The present invention relates to display technology, more particularly, to a display substrate, a display panel and a display apparatus having the same, and a fabricating method thereof.
In one aspect, the present invention provides a display substrate comprising a base substrate having at least a first region, a second region adjacent to the first region, a third region adjacent to the second region and spaced apart from the first region by the second region on one side, and a black matrix region; a black matrix in the black matrix region on the base substrate comprising a plurality of rows and a plurality of columns intersecting each other; a first color filter layer in a first region and extending into the black matrix region, the first color filter layer overlapping with the black matrix throughout the plurality of columns of the black matrix; a second color filter layer in the second region; and a third color filter layer in the third region.
Optionally, the first color filter layer overlaps with the black matrix throughout the plurality of rows and the plurality of columns of the black matrix.
Optionally, the first color filter layer completely covers an entire area of the black matrix region throughout the plurality of rows and the plurality of columns of the black matrix.
Optionally, the first color filter layer abuts the second color filter layer at an interface between the first color filter layer and the second color filter layer, the interface is within the black matrix region.
Optionally, the first color filter layer abuts the second color filter layer at an interface between the first color filter layer and the second color filter layer, the interface is outside the black matrix region.
Optionally, the first color filter layer extends into an interface between the second color filter layer and the third color filter layer, the first color filter layer abuts the second color filter layer on a first side and abuts the third color filter layer on a second side at the interface.
Optionally, the display substrate further comprises a protective layer at an interface between the second color filter layer and the third color filter layer, the protective layer abuts the second color filter layer on a first side and abuts the third color filter layer on a second side at the interface.
Optionally, the second color filter layer and the third color filter layer abut each other at an interface between the second color filter layer and the third color filter layer.
Optionally, the display substrate further comprises a fourth color filter layer in a fourth region on the base substrate, the fourth region adjacent to the third region, the third region spaced apart from the first region by the second region on a first side and spaced apart from the first region by the fourth region on a second side.
Optionally, the first color filter layer is a blue color filter layer.
Optionally, the display substrate further comprises a spacer layer having a plurality of spacers in the black matrix region, the plurality of spacers are substantially on a same level with each other.
In another aspect, the present invention provides a method of fabricating a display substrate comprising forming a black matrix comprising a plurality of rows and a plurality of columns intersecting each other in a black matrix region on a base substrate; the base substrate having at least a first region, a second region adjacent to the first region, a third region adjacent to the second region and spaced apart from the first region by the second region on one side, and the black matrix region; forming a first color filter layer in the first region and extending into the black matrix region, the first color filter layer overlapping with the black matrix at least throughout the plurality of columns of the black matrix; forming a second color filter layer in the second region; and forming a third color filter layer in the third region.
Optionally, the first color filter layer is formed to overlap with the black matrix throughout the plurality of rows and the plurality of columns of the black matrix.
Optionally, the first color filter layer is formed to completely cover an entire area of the black matrix region throughout the plurality of rows and the plurality of columns of the black matrix.
Optionally, the first color filter layer is formed to abut the second color filter layer at an interface between the first color filter layer and the second color filter layer, the interface is within the black matrix region.
Optionally, the first color filter layer is formed to abut the second color filter layer at an interface between the first color filter layer and the second color filter layer, the interface is outside the black matrix region.
Optionally, the first color filter layer is formed to extend into an interface between the second color filter layer and the third color filter layer, the first color filter layer abuts the second color filter layer on a first side and abuts the third color filter layer on a second side at the interface.
Optionally, the method further comprises forming a protective layer at an interface between the second color filter layer and the third color filter layer, the protective layer is formed to abut the second color filter layer on a first side and abut the third color filter layer on a second side at the interface.
Optionally, the second color filter layer and the third color filter layer are formed to abut each other at an interface between the second color filter layer and the third color filter layer.
Optionally, the method further comprises forming a fourth color filter layer in a fourth region on the base substrate, the fourth region adjacent to the third region, the third region spaced apart from the first region by the second region on a first side and spaced apart from the first region by the fourth region on a second side.
Optionally, the first color filter layer is a blue color filter layer.
Optionally, the method further comprises forming a spacer layer having a plurality of spacers in the black matrix region.
