direction X are regarded as one pixel circuit cluster group, as shown in
In yet another embodiment of the present disclosure, as shown in
In an embodiment, the density of the second pixel circuits 21 located in the transition display region 02B is greater than a density of first pixel circuits 11 located in the conventional display region 01, and a distance between adjacent first fixed potential lines 13 is equal to a distance between adjacent second fixed potential lines 23.
For example, as shown in
In an embodiment, still referring to
In this embodiment, none of the second pixel circuit 21 or related signal lines are provided in the transparent display region 02A, which achieves a better light transmittance of the transparent display region 02A. In an embodiment, the density of the second fixed potential signal lines 23 in the transition display region 02B is the same as the density of the first fixed potential lines 13 in the conventional display region 01. In a macro view, resistance of a fixed potential line providing the pixel circuit with the fixed potential signal is uniformly distributed without increasing local resistance, so that a voltage drop difference on the fixed potential line at different positions can be avoided to a particular extent, thereby improving the display uniformity of the display panel.
In the foregoing embodiment, the fact that the first pixel circuits 11 are uniformly distributed indicates that the first pixel circuits 11 are substantially uniformly distributed, and that the second pixel circuits 21 are uniformly distributed indicates that the second pixel circuits are substantially uniformly distributed. For example, a distance between two first pixel circuits 11 adjacent to the first fixed potential line 13 and arranged along the second direction Y is greater than a distance between two first pixel circuits 11 that are not adjacent to the first fixed potential line 13 and that are arranged along the second direction Y, and a distance between two second pixel circuits 21 adjacent to the second fixed potential line 23 and arranged along the second direction Y is greater than a distance between two second pixel circuits 21 that are not adjacent to the second fixed potential line 23 and that are arranged along the second direction Y. In this case, without considering the space occupied by the first fixed potential lines 13 and the second fixed potential lines 23, the first pixel circuits 11 are substantially uniformly arranged and the second pixel circuits 21 are also substantially uniformly arranged.
In an embodiment of the present disclosure, as shown in
In an embodiment, as shown in
In another embodiment, as shown in
With reference to
In an embodiment, the first fixed potential line 13 and the second fixed potential line 23 are adjacent to a blue sub-pixel. A luminescent material used for the blue sub-pixel in the related art is a fluorescent luminescent material with a relatively low efficiency. Therefore, to ensure light-emitting brightness of the blue sub-pixel, a voltage difference between a fixed potential signal and a data voltage signal in each of the first pixel circuit 11 and the second pixel circuit 21 that correspond to the blue sub-pixel is the largest. The fixed potential signal lines are disposed near the blue sub-pixel, which can minimize a non-uniform display of the blue sub-pixel.
In an embodiment, the first fixed potential line 13 and the second fixed potential line 23 are provided between the blue sub-pixel and the green sub-pixel. Because the green sub-pixel contributes the most to the display brightness, the non-uniform display of the green sub-pixel is the most easily visible. Therefore, the first fixed potential line 13 and the second fixed potential line 23 are adjacent to the green sub-pixel, which can improve the display uniformity of a white image or other high-brightness image.
In an embodiment, as shown in
In an embodiment, referring to
In an embodiment of the present disclosure, the first pixel circuit 11 includes two first reset transistors T0 and T5, an output terminal of the first reset transistor T0 is electrically connected to the control terminal of the first drive transistor Td, and an input terminal V0 of the first reset transistor T0 receives a reset signal and transmits the reset signal to the control terminal of the first drive transistor Td, to reset the control terminal of the first drive transistor Td; and an output terminal of the first reset transistor T5 is electrically connected to the anode of the first light-emitting diode 12, and an input terminal V5 of the first reset transistor T5 receives a reset signal and transmits the reset signal to the anode of the first light-emitting diode 12, to reset the anode of the first light-emitting diode 12.
