The present disclosure relates to the field of display technologies, and in particular, to a display panel, a method for driving a pixel circuit of the display panel, and a display device.
At present, in order to increase a screen-to-body ratio of a display device, a display panel of the display device is provided with a light-transmittable display region, so that an optical device (such as a camera) may be disposed under the light-transmittable display region.
In a first aspect, a display panel is provided. The display panel includes:
In second aspect, a method for driving a pixel circuit is provided. The pixel circuit is the first pixel circuit in the display panel as described in the above aspect, and the method includes:
In a third aspect, a display device is provided. The display device includes a driving circuit and the display panel as described in the above aspect. The display panel includes a plurality of first pixel circuits; and
the driving circuit is connected with at least one of the plurality of first pixel circuits and is configured to drive the at least one first pixel circuit to operate.
To describe the technical solutions in the embodiments of the present disclosure more clearly, the following briefly introduces the accompanying drawings required for describing the embodiments. Apparently, the accompanying drawings in the following description show merely some embodiments of the present disclosure, and a person of ordinary skill in the art may still derive other drawings from these accompanying drawings without creative efforts.
In the related art, in order to ensure the light transmittance of the light-transmittable display region, generally, only a plurality of light-emitting elements are disposed in the light-transmittable display region and a plurality of pixel circuits which drive the plurality of light-emitting elements to emit light are generally located in other regions except the light-transmittable display region, such as a pixel circuit region specially used for arranging the pixel circuits. Each pixel circuit may be connected with one light-emitting element through a conductive wire.
However, due to the influence of the parasitic capacitance on the conductive wire, there will be a certain extent of delay in a turn-on time of the light-emitting element located in the light-transmittable display region. As a result, the risk of screen flickering of the display panel easily occurs.
The present disclosure provides a display panel, a method for driving a pixel circuit of the display panel, and a display device. The technical solutions are as follows.
For clearer descriptions of the objectives, technical solutions and advantages in the present disclosure, the embodiments of the present disclosure are described in further detail below with reference to the accompanying drawings.
Transistors used in all embodiments of the present disclosure may be thin film transistors, or field effect transistors, or other devices having the same properties. According to the function of the transistors in a circuit, the transistors used in the embodiments of the present disclosure mainly are switching transistors. Since a source and a drain of the switching transistor used here are symmetrical, the source and drain of the switching transistor are interchangeable. In the embodiment of the present disclosure, the source is called a first electrode and the drain is called a second electrode; or the drain is called the first electrode and the source is called the second electrode. Based on a form in the figure, it is stipulated that for the transistor, a middle terminal is a gate, a signal input terminal is the source, and a signal output terminal is the drain. In addition, the switching transistor used in the embodiment of the present disclosure may include any one of a P-type switching transistor and an N-type switching transistor. The P-type switching transistor is turned on when the gate is at a low level, and is turned off when the gate is at a high level. The N-type switching transistor is turned on when the gate is at a high level, and is turned off when the gate is at a low level.
In a display panel having a light-transmittable display region, one end of a light-emitting element in this light-transmittable display region (such as an anode) is connected with a pixel circuit through a conductive wire (such as a transparent conductive wire) and the other end (such as a cathode) is connected with a power source terminal (such as a VSS terminal providing a low level). When a voltage difference between a driving signal output by the pixel circuit to the light-emitting element and a power source signal provided by the power source terminal connected with the light-emitting element, i.e., a voltage difference between the cathode end and anode end of the light-emitting element reaches a turn-on voltage, the light-emitting element may emit light.
However, due to the existence of parasitic capacitance on the conductive wire, it takes a longer time for the voltage difference between the two ends of the light-emitting element to reach the turn-on voltage. Thus, in a scanning time of one frame, the light-emitting element always emits light after a delay of a few milliseconds, that is, the light-emitting element has the phenomenon of light-emitting delay. Especially for a low-gray-scale picture, the phenomenon of delay is more obvious because a potential itself of the driving signal is lower. In addition, since lengths of conductive wires connected between different light-emitting elements and pixel circuits are different and the longer the conductive wire is, the higher the parasitic capacitance is, the light-emitting times of different light-emitting elements are different. In this case, when the light-emitting delay time is longer, the phenomenon of screen flickering will occur on the display panel and the risk of screen flickering is larger.