In another aspect, the present invention provides a display panel comprising the display substrate described herein or fabricated by a method described herein, a package substrate, and a spacer layer between the display substrate and the package substrate, wherein the spacer layer comprising a plurality of spacers in the black matrix region.
In another aspect, the present invention provides display apparatus comprising the display panel described herein.
In another aspect, the present invention provides a display substrate having at least a first region corresponding to a subpixel of a first color, a second region adjacent to the first region and corresponding to a subpixel of a second color, a third region adjacent to the second region and spaced apart from the first region by the second region on one side, the third region corresponding to a subpixel of a third color, and a black matrix region outside the first region, the second region, and the third region, comprising a base substrate; a black matrix on the base substrate and in the black matrix region, the black matrix comprising a plurality of rows and a plurality of columns intersecting each other; a first color filter layer having a net structure with a plurality of openings, and comprising a first portion in the first region and a second portion in the black matrix region, the first color filter layer substantially covering the plurality of columns of the black matrix; a second color filter layer in the second region; and a third color filter layer in the third region; wherein the second color filter layer and the third color filter layer are both in the plurality of openings, and are respectively spaced apart from the first color filter layer; a first height of a surface of the first portion away from the base substrate relative to the base substrate and a second height of a surface of the second portion away from the base substrate relative to the base substrate are within 30% of each other.
Optionally, a difference between the height h2 and the height h1 is greater than or equal to 0, and less than or equal to a thickness of the black matrix between the second portion and the base substrate, and the second height is greater than or equal to the first height.
Optionally, the first color filter layer covers 80% to 90% of a respective one of the plurality of columns of the black matrix along a row direction.
Optionally, a color filter layer other than the first color filter layer and directly adjacent to the respective one of the plurality of columns of the black matrix covers 1% to 10% of the respective one of the plurality of columns of the black matrix along the row direction.
Optionally, 0% to 5% of respective one of the plurality of columns of the black matrix along the row direction is uncovered by any color filter layer.
Optionally, at least one of two color filter layers directly adjacent to a respective one of the plurality of rows of the black matrix at least partially covers the respective one of the plurality of rows of the black matrix.
Optionally, the two color filter layers directly adjacent to the respective one of the plurality of rows of the black matrix are spaced apart from each other by a gap in the black matrix region and on a side of the respective one of the plurality of rows of the black matrix away from the base substrate.
Optionally, each of the two color filter layers directly adjacent to the respective one of the plurality of rows of the black matrix partially covers the respective one of the plurality of rows of the black matrix, the two color filter layers corresponding to subpixels other than a subpixel of white color.
Optionally, the display substrate further has a fourth region adjacent to the third region and corresponding to a subpixel of a fourth color, the third region spaced apart from the first region by the second region on a first side and spaced apart from the first region by the fourth region on a second side.
Optionally, the subpixel of the fourth color is a white subpixel; and the third color filter layer at least partially covers a respective one of the plurality of rows of the black matrix between, and directly adjacent to, the third region and the fourth region.
Optionally, the display substrate further comprises a fourth color filter layer in the fourth region, the fourth color filter layer comprising a substantially transparent material.
Optionally, the display substrate further comprises a protective layer on a side of the first color filter layer, the second color filter layer, the third color filter layer, and the black matrix away from the base substrate; wherein a portion of the protective layer extends into the fourth region, constituting the fourth color filter layer.
Optionally, the subpixel of the fourth color is a yellow subpixel; the display substrate further comprises a fourth color filter layer in the fourth region, the fourth color filter being a yellow color filter; and each of the third color filter layer and the fourth color filter layer at least partially covers a respective one of the plurality of rows of the black matrix between, and directly adjacent to, the third region and the fourth region.
Optionally, the display substrate further comprises a spacer layer having a plurality of spacers in the black matrix region, the plurality of spacers being in regions corresponding to the plurality of columns of the black matrix.
Optionally, a respective one of the plurality of columns of the black matrix has a first width along a row direction; a respective one of the plurality of rows of the black matrix has a second width along a column direction; and a ratio of first width to the second width is in a range of 3:1 to 10:1.
Optionally, a respective subpixel aperture of the display substrate has an elongated shape; a respective one of the plurality of columns of the black matrix has a first width along a row direction; and a ratio of a longitudinal width of the elongated shape to the first width is in a range of 2.0 to 3.5.