In another embodiment of the present disclosure, the second pixel circuit 21 includes two second reset transistors T0′ and T5′, an output terminal of the second reset transistor T0′ is electrically connected to the control terminal of the second drive transistor Td′, and an input terminal V0′ of the second reset transistor T0′ receives a reset signal and transmits the reset signal to the control terminal of the first drive transistor Td, to reset the control terminal of the second drive transistor Td′; an output terminal of the second reset transistor T5′ is electrically connected to the anode of the second light-emitting diode 22, and an input terminal V5′ of the second reset transistor T0′ receives a reset signal and transmits the reset signal to the anode of the second light-emitting diode 22, to reset the anode of the second light-emitting diode 22.
In an embodiment of the present disclosure, still referring to
The first pixel circuit 11 and the second pixel circuit 21 can be of a same circuit structure. As shown in
In another embodiment, the first pixel circuit 11 and the second pixel circuit 21 can have different circuit structures. The following describes an operating process of the first pixel circuit 11 by taking the first pixel circuit 11 shown in
In an example, the first drive transistor Td, the first reset transistor T0/T5, the first power voltage transistor T1, the first data voltage writing transistor T2, the first threshold capturing transistor T3, and the first light-emitting control transistor T4 in the first pixel circuit 11 shown in
An output terminal of one first reset transistor T0 is electrically connected to a control terminal of the first drive transistor Td. An output terminal of another first reset transistor T5 is electrically connected to the anode of the first light-emitting diode 12. The output terminal of the first power voltage transistor T1 is electrically connected to the input terminal of the first drive transistor Td, the input terminal V1 of the first power voltage transistor T1 is electrically connected to one plate of the first storage capacitor C, and the control terminal of the first drive transistor Td is electrically connected to the other plate of the first storage capacitor C. An input terminal V2 of the first data voltage writing transistor T2 receives a data voltage, and an output terminal of the first data voltage writing transistor T2 is electrically connected to the input terminal of the first drive transistor Td. An input terminal of the first threshold capturing transistor T3 is electrically connected to an output terminal of the first drive transistor Td, and an output terminal of the first threshold capturing transistor T3 is electrically connected to the control terminal of the first drive transistor Td. An input terminal of the first light-emitting control transistor T4 is electrically connected to the output terminal of the first drive transistor Td, and an output terminal of the first light-emitting control transistor T4 is electrically connected to the first light-emitting diode 12.
The operating process of the first pixel circuit 11 shown in
In the reset phase, if the first reset transistor T0 is turned on under control of the control terminal S0 of the first reset transistor T0, and the input terminal V0 of the first reset transistor T0 receives a reset signal, the reset signal is written to the control terminal of the first drive transistor Td. In other embodiments, if the first reset transistor T5 is turned on under control of a control terminal S5 of the first reset transistor T5, and the input terminal V5 of the first reset transistor T5 receives a reset signal, the reset signal is also written to the anode of the first light-emitting diode 12.
In the data voltage writing phase, the first power voltage transistor T1 is turned off under control of a control terminal S1 of the first power voltage transistor T1, and the first light-emitting control transistor T4 is turned off under control of a control terminal S4 of the first light-emitting control transistor T4. The first data voltage writing transistor T2 is turned on under control of a control terminal S2 of the first data voltage writing transistor T2, and the first threshold capturing transistor T3 is turned on under control of a control terminal S3 of the first threshold capturing transistor T3. The input terminal V2 of the first data voltage writing transistor T2 receives a data voltage Vdata. Because potential of the data voltage Vdata is higher than that of a reset signal stored in the first storage capacitor C, the first drive transistor Td is turned on and the data voltage Vdata is written to the control terminal of the first drive transistor Td. When a voltage of the control terminal of the first drive transistor Td is Vdata-|Vthl, the first drive transistor Td is turned off, and the first storage capacitor C can store potential Vdata-|Vthl electrically connected to the control terminal of the first drive transistor Td at the end of the data voltage writing phase. In addition, in another embodiment of the present disclosure, in the reset phase, the control terminal S5 of the first reset transistor T5 receives a cut-off signal. In the data voltage writing phase, the control terminal S5 of the first reset transistor T5 receives a turn-on signal to control the first reset transistor T5 to be turned on, and the input terminal V5 of the first reset transistor T5 receives a reset signal. In this case, the anode of the first light-emitting diode 12 is also reset in the data voltage writing phase.