An embodiment of the present disclosure provides a new display panel. In this display panel, a voltage difference between two ends of a light-emitting element in a light-transmittable display region can quickly reach a turn-on voltage in a light-emitting phase, that is, the phenomenon of light-emitting delay does not exist. Thus, the display panel has a lower risk of screen flickering.
An area of the second display region A12 may be much greater than an area of the first display region A11. In this case, a resolution of the second display region A12 may be higher than a resolution of the first display region A11. Since the resolution of the second display region A12 is higher than the resolution of the first display region A11, a larger part of a display picture may be displayed in the second display region A12. Thus, the second display region A12 may also be called a main display region. In addition, the first display region A11 may be a light-transmittable display region that may transmit light, that is, a region where the first display region A11 is located may transmit light. In this case, some photosensitive elements (such as a camera and a fingerprint identification device) required for the display device may be disposed in the first display region A11 so as to lay a foundation for narrow frame design of the display panel. The second display region A12 may be a light-non-transmittable display region. For example, the first display region A11 may be a transparent display region and the second display region A12 may be a non-transparent display region.
With continued reference to
In some embodiments, since the plurality of first pixel circuits 20 and the plurality of first light-emitting elements 10 are located in different regions, orthographic projections of the plurality of first pixel circuits 20 on the base substrate 01 are not overlapped with orthographic projections of the plurality of first light-emitting elements 10 on the base substrate 01. That is, the plurality of first pixel circuits 20 and the plurality of first light-emitting elements 10 do not have any overlapping area in a direction perpendicular to the display panel. In this case, an aperture ratio of the first display region A11 may be ensured, so that the first display region A11 has a better light-transmitting effect.
In addition, since the first pixel circuits 20 and the first light-emitting elements 10 are not in the same region, at least one of the plurality of first pixel circuits 20 may be connected with at least one of the plurality of first light-emitting elements 10 through at least one conductive wire L1. Moreover, the at least one first pixel circuit 20 may further be connected with a first initial power source terminal Vinit1 and a second initial power source terminal Vinit2 respectively. The first initial power source terminal Vinit1 may be configured to provide a first initial power source signal, and the second initial power source terminal Vinit2 may be configured to provide a second initial power source signal so as to reset one end (such as an anode) of the first light-emitting element 10. Moreover, the first pixel circuit 20 may output a driving signal to one end (such as the anode) of the first light-emitting element 10 in response to the first initial power source signal and other signals (such as a gate driving signal and a data signal) so as to drive the first light-emitting element 10 to emit light. In addition, the other end (such as a cathode) of each light-emitting element 10 may further be connected with a power source terminal VSS. The first pixel circuit connected with the two initial power source terminals may also be called a double-Vinit pixel circuit. Exemplarily,
In the embodiment of the present disclosure, a potential of the second initial power source signal may be higher than a potential of the first initial power source signal and lower than a turn-on voltage of the first light-emitting element 10. It is assumed that as shown in
It can be seen from the principle of controlling the first light-emitting element 10 to emit light that by setting the potential of the second initial power source signal to be higher than the potential of the first initial power source signal, the initial potential of one end of the first light-emitting element 10 connected with the second pixel circuit 20 may be higher than the initial potential in the pixel circuit in which the second initial power source signal terminal is not disposed in the reset phase, and thus the potential may quickly rise to the potential required for turn-on in the light-emitting phase, thereby solving the problem of light-emitting delay due to the influence of the parasitic capacitance on the conductive wire. In addition, by setting the potential of the second initial power source signal to be lower than the turn-on voltage of the first light-emitting element 10, it can effectively avoid the phenomenon that a light-emitting error occurs because the voltage difference between the two ends of the first light-emitting element 10 reaches the turn-on voltage before arrival of the driving signal, i.e., in the reset stage.