Optionally, the display substrate further has a fourth region adjacent to the third region and corresponding to a subpixel of a white color, the third region spaced apart from the first region by the second region on a first side and spaced apart from the first region by the fourth region on a second side; the display substrate further comprises a protective layer on a side of the first color filter layer, the second color filter layer, the third color filter layer, and the black matrix away from the base substrate; a portion of the protective layer extends into the fourth region, constituting a substantially transparent fourth color filter layer for the subpixel of the white color; two color filter layers other than the substantially transparent fourth color filter layer and directly adjacent to the respective one of the plurality of rows of the black matrix partially cover the respective one of the plurality of rows of the black matrix and are spaced apart from each other by a gap in the black matrix region and on a side of the respective one of the plurality of rows of the black matrix away from the base substrate; the substantially transparent fourth color filter layer is in direct contact with a directly adjacent color filter layer in the black matrix region and on a side of the respective one of the plurality of rows of the black matrix away from the base substrate, the substantially transparent fourth color filter layer and the directly adjacent color filter layer covering the respective one of the plurality of rows of the black matrix; two color filter layers other than the substantially transparent fourth color filter layer and directly adjacent to the respective one of the plurality of columns of the black matrix partially cover the respective one of the plurality of columns of the black matrix and are spaced apart from each other by a gap in the black matrix region B and on a side of the respective one of the plurality of columns of the black matrix away from the base substrate; the substantially transparent fourth color filter layer is in direct contact with the first color filter layer in the black matrix region and on a side of the respective one of the plurality of columns of the black matrix away from the base substrate, the substantially transparent fourth color filter layer and the first color filter layer covering the respective one of the plurality of columns of the black matrix; and the display substrate further comprises a spacer layer having a plurality of spacers in the black matrix region, the plurality of spacers being in in regions corresponding to the plurality of columns of the black matrix.
Optionally, the first color filter layer is absent in a region between the second color filter layer and the third color filter layer in the plurality of openings.
Optionally, each of the first region, the second region, and the third region has a substantially rectangular shape; wherein a longitudinal side of the substantially rectangular shape is substantially parallel to the plurality of columns of the black matrix; and a lateral side of the substantially rectangular shape is substantially parallel to the plurality of rows of the black matrix.
In another aspect, the present invention provides a display panel comprising the display substrate described herein or fabricated by a method described herein, a second display substrate facing the display substrate, and a spacer layer between the display substrate and the second display substrate, wherein the spacer layer comprising a plurality of spacers in the black matrix region, the plurality of spacers being in in regions corresponding to the plurality of columns of the black matrix.
The following drawings are merely examples for illustrative purposes according to various disclosed embodiments and are not intended to limit the scope of the present invention.
The disclosure will now describe more specifically with reference to the following embodiments. It is to be noted that the following descriptions of some embodiments are presented herein for purpose of illustration and description only. It is not intended to be exhaustive or to be limited to the precise form disclosed.
The gap between adjacent color filters in a conventional display substrate results in a poor surface planarization on the surface of the display substrate (e.g., the surface of the protective layer). When the spacer is disposed on the display substrate, the poor surface planarization leads to a non-uniform distribution of spacer elevations on the display substrate. Many other disadvantages are associated with the same issue. For example, when the display panel is pressed and released, the liquid crystal layer recovers from the deformation quickly back to the previous state. However, due to the existence of a recess having a depth AH on the surface of the display substrate, the liquid crystal layer around the recess region is not able to recover as quickly, resulting in darkness non-uniformity upon touch (a.k.a., “touch dark non-uniformity”). Similarly, due to the existence of these recesses on the surface of the display panel, a larger liquid crystal volume is needed to fill in the recesses, resulting in higher manufacturing costs.