In the light-emitting phase, the first data voltage writing transistor T2 is turned off under control of the control terminal S2 of the first data voltage writing transistor T2, the first threshold capturing transistor T3 is turned off under control of the control terminal S3 of the first threshold capturing transistor T3, the first power voltage transistor T1 is turned on under control of the control terminal S1 of the first power voltage transistor T1, and the first light-emitting control transistor T4 is turned on under control of the control terminal S4 of the first light-emitting control transistor T4. The input terminal V1 of the first power voltage transistor T1 receives a supply voltage VDD. In this case, the supply voltage is transmitted to the input terminal of the light-emitting driving transistor Td. Potential of the supply voltage VDD is greater than that of the data voltage Vdata. In this case, the first drive transistor Td generates a light-emitting driving current, and transmits the light-emitting driving current to the first light-emitting diode 12 through the first light-emitting control transistor T4. In this case, the light-emitting driving current generated by the first drive transistor Td is: Ids=K*(VDD-Vdata){circumflex over ( )}2.
In an embodiment of the present disclosure, the input terminal V0 of the first reset transistor T0 is electrically connected to the first fixed potential line 13, that is, a fixed potential signal received by the first fixed potential line 13 can be a reset signal, and the first fixed potential line 13 can provide a reset signal for the input terminal V0 of the first reset transistor T0. The input terminal V0′ of the second reset transistor T0′ is electrically connected to the second fixed potential line 23, that is, a fixed potential signal received by the second fixed potential line 23 can be a reset signal, and the second fixed potential line 23 can provide a reset signal for the input terminal V0′ of the second reset transistor T0′.
In this embodiment, when the number of the second pixel circuit groups 21A between adjacent second fixed potential lines 23 in the function display region 02 is greater than the number of the first pixel circuit groups 11A between adjacent first fixed potential lines 13 in the conventional display region 02, it is equivalent to a decrease in the number of the second fixed potential lines 23 connected in parallel and an increase in resistance of the corresponding second fixed potential lines 23 connected in parallel. However, because the second fixed potential line 23 transmits a fixed potential signal as a reset signal, the increase in the resistance of the second fixed potential lines 23 connected in parallel does not significantly affect the light-emitting driving current generated by the second pixel circuit 21. Details are described below.
In one aspect, because a voltage drop of the fixed potential signal serving as a reset signal is very low, an increase in resistance of the second fixed potential lines 23 connected in parallel has almost no impact on a process of resetting the first reset transistors T0 in the second pixel circuit 21.
A micro-element method is used herein for analysis. According to a formula ΔV=I*R for calculating a voltage drop, the voltage drop on the second fixed potential line 23 depends on a current flowing through the second fixed potential line 23 and a resistance of the second fixed potential line 23, where ΔV is the voltage drop of the second fixed potential line 23, I is the current flowing through the second fixed potential line 23, and R is the resistance of the second fixed potential line 23.