Optionally, in some embodiments, the plurality of first pixel circuits 20 are in one-to-one correspondence with the plurality of first light-emitting elements 10 in terms of an electrical connection relationship. That is, each first pixel circuit 20 may be connected with one first light-emitting element 10 through one conductive wire L1 and the first light-emitting elements 10 connected with various first pixel circuits 20 are different. The embodiment of the present disclosure does not limit the connecting relationship.
In summary, the display panel according to the embodiment of the present disclosure includes the first light-emitting element in the first display region and the first pixel circuit which is connected with the first light-emitting element through the conductive wire and is configured to drive the first light-emitting element to emit light. Since the first pixel circuit is connected with the two initial power source terminals and the potential of the signal provided by the second initial power source terminal configured to reset the first light-emitting element is higher than the potential of the signal provided by the other initial power source terminal, before light emitting, the potential of one end of the first light-emitting element is higher than the potential when the second initial power source terminal is not disposed, and further during light emitting, the voltage difference between two ends of the first light-emitting element can quickly reach the turn-on voltage. In this case, the problem of light-emitting delay due to the influence of the parasitic capacitance on the conductive wire is solved and the risk of screen flickering is reduced.
In some embodiments, a voltage value of the first initial power source signal is in the range of approximately -5 to -1 V. In some embodiments, a difference obtained by subtracting a voltage value of a signal provided by the VSS terminal from a voltage value of the second initial power source signal is less than a turn-on voltage of an OLED. In some embodiments, the turn-on voltage of the first light-emitting element is approximately 1.2 tol.8 V In some embodiments, the voltage value of the signal provided by the VSS terminal is approximately -5 to -2.5 V. In some embodiments, the voltage value of the second initial power source signal is approximately -0.7 to -3.8 V. The term “approximate value” here refers to a value that is allowed to float up and down within the range of process and measurement error without strictly defining the limit.
As an optional embodiment, the second initial power source terminal Vinit2 according to the embodiment of the present disclosure may be an alternating current power source terminal. In this case, the second initial power source terminal Vinit2 may be controlled to provide the second initial power source signal only in the reset phase, but not to provide the second initial power source signal in other phase (such as the light-emitting phase). For example, the potential of the second initial power source signal may be controlled to be the same as the potential of the power source signal provided by the power source terminal (such as VSS) connected with the other end of the first light-emitting element 10 in other phase.
By setting the second initial power source terminal Vinit2 as the alternating current power source terminal, it can avoid the phenomenon that the light-emitting error occurs because the voltage difference between the two ends of the first light-emitting element 10 reaches the turn-on voltage due to electric leakage of the transistor (such as the driving transistor) in the first pixel circuit 20 in the non-light-emitting phase. That is, the phenomenon of abnormal display is avoided.
In addition, if the second initial power source terminal Vinit2 is the alternating current power source terminal, the first initial power source terminal Vinit1 and the second initial power source terminal Vinit2 may be set to be shared and the shared initial power source terminal is controlled to flexibly output initial power source signals with different potentials in different phases. Thus, the wiring is simplified and the cost is saved.
As another optional embodiment, the second initial power source terminal Vinit2 according to the embodiment of the present disclosure may be a direct current power source terminal. In this case, the second initial power source terminal Vinit2 may be controlled to provide the second initial power source signal in various phases (including the reset phase and the light-emitting phase).
It should be noted that the potential of the second initial power source signal provided by the second initial power source terminal Vinit2 according to the embodiment of the present disclosure may also be dynamically adjusted based on the picture displayed currently. Optionally, the driving circuit that controls the pixel circuit to operate may detect the picture displayed currently by the display panel and flexibly adjust the second initial power source signal based on a detection result. In this case, the better display effect may be further ensured.
For example, if the picture displayed by the display panel currently is a low-gray-scale picture, the driving circuit may determine that the potential of the driving signal output by the first pixel circuit 20 is lower. Correspondingly, for making the potential of one end of the first light-emitting element 10 connected with the first pixel circuit 20 to quickly reach the potential required for turn-on, the driving circuit may control the potential of the second initial power source signal to be higher than the potential when the second initial power source terminal is not disposed. Conversely, if the picture displayed currently is a high-gray-scale picture, the driving circuit may determine that the potential of the driving signal output by the first pixel circuit 20 is higher. Correspondingly, the driving circuit may control the potential of the second initial power source signal to be higher than the potential when the second initial power source terminal is not disposed, but lower than the potential when the low-gray-scale picture is displayed. A gray-scale value of the low-gray-scale picture is less than that of the high-gray-scale picture.