The present disclosure provides a superior display substrate that overcomes the disadvantages and shortcomings of the conventional display substrate. In some embodiments, the display substrate includes a base substrate, a black matrix on the base substrate, a first color filter layer on the base substrate; the first color filter layer having an overlapping portion on a side of an overlapped portion of the black matrix distal to the base substrate. The display substrate has a surface on a side of the first color filter distal to the base substrate. Optionally, the display substrate further includes a spacer layer having a plurality of spacers on a side of the surface distal to the black matrix. Each spacer has a first side in contact with the surface, and a second side distal to the first side. The first sides of the plurality of spacers are substantially on a same level with each other and the surface. The second sides of the plurality of spacers are substantially on a same level with each other. For example, the distances between the second sides of the plurality of spacers and the base substrate are all substantially the same. Optionally, the second sides of the plurality of spacers are substantially on a same level with each other when the plurality of spacers are in an uncompressed state (e.g., prior to assembled into a cell of a display panel).
In some embodiments, the display substrate includes a base substrate, a black matrix on the base substrate, a first color filter layer on the base substrate; the first color filter layer having an overlapping portion on a side of an overlapped portion of the black matrix distal to the base substrate, a second color filter layer adjacent to and in a same layer as the first color filter layer; a surface on a side of the first color filter and the second color filter distal to the base substrate having a recess in a region corresponding to the interface between the first color filter and the second color filter; and a spacer layer having a plurality of spacers on a side of the surface distal to the black matrix; each spacer has a side in contact with and substantially level with the surface. Optionally, the overlapping portion substantially covers an entire surface of the black matrix. Optionally, the second color filter layer has an adjacent overlapping portion on a side of an adjacent overlapped portion of the black matrix distal to the base substrate. Optionally, the overlapping portion extends over the black matrix by a first distance d1 and the adjacent overlapping portion extends over the black matrix by a second distance d2; d1≠d2. Optionally, d1=d2. Optionally, the overlapping portion has a thickness substantially the same as that of the adjacent overlapping portion.
Optionally, the recess has a width a and each spacer has a width b on the surface, a≤b. The spacer may be disposed at any position of the surface of the display substrate. Optionally, at least one spacer is on a side of the overlapping portion distal to the overlapped portion. Optionally, all spacers are on a side of the overlapping portion distal to the overlapped portion. Optionally, at least one spacer is on a side of the overlapping portion distal to the overlapped portion, and at least another is on a side of the adjacent overlapping portion distal to the adjacent overlapped portion. Optionally, at least one spacer is disposed over the recess, and is substantially outside the recess (due to a≤b). Optionally, all spacers are disposed over a plurality of recesses, and are substantially outside the recess. Optionally, at least one spacer is disposed over the recess, and is substantially outside the recess, at least one spacer is on a side of the overlapping portion distal to the overlapped portion, and at least another is on a side of the adjacent overlapping portion distal to the adjacent overlapped portion.
In some embodiments, the display substrate further includes a protective layer between the first/second color filter layer and the spacer, the surface is a surface of the protective layer. The recess is on the surface of the protective layer in a region corresponding to the interface between the first color filter and the second color filter. Optionally, the first color filter and the second color filter form a gap at the interface. Due to the existence of the gap, a recess is formed on the surface of the protective layer at a region corresponding to the gap at the interface when the protective layer is formed over the color filters.
Accordingly, the present disclosure also provides a method of fabricating a display substrate. In some embodiments, the method includes forming a black matrix on a base substrate; forming a first color filter layer on the base substrate; the first color filter layer having an overlapping portion on a side of an overlapped portion of the black matrix distal to the base substrate. The display substrate has a surface on a side of the first color filter distal to the base substrate. Optionally, the method further includes forming a spacer layer having a plurality of spacers on a side of the surface distal to the black matrix; each spacer has a side in contact with and substantially level with the surface.
In some embodiments, the method includes forming a black matrix on a base substrate; forming a first color filter layer on the base substrate; the first color filter layer having an overlapping portion on a side of an overlapped portion of the black matrix distal to the base substrate; and forming a second color filter layer adjacent to and in a same layer as the first color filter layer. The display substrate having a surface on a side of the first color filter and the second color filter distal to the base substrate with a recess in a region corresponding to the interface between the first color filter and the second color filter. The method further includes forming a spacer layer comprising a plurality of spacers on a side of the surface distal to the black matrix; each spacer has a side in contact with and substantially level with the surface.
Optionally, the overlapping portion is formed substantially over an entire surface of the black matrix. Optionally, the second color filter layer has an adjacent overlapping portion on a side of an adjacent overlapped portion of the black matrix distal to the base substrate. Optionally, the overlapping portion extends over the black matrix by a first distance d1 and the adjacent overlapping portion extends over the black matrix by a second distance d2; d1≠d2. Optionally, d1=d2. Optionally, the overlapping portion has a thickness substantially the same as that of the adjacent overlapping portion.