Resetting the control terminal of the first drive transistor Td and the control terminal of the second drive transistor Td′ is actually respectively charging the first storage capacitor electrically connected to the control terminal of the first drive transistor Td and charging the second storage capacitor C′ electrically connected to the control terminal of the second drive transistor Td′. The embodiments shown in
For example, an organic light-emitting display panel is used as an example for description. The capacitance of the first storage capacitor C and that of the second storage capacitor C′ are both in the order of magnitude of pF and a time of the reset phase is in the order of magnitude of μs, and for the potential of the control terminal of the first drive transistor Td and the potential of the control terminal of the second drive transistor Td′, a voltage difference between a data voltage of a previous frame and a reset signal voltage of a current frame falls within 10 V. Therefore, it can be obtained through calculation that a current for charging the control terminal of the first drive transistor Td and the control terminal of the second drive transistor Td′ in the reset phase is in the order of magnitude of μA. The first fixed potential line 13 and the second fixed potential line 23 that transmit the reset signals are usually made of Ti/Al/Ti, and each has sheet resistance in the order of magnitude of 10−2 Ω/□. Therefore, both a voltage drop difference of the first fixed potential lines 13 and a voltage drop difference of the second fixed potential lines 23 are of the order of magnitude of 10−2 μV and is almost negligible. Even if the first fixed potential line 13 and the second fixed potential line 23 that transmit the reset signals are made of Mo, the sheet resistance of the first fixed potential line 13 and that of the second fixed potential line 23 are in the order of magnitude of 10−1 Ω/□. Therefore, the voltage drop difference of the first fixed potential lines 13 and the voltage drop difference of the second fixed potential lines 23 are in the order of magnitude of 10−1 μV and is also negligible. In addition, in the organic light-emitting display panel, the fixed potential signal as a reset signal is usually about −2 V. A ratio of each of the voltage drop difference of the first fixed potential lines 13 in the reset phase and the voltage drop difference of the second fixed potential lines 23 in the reset phase to a voltage value of the reset signal is so small that the ratio is negligible.
When the anode of the first light-emitting diode 12 and the anode of the second light-emitting diode 22 also can be reset, in order to reduce the current flowing through the second fixed potential line 23, in an embodiment, the process of resetting the control terminal of the first drive transistor Td and the control terminal of the second drive transistor Td′ and the process of resetting the anode of the first light-emitting diode 12 and the anode of the second light-emitting diode 22 can be performed in a time-division manner. For example, the process of resetting the control terminal of the first drive transistor Td and the control terminal of the second drive transistor Td′ is performed in the reset phase, and the process of resetting the anode of the first light-emitting diode 12 and the anode of the second light-emitting diode 22 is performed in the data voltage writing phase. In this case, even if the voltage drop difference on the first fixed potential line 13 and the second fixed potential line 23 is relatively large when the anode of the first light-emitting diode 12 and the anode of the second light-emitting diode 22 are reset, potential of each terminal of each of the first drive transistor Td and the second drive transistor Td′ for generating a light-emitting driving current is not affected.
In another aspect, the fixed potential signal serving as a reset signal does not directly affect generation of the light-emitting driving current and therefore has little impact on the light-emitting driving current. That is, a change of the fixed potential signal transmitted by the second fixed potential line 23 has little impact on the light-emitting driving current generated by the second light-emitting diode 22.
First, in a non-pure-color screen, a potential difference between control terminals of all second drive transistors Td′ in the previous frame is quite large, and the voltage drop on the second fixed potential line 23 is negligible compared with the potential difference. In a pure-color screen, target data voltages of sub-pixels of a same color are the same, and potential of a reset signal of the control terminal of the second drive transistor Td′ at this time affects generation of the light-emitting driving current. However, charging the second storage capacitor C′ in the reset phase is a process that is fast at first and then slow. A longer charging time indicates that potential of the control terminal of the second drive transistor Td′ is closer to that of the reset signal. Impact of the time for charging the second storage capacitor C′ in the reset phase on the potential of the control terminal of the second drive transistor Td′ is much greater than that of the voltage drop of the second fixed potential line 23 on the potential of the control terminal of the second drive transistor Td′.
Second, in the data voltage writing phase, different reset signals of the control terminal of the first drive transistor Td and the control terminal of the second drive transistor Td′ cause different data voltages actually input into the control terminal of the first drive transistor Td and the control terminal of the second drive transistor Td′. However, impact of different threshold voltages of the first drive transistors Td in the first pixel circuit 11 and different threshold voltages of the second drive transistors Td′ in the second pixel circuit 21 on the difference in light-emitting driving currents is much greater than impact of the voltage drop of the second fixed potential line 23 on the difference in light-emitting driving currents.