The driving sub-circuit 201 may be connected with the gate signal terminal G1, the data signal terminal D1, the light-emitting control signal terminal EM, the direct current signal terminal VDD, the pull-down control terminal RST2, the first initial power source terminal Vinit1 and a target node N01, respectively. The driving sub-circuit 201 may output a driving signal to the target node N01 in response to a gate driving signal provided by the gate signal terminal G1, a data signal provided by the data signal terminal D1, a light-emitting control signal provided by the light-emitting control signal terminal EM, a direct current signal provided by the direct current signal terminal VDD, a pull-down control signal provided by the pull-down control terminal RST2 and the first initial power source signal.
The reset sub-circuit 202 may be connected with the reset signal terminal RST1, the second initial power source terminal Vinit2 and the target node N01, respectively. The reset sub-circuit 202 may output the second initial power source signal to the target node N01 in response to a reset signal provided by the reset signal terminal RST1.
The first light-emitting element 10 may be connected with the target node N01 through the conductive wire L1.
Optionally, in conjunction with another first pixel circuit shown in
The compensating sub-circuit 203 may be connected with a voltage-stabilized power source terminal VGL and the target node N01 respectively, and may be configured to compensate for a potential of the target node N01 based on a voltage-stabilized signal provided by the voltage-stabilized power source terminal VGL. For example, the voltage-stabilized power source terminal VGL may be a grounding terminal.
Optionally,
The data writing unit 2011 may be connected with the gate signal terminal G1, the data signal terminal D1 and a first node N1 respectively, and may be configured to control an on-off state of the data signal terminal D1 and the first node N1 in response to the gate driving signal.
For example, the data writing unit 2011 may control the first node N1 to be communicated to the data signal terminal D1 when the potential of the gate driving signal is the first potential. At this time, the data signal terminal D1 may output the data signal to the first node N1 through a data writing transistor T1. The data writing unit 2011 may control the first node N1 to be disconnected from the data signal terminal D1 when the potential of the gate driving signal provided by the gate signal terminal G1 is the second potential. Optionally, the first potential may be a valid potential and the second potential may be an invalid potential, and the first potential may be a low potential relative to the second potential.
The pull-down unit 2012 may be connected with the pull-down control terminal RST2, the first initial power source terminal Vinit1, and a second node N2 respectively, and may be configured to control an on-off state of the first initial power source terminal Vinit1 and the second node N2 in response to the pull-down control signal.
For example, the pull-down unit 2012 may control the second node N2 to be communicated to the first initial power source terminal Vinit1 when the potential of the pull-down control signal provided by the pull-down control terminal RST2 is the first potential. At this time, the first initial power source terminal Vinit1 may output the first initial power source signal at the second potential to the second node through a pull-down transistor T2 to achieve noise reduction of the second node N2. The pull-down unit 2012 may control the second node N2 to be disconnected from the first initial power source terminal Vinit1 when the potential of the pull-down control signal provided by the pull-down control terminal RST2 is the second potential.
The compensating unit 2013 may be connected with the gate signal terminal G1, a third node N3, and the second node N2 respectively, and may be configured to adjust a potential of the second node N2 based on a potential of the third node N3 in response to the gate driving signal.
The storing unit 2014 may be connected with the direct current signal terminal VDD and the second node N2 respectively, and may be configured to control the potential of the second node N2 based on the direct current signal.
The light-emitting control unit 2015 may be connected with the light-emitting control signal terminal EM, the direct current signal terminal VDD, the first node N1, the third node N3, and the target node N01 respectively, and may be configured to control an on-off state of the direct current signal terminal VDD and the first node N1 as well as an on-off state of the third node N3 and the target node N01 in response to the light-emitting control signal.
