The present disclosure is related to displays, such as display screens.
Display contrast is a factor in the visual quality of a display system. Techniques for improving the contrast of such systems continue to be desirable.
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanying drawings in which:
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components and circuits have not been described in detail so as not to obscure the present invention.
As previously discussed, display contrast is a factor in the visual quality of a display system. While some displays or display screens have good contrast in conditions of no or nearly no ambient illumination, such displays or display screens have reduced contrast where ambient illumination is present. This is sometimes due, at least in part, to reflectance of this ambient illumination. Likewise, even in conditions of no or nearly no ambient illumination, display contrast might be improved if light scattering internal to the screen is reduced and, perhaps, even eliminated. Some embodiments in accordance with the invention, such as those described hereinafter, may provide such improved contrast.
As
However, as previously indicated, additional improvements in contrast remain desirable. For example, in
Embodiment 200 in
As illustrated in
The invention is not limited in scope to a particular holographic material, however, examples of such material include: Photopolymers, such as available from E.I. du Pont de Nemours and Company, Wilmington, Del. (hereinafter, “DuPont”); and/or High Energy Beam Sensitive (HEBS) glass, such as available from Canyon Materials, Inc. The amount of absorption and reflection that occurs for incident light depends at least in part upon the particular material employed; however, material, such as photopolymers, for example, may be employed in some embodiments, for example, where approximately in the range of from 2 to 10 percent of the incident light is reflected. Therefore, due at least in part to the shape of the adjacent structures, unabsorbed light is reflected so that the next time it impinges upon the material it may be approximately 90 to 98 percent absorbed and approximately 2 to 10 percent reflected, for this embodiment, although, the invention is not limited in scope to these percentages and they may vary depending upon a variety of factors. However, again, this may be repeated multiple times so that a relatively small amount of bulk reflectance takes place.
Holographic films having the desired structure may be fabricated on planarized surfaces using a technique called interference lithography, although the invention is not limited in scope to employing only this technique. For example, Holographic Lithography Systems, based in Bedford, Mass., employs such fabrication techniques. In this context, the term interference lithography refers to a holographic technique, typically maskless, in which patterning of material occurs via electromagnetic interference. Using such an approach, feature sizes as small as 90 nanometers, for example, may be patterned over a relatively wide area. Likewise, this technique may be employed to fabricate structures such as 255 and 265 or 256 and 266, shown in
In an alternative approach, HEBS gray level masks may enable mass production of three-dimensional (3D) microstructures that may also be employed. For example, it may be possible to fabricate a gray-level or gray-scale mask using a standard e-beam tool. HEBS-glass turns dark upon exposure to an electron beam. Furthermore, controlling the electron dosage may control the level of darkness. Therefore, HEBS-glass may be capable of resolution to molecular dimensions. There are a number of potential advantages, such as reduction in alignment errors, reduction in the use of chemicals, and an economical mask fabrication technique. Canyon Materials, Inc., San Diego, Calif., for example, makes custom HEBS-glass gray level masks. These gray-level masks enable mass fabrication of 3-D microstructures and may employed in several fields of micro technology, including fabrication of embodiments of holographic films and/or patches in accordance with the present invention. Again, the forgoing are just two examples of techniques that may be employed to fabricate the desired structures and the invention is not in scope to a particular technique.