In still another aspect, the first fixed potential line 13 and the second fixed potential line 23 each transmit a fixed potential signal as a reset signal, and the transmitted reset signal serves as a fixed potential signal instead of a pulse signal. Therefore, the first fixed potential line 13 and the second fixed potential line 23 do not need to be charged and discharged frequently, which can reduce impact of the number of first fixed potential lines 13 and the number of second fixed potential lines 23 on the load carried by the first fixed potential line 13 and the load carried the second fixed potential line 23, respectively. Reducing the number of second fixed potential lines 23 is equivalent to reducing parasitic capacitance of the second fixed potential lines 23 in the function display region 02. Therefore, even if the load carried by a single second fixed potential line 23 is increased, the total load carried by all the second fixed potential lines 23 is not increased. Therefore, there is little impact on the light-emitting driving current.
Therefore, based on the above, when the first fixed potential line 13 and the second fixed potential line 23 of the present disclosure transmit the fixed potential signals, an area of a non-transmissive part of the function display region 02 can be reduced, causing little impact on the display brightness while increasing the light transmittance of the function display region 02, thereby ensuring display uniformity of the function display region 02 and uniformity of display brightness of the function display region 02 and the conventional display region 01. In other words, both a display effect and light transmittance are considered for the display panel with the function display region 02 provided in this disclosure, thereby overcoming the difficulty in restricting the under-screen optical sensor technology.
Technical solution provides the display panel in which the density of the pixels in the function display region 02 is substantially to the same as the density of the pixel in the conventional display region 01. When the density of the pixels in the function display region 02 is substantially to the same as the density of the pixel in the conventional display region 01 in the display panel, in order to achieve a normal display function, data signal lines and scan signals cannot be reduced. In addition, narrowing the data voltage signal lines and the scanning lines affects parasitic capacitance on the scanning lines and the data voltage signal lines, and causes a line charging effect to deteriorate. Consequently, the data voltage signals deviate from a target value, and the scanning lines charge the first pixel circuit 11 and the second pixel circuit 21 without enough time. It can be deduced from the foregoing analysis that reducing the number of second fixed potential lines 23 that transmit reset signals has a little impact on the display uniformity. Therefore, reducing the number of second fixed potential lines 23 that transmit reset signals is crucial in achieving the ultimate goal of not reducing resolution of the function display region 02.
In an embodiment of the present disclosure, the function display region 02 is arranged at a position away from an access terminal of the fixed potential signal, that is, a distance between the function display region 02 and the access terminal of the fixed potential signal is greater than a distance between the function display region 02 and a side of the conventional display region 01 away from the access terminal of the fixed potential signal.
Since the fixed potential signal, serving as the reset signal, enters the conventional display region 01 and the function display region 02 of the display panel from the access terminal of the fixed potential signal, along an extending direction of the first fixed potential line 13, a current of the first fixed potential line 13, in a unit length, close to the access terminal of the fixed potential signal is greater than a current of the first fixed potential line 13, in a unit length, far away from the access terminal of the fixed potential signal; and along an extending direction of the second fixed potential line 23, a current of the second fixed potential line, in a unit length, close to the access terminal of the fixed potential signal is greater than a current of the second fixed potential line 23, in a unit length, far away from the access terminal of the fixed potential signal. In other words, along the extending direction of the first fixed potential line 13, a voltage drop of the first fixed potential line 13 at a position thereof far away from the access terminal of the fixed potential signal is less than a voltage drop of the first fixed potential line 13 at a position thereof close to the access terminal of the fixed potential signal; and along the extending direction of the second fixed potential line 23, a voltage drop of the second fixed potential line 23 at a position thereof far away from the access terminal of the fixed potential signal is less than a voltage drop of the second fixed potential line 23 at a position thereof close to the access terminal of the fixed potential signal. Therefore, setting the function display region 02 to be far away from the access terminal of the fixed potential signal can reduce a difference between a voltage drop of the second fixed potential line in the function display region 02 and a voltage drop of the first fixed potential line 13 in the adjacent conventional display region 01.