For example, the light-emitting control unit 2015 may control the first node N1 to be communicated to the direct current signal terminal VDD when the potential of the light-emitting control signal is the first potential. At this time, the direct current signal terminal VDD may output the direct current power source signal to the first node N1 through a light-emitting control transistor T4. In addition, the light-emitting control unit 2015 may control the third node N3 to be communicated to the target node N01. The light-emitting control unit 2015 may control the first node N1 to be disconnected from the direct current signal terminal VDD and control the third node N3 to be disconnected from the target node N01, when the potential of the light-emitting control signal is the second potential.
The driving unit 2016 may be connected with the second node N2, the first node N1, and the third node N3 respectively, and may be configured to output the driving signal to the third node N3 based on the potential of the second node N2 and the potential of the first node N1.
For example, the driving unit 2016 may output a driving current to the third node N3 based on the potential of the second node N2 and the potential of the first node N1. Correspondingly, when the light-emitting control unit 2015 controls the third node N3 to be connected to the target node N01, the driving current may be output to the target node N01 through the light-emitting control unit 2015.
By setting the compensating capacitor C1, the parasitic capacitance on the transparent conductive wire L1 can be effectively compensated, and on the other hand, it shortens the time for the voltage difference between the two ends of the first light-emitting element 10 to reach the turn-on voltage. Optionally, a capacitance value of the compensating capacitor C1 may be set to be smaller relative to the parasitic capacitance on the conductive wire L1, so that certain compensation value deviation range may be reserved.
With continued reference to the first pixel circuit shown in
A gate of the data writing transistor T1 may be connected with the gate signal terminal G1, a first electrode may be connected with the data signal terminal D1, and a second electrode may be connected with the first electrode N1.
A gate of the pull-down transistor T2 may be connected with the pull-down control terminal RST2, a first electrode may be connected with the first initial power source terminal Vinit1, and a second electrode may be connected with the second node N2.
A gate of the compensating transistor T3 may be connected with the gate signal terminal G1, a first electrode may be connected with the third node N3, and a second electrode may be connected with the second node N2.
Both a gate of the first light-emitting control transistor T4 and a gate of the second light-emitting control transistor T5 are connected with the light-emitting control signal terminal EM, a first electrode of the first light-emitting control transistor T4 is connected with the direct current signal terminal VDD and a second electrode of the first light-emitting control transistor T4 is connected with the first node N1, and a first electrode of the second light-emitting control transistor T5 is connected with the third node N3 and a second electrode of the second light-emitting control transistor T5 is connected with the target node N01.
One end of the compensating capacitor C0 may be connected with the second node N1, and the other end of the compensating capacitor C0 may be connected with the direct current signal terminal VDD.
A gate of the driving transistor T6 may be connected with the second node N2, a first electrode of the driving transistor T6 may be connected with the first node N1 and a second electrode of the driving transistor T6 may be connected with the third node N3.
A gate of the reset transistor T7 may be connected with the reset signal terminal RST1, a first electrode of the reset transistor T7 may be connected with the second initial power source terminal Vinit2, and a second electrode of the reset transistor T7 may be connected with the target node N01.
In addition, with reference to
Exemplarily, that the capacitance value c of the parasitic capacitor Cap on the conductive wire L1 is 1.5 picofarads (pF), the resistance value r of the parasitic resistor R1 is 300 kilo-ohms (kΩ), and both the potential v1 of the first initial power source signal and the potential v2 of the power source signal provided by the VSS are -3 volts (v) in the first pixel circuit 20 shown in
Comparing
Comparing
In order to further embody the beneficial effects of the embodiment of the present disclosure, for the high-gray-scale picture, the low-gray-scale picture and a black-state picture, one sub-pixel (such a red sub-pixel) in the first light-emitting element 10 is simulated with the potential of the second initial power source signal being -1.5 V and -3 V. Reference may be made to table 1 to table 3 below for simulation results. Table 1 shows when the high-gray-scale picture is displayed and the loadings on the conductive wire L1 are 50% loading and 100% loading respectively, light-emitting currents when the first light-emitting element 10 emits light as well as the current difference percentage delta between the two. Table 2 shows when the low-gray-scale picture is displayed and the loadings on the conductive wire L1 are 50% loading and 100% loading respectively, light-emitting currents when the first light-emitting element 10 emits light as well as the current difference percentage delta between the two., Table 3 shows when the black-state picture is displayed and the loadings on the conductive wire L1 are 50% loading and 100% loading respectively, light-emitting currents when the first light-emitting element 10 emits light as well as the current difference percentage delta between the two..