This embodiment is similar to the previous embodiment in that both light reflected within the display screen and ambient light transmitted into the display screen is absorbed by a holographic film. This is illustrated, for example, by light rays 350 and 360. Whereas in the previous embodiment light is absorbed by adjacent structures, here, the holographic patches are positioned in different layers so that light that is scattered or reflected to within the layer that includes the emissive pixels may be absorbed. This is illustrated in
This embodiment is similar to the previous embodiment; however, whereas in the previous embodiment light is absorbed by holographic patches positioned in different layers so that light that is scattered or reflected to within the layer that includes the emissive pixels may be absorbed by a holographic film, in
An embodiment of a method of trapping at least a portion of light incident upon the front side of a holographic film, such as may be performed by embodiment 200 illustrated in
In another embodiment, a method of trapping at least a portion of light scattered by an inside face, such as 201, of a cover plate, such as 240, of a display, such as 200, may include the following. At least some of the scattered light incident on the front side of a holographic film, such as patch 235, may be absorbed, in some embodiments, a major portion. The remaining scattered light incident on the front side of the holographic film may be reflected in a manner so as to be again incident upon the front side of the holographic film after reflection. Furthermore, again, as described for the previous embodiment, this may be repeated multiple times. For example, in one embodiment, as illustrated in
It will, of course, be understood that, although particular embodiments have just been described, the invention is not limited in scope to a particular embodiment or implementation. Likewise, although the invention is not limited in scope in this respect, one embodiment may comprise an article, such as a display screen. Such a display screen may be employed, for example, as part of a system, such as a host computer, a computing system, a platform, or an imaging system.
While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes and equivalents will now occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
This patent application is a continuation-in-part of U.S. patent application Ser. No. 09/318,501, filed on May 25, 1999, titled, “Display Screen,” Raj at el., now U.S. Pat. No. 6,326,723, and of U.S. patent application Ser. No. 09/318,683, filed on May 25, 1999, titled, “Anti-Reflection Layer in Spatial Light Modulators,” by Booth et al., now U.S. Pat. No. 6,175,442, these applications being concurrently filed, and assigned to the assignee of the present invention. This patent application is also related to concurrently filed U.S. patent application Ser. No. 09/662,656, titled, “Tiled Display Screen,” by Booth et al., assigned to the assignee of the present invention, and herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4814800 | Lavinsky et al. | Mar 1989 | A |
5142385 | Anderson et al. | Aug 1992 | A |
5300169 | Tahara | Apr 1994 | A |
5656360 | Faykish et al. | Aug 1997 | A |
5668662 | Magocs et al. | Sep 1997 | A |
5817396 | Perlo et al. | Oct 1998 | A |
5875122 | Acharya | Feb 1999 | A |
5877893 | Kim | Mar 1999 | A |
5995210 | Acharya | Nov 1999 | A |
6002500 | Kim | Dec 1999 | A |
6009201 | Acharya | Dec 1999 | A |
6009206 | Acharya | Dec 1999 | A |
6047303 | Acharya | Apr 2000 | A |
6091851 | Acharya | Jul 2000 | A |
6094508 | Acharya et al. | Jul 2000 | A |
6108453 | Acharya | Aug 2000 | A |
6130960 | Janusz et al. | Aug 2000 | A |
6124811 | Acharya et al. | Sep 2000 | A |
6151069 | Dunton et al. | Nov 2000 | A |
6151163 | Hall, Jr. et al. | Nov 2000 | A |
6151415 | Acharya et al. | Nov 2000 | A |
6154493 | Acharya et al. | Nov 2000 | A |
6166664 | Acharya | Dec 2000 | A |
6178269 | Acharya | Jan 2001 | B1 |
6195026 | Acharya | Feb 2001 | B1 |
6215908 | Pazmino et al. | Apr 2001 | B1 |
6215916 | Acharya | Apr 2001 | B1 |
6229578 | Acharya et al. | May 2001 | B1 |
6233358 | Acharya | May 2001 | B1 |
6236433 | Acharya et al. | May 2001 | B1 |
6236765 | Acharya | May 2001 | B1 |
6269181 | Acharya | Jul 2001 | B1 |
6275206 | Tsai et al. | Aug 2001 | B1 |
6285796 | Acharya et al. | Sep 2001 | B1 |
6292114 | Tsai et al. | Sep 2001 | B1 |
6301392 | Acharya | Oct 2001 | B1 |
6594073 | Wang | Jul 2003 | B1 |
Number | Date | Country |
---|---|---|
2311873 | Oct 1997 | GB |
Number | Date | Country | |
---|---|---|---|
Parent | 09318501 | May 1999 | US |
Child | 09662660 | US | |
Parent | 09318683 | May 1999 | US |
Child | 09318501 | US |