Similarly, if the access terminals of the fixed potential signal are located on two opposite sides of the display panel, the function display region 02 can be arranged at a middle position of the two opposite sides of the display panel.
In an embodiment, (m2/m1)*H≤200, where H denotes the total number of rows of the second pixel circuits 21 arranged along the first direction X in the function display region 02. According to the description of the foregoing embodiments, a voltage drop difference of the second fixed potential line 23 is usually in the order of a magnitude of 10−2 μV. When the design of the second fixed potential lines 23 in the function display region 02 and the design of the first fixed potential lines 13 in the conventional display region 01 satisfy the foregoing relationship, two rows of the second pixel circuits 21 in the function display region 01 that receive reset signals with a largest difference are also in the order of the magnitude of μV, which is still imperceptible to the naked eyes. Similarly, a difference between a voltage drop of the first fixed potential signal line 13 in a region adjacent to the function display region 02 in the conventional display region 01 and a voltage drop of the second fixed potential signal 23 in the function display region 02 is also very small Therefore, the brightness difference between the function display region 02 and the conventional display region 01 is also imperceptible to naked eyes of consumers.
In an embodiment, the function display region 02 is disposed at a side of the conventional display region 01 away from the access terminal of the fixed potential signal. In this case, an edge of the function display region 02 away from the access terminal of the fixed potential signal is also away from the conventional display region 01, that is, edges of the function display region 02 are not all adjacent to the conventional display region 01, thereby reducing a length of a risk region in which the brightness can suddenly change in the conventional display region 01 and the function display region 02 that are adjacent to each other.
In an embodiment, as shown in
The fifth direction Y1 and the seventh direction Y2 can be parallel to the second direction Y and the fourth direction Y′, and the sixth direction X1 and the eighth direction X2 can be parallel to the first direction X and the second direction X′. In other words, the third fixed potential line 14 and the fourth fixed potential line 24 are also configured to transmit reset signals. In addition, the first fixed potential line 13 and the third fixed potential line 14 intersect and are electrically connected to each other to form a mesh structure, and the second fixed potential line 23 and the fourth fixed potential line 24 intersect and are electrically connected to each other to form a mesh structure.
With reference to the
In an embodiment, the first fixed potential line 13 and the second fixed potential line 23 are each of a metal conductive structure, and the third fixed potential line 14 and the fourth fixed potential line 24 are each of a semiconductor conductive structure.
With reference to
With reference to
Still referring to
Still referring to
Still with reference to
With reference to
Still referring to
Still referring to
Still with reference to
Still referring to
In an embodiment, gates of the transistors with a same function or transistors that are turned on and off at the same time in the first pixel circuits 11 arranged along the second direction Y can be connected to a same scanning line. For example, the first gates of the first reset transistors T0 in the first pixel circuits 11 arranged along the second direction Y can be connected to a same scanning line GL1; control terminals S2 of the first data voltage writing transistors T2 and control terminals S3 of the first threshold capturing transistors T3 in the first pixel circuits 11 arranged along the second direction Y can be connected to a same scanning line GL2; control terminals S1 of the first power voltage transistors T1 and control terminals S4 of the first light-emitting control transistors T4 in the first pixel circuits 11 arranged along the second direction Y can be connected to a same scanning line GL3; and control terminals S5 of the first reset transistors T5 in the first pixel circuits 11 arranged along the second direction Y can be connected to a same scanning line GL4, and the scanning line GL4 can be reused as a scanning line GL1 in a next row.