With reference to table 1 above, it can be seen that when the high-gray-scale picture is displayed, under different loadings, the light-emitting current difference of the first light-emitting element 10 corresponding to any second initial power source signal is relatively small, is less than 2% as shown in Table 1 and meets a gamma standard. Thus, it can be determined that in the embodiment of the present disclosure, an increase in the potential of the second initial power source signal does not have any influence on the display of the high-gray-scale picture. That is, when the high-gray-scale picture is displayed, the light-emitting current of the first light-emitting element 10 may also meet a light-emitting current standard.
With reference to table 2 above, it can be seen that when the low-gray-scale picture is displayed, under different loadings, the light-emitting current difference of the first light-emitting element 10 corresponding to the second initial power source signal with a higher potential (such as -1.5 V) is smaller, such as 13.54% shown in table 2, and the light-emitting current difference of the first light-emitting element 10 corresponding to the second initial power source signal with a lower potential (such as -3 V) is larger, such as 72.19% shown in table 2. It can be determined that for the low-gray-scale picture, the illumination difference of the first light-emitting element 10 under different loadings can be made smaller by increasing the potential of the second initial power source signal, that is, better uniformity of gray-scale illumination may also be ensured.
With reference to table 3 above, it can be seen that when the black-state picture is displayed (which may be understood that no picture is displayed), under different loadings, the light-emitting current difference of the first light-emitting element 10 corresponding to any second initial power source signal is smaller. Thus, it can be determined that in the embodiment of the present disclosure, an increase in the potential of the second initial power source signal does not have any influence on the display of the black-state picture. In addition, after the potential of the second initial power source signal is increased to -1.5 V, under different loadings, the light-emitting current of the first light-emitting element 10 may also be less than 1p A and meets the black-state current standard (specific). It can also be determined that when the potential of the second initial power source signal is increased to -1.5 V, the voltage difference between the two ends of the first light-emitting element 10 cannot reach the turn-on voltage in the reset phase, and the light-emitting error will not occur.
Based on the above simulation table, it can be determined that by increasing the potential of the second initial power source signal, the normal display of any type of display picture (including the high-gray-scale picture, the low-gray-scale picture and the black-state picture) will not be affected, the better uniformity of illumination of the low-gray-scale picture may be ensured and the problem of turn-on delay may be improved.
Since the second display region A12 is a non-transparent display region, the pixel circuit that drives the light-emitting element in the second display region A12 may be located in the second display region A12, and there is no need to connect the pixel circuit and the light-emitting element through a conductive wire. For example,
At least one of the plurality of second pixel circuits 40 may be connected with at least one of the plurality of second light-emitting elements 30, and an orthographic projection of the at least one second pixel circuit 40 on the base substrate 01 and an orthographic projection of the at least one second light-emitting element 30 connected with the at least one second pixel circuit 40 on the base substrate 01 may be at least partially overlapped with each other.
Or in the display panel, the plurality of second pixel circuits 40 may be in one-to-one correspondence with the plurality of second light-emitting elements 30 in terms of an electrical connection relationship. That is, each second pixel circuit 40 may be connected with one second light-emitting element 30 and the second light-emitting elements 30 connected with various second pixel circuits 40 are different.
It should also be noted that for normally driving the display panel to operate, as shown in
In conjunction with the first pixel circuit shown in
In addition, for ensuring the light transmittance of the first display region A11, the plurality of driving signal lines are not located in the first display region A11, but only located in the second display region A12. In addition, the driving signal lines (e.g., Gate, EM1, and Data) on a different layer from the conductive wire L1 may be at least partially or completely overlapped with the conductive wire L1. The driving signal lines on the same layer as the conductive wire L1 are not overlapped with the conductive wire L1. In addition, for avoiding the influence of the conductive wire L1 on other driving signals, an orthographic projection of the conductive wire L1 on the base substrate 01 and an orthographic projection of a via region connecting different layers on the base substrate 01 may not be overlapped with each other.