Optionally, the recess has a width a and each spacer has a width b on the surface, a≤b. The spacer may be formed at any position of the surface of the display substrate. Optionally, at least one spacer is formed on a side of the overlapping portion distal to the overlapped portion. Optionally, all spacers are formed on a side of the overlapping portion distal to the overlapped portion. Optionally, at least one spacer is formed on a side of the overlapping portion distal to the overlapped portion, and at least another is formed on a side of the adjacent overlapping portion distal to the adjacent overlapped portion. Optionally, at least one spacer is formed over the recess, and is formed substantially outside the recess (due to a≤b). Optionally, all spacers are formed over a plurality of recesses, and are formed substantially outside the recess. Optionally, at least one spacer is formed over the recess, and is formed substantially outside the recess, at least one spacer is formed on a side of the overlapping portion distal to the overlapped portion, and at least another is formed on a side of the adjacent overlapping portion distal to the adjacent overlapped portion.
In some embodiments, the method further includes forming a protective layer on a side of the first color filter layer and the second color filter layer distal to the base substrate, the surface is a surface of the protective layer. In that case, the surface is a surface of the protective layer. The recess is on the surface of the protective layer in a region corresponding to the interface between the first color filter and the second color filter. Optionally, the first color filter and the second color filter form a gap at the interface. Due to the existence of the gap, a recess is formed on the surface of the protective layer at a region corresponding to the gap at the interface when the protective layer is formed over the color filters.
Color filters may include a red color filter R, a green color filter G, a blue color filter B, and/or a white color filter W. Optionally, the display substrate includes a red color filter R, a green color filter G, and a blue color filter B. Optionally, the display substrate includes a red color filter R, a green color filter G, a blue color filter B, and a white color filter W.
A red color filter R and a blue color filter B are shown in
On the upper surface of the display substrate, the recess has a width a on the plane of the upper surface. The spacer 15 has a side in contact with and substantially level with the upper surface, the spacer has a width b on the upper surface. In some embodiments, a≤b. For example, when a plurality of spacers 15 are disposed on the surface of the display substrate, none of them will be received inside the recess due to the fact that a≤b. In other words, when a spacer 15 is arranged on a region corresponding to the recess region, the spacer 15 is substantially outside the recess, and a bottom side of the spacer 15 bridging over the recess. As shown in
In
The display substrate in
The protective layer 14 may be made of any appropriate material. Optionally, the protective layer 14 is made of a material comprising a polyacrylate polymer.
The color filters may be made of any appropriate material. Optionally, the color filters are made of a material comprising colored resin material, e.g., a polyacrylate polymer mixed with one or more pigments.
Optionally, the color filter has a thickness in the range of about 1.8 μm to about 3.0 μm. Optionally, the color filter has a uniform thickness, e.g., the thickness of the overlapping portion is the same as that of a non-overlapping portion.
Optionally, the overlapping portion of the first color filter extends over the black matrix by a first distance d1 and the adjacent overlapping portion of the second color filter extends over the black matrix by a second distance d2; and d1≠d2. In
Optionally, d1=d2. For example, d1 for a blue color filter is substantially the same as the d2 for a red color filter.
Optionally, the overlapping portion has a thickness substantially the same of that of the adjacent overlapping portion. For example, the overlapping portion of a blue color filter has a thickness substantially the same of that of the adjacent overlapping portion of a red color filter. Optionally, the overlapping portion has a thickness that is different from that of the adjacent overlapping portion.
Optionally, the color filters are patterned by exposing a photoresist using a mask plate. Optionally, the color filters can be coated or printed on the display substrate.
In a display panel having the present display substrate, touch dark non-uniformity is significantly reduced or eliminated to a level of 1 or 2, as compared to a level of 4 to 5 in a conventional display panel.