Gates of transistors with a same function or transistors that are turned on and off at the same time in the second pixel circuits 21 arranged along the fourth direction Y can be connected to a same scanning line. For example, second gates of the second reset transistors T0′ in the second pixel circuits 21 arranged along the fourth direction Y′ can be connected to a same scanning line GL1′; control terminals of the second data voltage writing transistors T2′ and control terminals of second threshold capturing transistors T3′ in the second pixel circuits 21 arranged along the fourth direction Y′ can be connected to a same scanning line GL2′; control terminals of the second power voltage transistors T1′ and control terminals of the second light-emitting control transistors T4′ in the second pixel circuits 21 arranged along the fourth direction Y′ can be connected to a same scanning line GL3; and control terminals S5 of the second reset transistors T5′ in the second pixel circuits 21 arranged along the fourth direction Y′ can be connected to a same scanning line GL4′, and the scanning line GL4′ can be reused as a scanning line GL1′ in a next row.
When the second direction Y is parallel to the fourth direction Y′, gates of the transistors with a same function or transistors that are turned on and off at the same time in the first pixel circuits 11 arranged along the second direction Y and the plurality of second pixel circuits 21 can be connected to a same scanning line. For example, the scanning line GL1 connected to the first gates of the first reset transistors T0 in the first pixel circuits 11 arranged along the second direction Y is the scanning line GL1′ connected to the second gates of the second reset transistors T0′ in the second pixel circuits 21. Similarly, the scanning line GL2 and the scanning line GL2′ that are located in a same row are a same scanning line, the scanning line GL3 and the scanning line GL3′ that are located in a same row are a same scanning line, and the scanning line GL4 and the scanning line GL4′ that are located in a same row are a same scanning line.
Input terminals V2 of the first data voltage writing transistors T2 in the first pixel circuits 11 arranged along the first direction X can be connected to a same data voltage signal line DL1, and input terminals V2′ of the second data voltage writing transistors T2′ in the second pixel circuits 21 arranged along the third direction X′ can be connected to a same data voltage signal line DL2. Input terminals V1 of the first power voltage transistors T1 in the plurality of first pixel circuits 11 arranged along the first direction X can be connected to a same power voltage signal line VL1, and input terminals V1′ of the first power voltage transistors T1′ in the second pixel circuits 21 arranged along the third direction X′ can be connected to a same power voltage signal line VL2.
In an embodiment, as shown in
In an embodiment, as shown in
In another embodiment, as shown in
In an embodiment, s1=1.
In an embodiment of the present disclosure, the first fixed potential line 13 is electrically connected to an input terminal V1 of the first power voltage transistor T1, or is electrically connected to a cathode of the first light-emitting diode 12; and the second fixed potential line 23 is electrically connected to an input terminal V1′ of the second power voltage transistor T1′, or is electrically connected to a cathode of the second light-emitting diode 22. In other words, the first fixed potential line 13 provides a power voltage to the first power voltage transistor T1 or provides a power voltage to the first light-emitting diode 12, and the second fixed potential line 23 provides a power voltage to the second power voltage transistor T1′ or provides a power voltage for the second light-emitting diode 22.
In an embodiment, the second fixed potential line 23 transmits a power voltage, and attenuation of the power voltage on the second fixed potential line 23 basically remains the same at different moments. Therefore, it is easy to compensate the supply voltage on the second fixed potential line 23. In another aspect, the second fixed potential line 23 can always maintain transmission of the fixed potential signal within a particular time period, without being frequently charged and discharged, thereby avoiding a problem of charging delay due to potential climbing during a charging process. In still another aspect, compared with reducing the width of the second fixed potential line 23, reducing the density of the second fixed potential lines 23 does not change resistance and parasitic capacitance of the second fixed potential line 23, and therefore has a relatively small impact on the display effect.
In an embodiment, the function display region 02 is arranged at a position away from an access terminal of the power voltage, that is, a distance between the function display region 02 and the access terminal of the power voltage is greater than a distance between the function display region 02 and a side of the conventional display region 01 away from the access terminal of the power voltage.