Optionally, the second display region A12 includes a plurality of second light-emitting elements 30 and a plurality of second pixel circuits 40, while the first display region A11 only includes a plurality of first light-emitting elements 10, but does not include a plurality of first pixel circuits 20. Correspondingly, the plurality of first pixel circuits 20 are disposed in other regions other than the first display region A11. For example, the plurality of first pixel circuits 20 may be disposed in a pixel circuit region A2. Or the plurality of first pixel circuits 20 may be disposed in the second display region A12. Or part of the plurality of first pixel circuits 20 may be disposed in the pixel circuit region A2 and part of the plurality of first pixel circuits 20 may be disposed in the second display region A12.
It should be noted that in conjunction with the display panel shown in
Then in conjunction with the display panel shown in
Optionally, the second pixel circuit 40 according to the embodiment of the present disclosure may have the same structure as the first pixel circuit 20. That is, both the second pixel circuit 40 and the first pixel circuit 20 may adopt the double-Vinit structure as shown in
Optionally, for simplifying wiring and saving the cost, when the second pixel circuit 40 and the first pixel circuit 20 have the same structure, the first pixel circuit 20 and the second pixel circuit 40 may share the first initial power source terminal Vinit1 and the second initial power source terminal Vinit2. Or the first pixel circuit 20 and the second pixel circuit 40 may also be connected with different initial power source terminals (including the first initial power source terminal Vinit1 and the second initial power source terminal Vinit2), so that the driving circuit may flexibly control the potentials of the initial power source signals provided by the initial power source terminals connected with the pixel circuits in different display regions.
Optionally, for further ensuring the light transmittance in the first display region A11, the conductive wire L1 according to the above embodiment may be a transparent conductive wire. For example, the conductive wire L1 may be made of a transparent material such as indium tin oxide (ITO) or indium gallium zinc oxide (IGZO). It is assumed that the conductive wire L1 is made of ITO, the conductive wire L1 may also be called ITO wiring.
Optionally, with reference to a still further display panel shown in
Optionally, the light-emitting elements (including the first light-emitting element 10 and the second light-emitting element 30) according to the embodiment of the present disclosure may be electroluminescent (EL) devices.
In summary, the display panel according to the embodiment of the present disclosure includes the first light-emitting element in the first display region and the first pixel circuit which is connected with the first light-emitting element through the conductive wire and is configured to drive the first light-emitting element to emit light. Since the first pixel circuit is connected with the two initial power source terminals and the potential of the signal provided by the second initial power source terminal configured to reset the first light-emitting element is higher than the potential of the signal provided by the other initial power source terminal, before light emitting, the potential of one end of the first light-emitting element is higher than the potential when the second initial power source terminal is not disposed, and further during light emitting, the voltage difference between two ends of the first light-emitting element can quickly reach the turn-on voltage. In this case, the problem of light-emitting delay due to the influence of the parasitic capacitance on the conductive wire is solved and the risk of screen flickering is reduced.
In step 1601, the first pixel circuit outputs a second initial power source signal provided by a second initial power source terminal to a first light-emitting element connected with the first pixel circuit in a reset phase.
In step 1602, the first pixel circuit outputs a driving signal to the first light-emitting element connected with the first pixel circuit in response to a first initial power source signal provided by a first initial power source terminal in a light-emitting phase.
A potential of the second initial power source signal is higher than a potential of the first initial power source signal and lower than a turn-on voltage of the first light-emitting element.
In summary, the embodiment of the present disclosure provides the method for driving the pixel circuit. Since the first pixel circuit is connected with the two initial power source terminals and the potential of the initial power source signal provided by the second initial power source terminal configured to reset the first light-emitting element is higher than the potential of the signal provided by the other initial power source terminal, before light emitting, the potential of one end of the first light-emitting element is higher than the potential when the second initial power source terminal is not disposed, and further during light emitting, the voltage difference between two ends of the first light-emitting element can quickly reach the turn-on voltage. In this case, the problem of light-emitting delay due to the influence of the parasitic capacitance on the conductive wire is solved and the risk of screen flickering is reduced.
Optionally, as disclosed in the above device side, the second initial power source terminal Vinit2 may be an alternating current power source terminal or a direct current power source terminal. Correspondingly, the method according to the embodiment of the present disclosure may further include:
the second initial power source signal is provided to the second initial power source terminal in the reset phase and the light-emitting phase, where the second initial power source signal is a direct current signal; or the second initial power source signal is provided to the second initial power source terminal in the reset phase, where the second initial power source signal is an alternating current signal.
Taking that the first potential is a low potential relative to the second potential in the first pixel circuit 20 shown in
In the pull-down phase t1, the potential of the pull-down control signal provided by the pull-down control terminal RST2 is the first potential. At this time, the pull-down transistor T2 may be turned on. The first initial power source terminal Vinit1 may output the first initial power source signal at the second potential to the second node N2 through the pull-down transistor T2 to achieve pull-down reset of the second node N2.
In the reset phase t2, the potential of the reset signal provided by the reset signal terminal RST1 and the potential of the gate driving signal provided by the gate signal terminal G1 are the first potential. At this time, the data writing transistor T1 and the reset transistor T7 may be turned on. The second initial power source terminal Vinit2 may output the second initial power source signal at the second potential to the target node N01 through the reset transistor T7 to achieve the reset of the target node N01. The data signal terminal D1 may output the data signal to the first node N1 through the data writing transistor T1 so as to charge the first node N1.
In the light-emitting phase t3, the potential of the light-emitting control signal provided by the light-emitting control signal terminal EM is the first potential. At this time, the light-emitting control transistors T4 and T5 are both turned on. The direct current signal terminal VDD may output the direct current power source signal to the first node N1 through the light-emitting control transistor T4. The driving transistor T6 may output a driving current to the third node N3 based on the potential of the first node N1 and the potential of the second node N2. Next, the driving current is output to the target node N01 through the light-emitting control transistor T5. When the potential of the target node N01 reaches the potential required for turn-on, the first light-emitting element 10 emits light.
In summary, for the method for driving the pixel circuit according to the embodiment of the present disclosure, since the first pixel circuit is connected with the two initial power source terminals and the potential of the initial power source signal provided by the second initial power source terminal configured to reset the first light-emitting element is higher than the potential of the signal provided by the other initial power source terminal, before light emitting, the potential of one end of the first light-emitting element is higher than the potential when the second initial power source terminal is not disposed and further during light emitting, the voltage difference between two ends of the first light-emitting element can quickly reach the turn-on voltage. In this case, the problem of light-emitting delay due to the influence of the parasitic capacitance on the conductive wire is solved and the risk of screen flickering is reduced.
Optionally,
The driving circuit may be connected with at least one of the plurality of first pixel circuits in the display panel 200 and may be configured to drive the at least one first pixel circuit to operate. In addition, the driving circuit 100 may also be connected with at least one second pixel circuit and drives the at least one second pixel circuit to operate. For example, the driving circuit 100 may be connected with the pixel circuits in the display panel 200 through various driving signal lines as shown in
Optionally, the driving circuit 100 may further be configured to control the potential of the second initial power source signal provided by the second initial power source signal terminal connected with the first pixel circuit 20 based on a picture displayed by the display panel 200 currently. That is, the potential of the second initial power source signal may be adjusted dynamically. In this case, the driving flexibility is improved.
Optionally, the display device may be any product or component having a display function such as an organic light-emitting diode (OLED) display device, a liquid crystal display (LCD) display device, a mobile phone, a television or a display.
The above description is only optional embodiments of the present disclosure, and is not intended to limit the present disclosure. Any modifications, equivalent replacements, improvements and the like made within the spirit and principles of the present disclosure should be included within the scope of protection of the present disclosure.
This application is a continuation of U.S. Pat. Application Serial No. 17/441,716, filed Sep. 22, 2021, which is a 371 of PCT Application No. PCT/CN2020/118657, filed on Sep. 29, 2020, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 17441716 | Sep 2021 | US |
Child | 18221960 | US |