The power voltage enters the conventional display region 01 and the function display region 02 of the display panel from the access terminal of the power voltage. Along an extending direction of the first fixed potential line 13, a current of the first fixed potential line 13, in a unit length, close to the access terminal of the power voltage is greater than a current of the first fixed potential line 13, in a unit length, far away from the access terminal of the power voltage; and along an extending direction of the second fixed potential line 23, a current of the second fixed potential line 23, in a unit length, close to the access terminal of the power voltage is greater than a current of the second fixed potential line 23, in the unit length, far away from the access terminal of the power voltage. In other words, along the extending direction of the first fixed potential line 13, a voltage drop of the first fixed potential line 13 at a position thereof far away from the access terminal of the power voltage is less than a voltage drop of the first fixed potential line 13 at a position thereof close to the access terminal of the power voltage; and along the extending direction of each of the second fixed potential line 23, a voltage drop of the second fixed potential line 23 at a position thereof far away from the access terminal of the power voltage is less than a voltage drop of the second fixed potential line 23 at a position thereof close to the access terminal of the power voltage. Therefore, setting the function display region 02 to be relatively far away from the access terminal of the power voltage can reduce a voltage drop difference between the second fixed potential line in the function display region 02 and an adjacent first fixed potential line 13 in the conventional display region 01.
Similarly, if the access terminals of the supply voltage are located at two opposite sides of the display panel, the function display region 02 can be arranged at a middle position of the two opposite sides of the display panel.
In an embodiment, the function display region 02 is arranged at a side of the conventional display region 01 away from the access terminal of the power voltage. In this case, an edge of the function display region 02 away from the access terminal of the power voltage is also away from the conventional display region 01, that is, edges of the function display region 02 are not all adjacent to the conventional display region 01, thereby reducing a length of a risk region in which brightness can suddenly change in each of the conventional display region 01 and the function display region 02 that are adjacent to each other.
As shown in
As shown in
The optical function element 002 can be at least one of an optical fingerprint sensor, an iris recognition sensor, a camera, or a flashlight.
In the embodiment of the present disclosure, reducing the number of second fixed potential lines 23 in the function display region 02 can improve light transmittance of the function display region 02, thereby improving reliability of optical signal transmission of the function display region 02.
In the display apparatus provided in the embodiment of the present disclosure, reducing the number of second fixed potential lines 23 has a very small impact on a display effect of the function display region 02. In an embodiment, the second fixed potential line 23 transmits a fixed potential signal, and the attenuation of the fixed potential signal on the second fixed potential line 23 basically remains the same at different moments. Therefore, it is easy to compensate the fixed potential signal on the second fixed potential line 23. In another aspect, the second fixed potential line 23 can always maintain transmitting the fixed potential signal within a particular time period, without being frequently charged and discharged, thereby avoiding the problem of charging delay due to the potential climbing during a charging process. In still another aspect, compared with reducing the width of the second fixed potential line 23, reducing the density of second fixed potential lines 23 does not change the resistance and parasitic capacitance of the second fixed potential line 23, and therefore has a relatively small impact on the display effect.
The foregoing descriptions are some embodiments of the present disclosure and are not intended to limit this disclosure. Any modification, equivalent replacement, and improvement made within principle of the present disclosure shall fall within the protection scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
202110462282.7 | Apr 2021 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
9147723 | Lee | Sep 2015 | B1 |
20200126472 | Tang | Apr 2020 | A1 |
20210013298 | Her | Jan 2021 | A1 |
20210134242 | Hei | May 2021 | A1 |
20210175298 | Park | Jun 2021 | A1 |
Number | Date | Country |
---|---|---|
110610675 | Dec 2019 | CN |
111405084 | Jul 2020 | CN |
Number | Date | Country | |
---|---|---|---|
20210335220 A1 | Oct 2021 | US |