Moreover, in the present display substrate, at least one of the two adjacent color filters has an overlapping portion on a side of an overlapped portion of the black matrix distal to the base substrate, and the spacers disposed on the display substrate surface are in contact with and substantially level with the surface. By having this novel design, the surface planarization of the display substrate is greatly enhanced, the spacer elevations distribution throughout the display substrate is significantly more uniform. The recess in the region corresponding to the interface between two adjacent color filters has a much smaller dimension as compared to that of the convention display substrate. For example, the width and depth of the recess is much reduced. As a result, the liquid crystal layer around the recess region can recover quickly upon the withdrawal of external touch, resulting in a highly uniform touch darkness. Due to a much smaller recess dimension, the amount of liquid crystal required for the display panel can be reduced, lowering the manufacturing costs.
Specifically, the display substrate in
In the present display substrate, at least one of the two adjacent color filters has an overlapping portion on a side of an overlapped portion of the black matrix distal to the base substrate, and the spacers disposed on the display substrate surface are in contact with and substantially level with the surface. By having this novel design, the surface planarization of the display substrate is greatly enhanced, the spacer elevations distribution throughout the display substrate is significantly more uniform. The recess in the region corresponding to the interface between two adjacent color filters has a much smaller dimension as compared to that of the convention display substrate. For example, the width and depth of the recess is much reduced. As a result, the liquid crystal layer around the recess region can recover quickly upon the withdrawal of external touch, resulting in a highly uniform touch darkness. Due to a much smaller recess dimension, the amount of liquid crystal required for the display panel can be reduced, lowering the manufacturing costs. In a display panel having the present display substrate, touch dark non-uniformity is significantly reduced or eliminated to a level of 1 or 2, as compared to a level of 4 to 5 in a conventional display panel.
Specifically, the display substrate in
In the display substrate as shown in
In the present display substrate, at least one of the two adjacent color filters has an overlapping portion on a side of an overlapped portion of the black matrix distal to the base substrate, and the spacers disposed on the display substrate surface are in contact with and substantially level with the surface. By having this novel design, the surface planarization of the display substrate is greatly enhanced, the spacer elevations distribution throughout the display substrate is significantly more uniform. The recess in the region corresponding to the interface between two adjacent color filters has a much smaller dimension as compared to that of the convention display substrate. For example, the width and depth of the recess is much reduced. As a result, the liquid crystal layer around the recess region can recover quickly upon the withdrawal of external touch, resulting in a highly uniform touch darkness. Due to a much smaller recess dimension, the amount of liquid crystal required for the display panel can be reduced, lowering the manufacturing costs. In a display panel having the present display substrate, touch dark non-uniformity is significantly reduced or eliminated to a level of 1 or 2, as compared to a level of 4 to 5 in a conventional display panel.
Specifically, the blue color filter B in
In the present display substrate, at least one of the two adjacent color filters has an overlapping portion on a side of an overlapped portion of the black matrix distal to the base substrate, and the spacers disposed on the display substrate surface are in contact with and substantially level with the surface. By having this novel design, the surface planarization of the display substrate is greatly enhanced, the spacer elevations distribution throughout the display substrate is significantly more uniform. The recess in the region corresponding to the interface between two adjacent color filters has a much smaller dimension as compared to that of the convention display substrate. For example, the width and depth of the recess is much reduced. As a result, the liquid crystal layer around the recess region can recover quickly upon the withdrawal of external touch, resulting in a highly uniform touch darkness. Due to a much smaller recess dimension, the amount of liquid crystal required for the display panel can be reduced, lowering the manufacturing costs. In a display panel having the present display substrate, touch dark non-uniformity is significantly reduced or eliminated to a level of 1 or 2, as compared to a level of 4 to 5 in a conventional display panel.
In some embodiments, the display substrate includes a base substrate having at least a first region, a second region adjacent to the first region, a third region adjacent to the second region and spaced apart from the first region by the second region on one side, and a black matrix region; a black matrix in the black matrix region on the base substrate comprising a plurality of rows and a plurality of columns intersecting each other; a first color filter layer in a first region and extending into the black matrix region, the first color filter layer overlapping with the black matrix throughout the plurality of columns of the black matrix; a second color filter layer in the second region; and a third color filter layer in the third region.
Along the column direction in
Referring to
In some embodiments, the first color filter layer abuts the second color filter layer at an interface between the first color filter layer and the second color filter layer along a column direction of the display substrate. That is, there is no gap between the first color filter layer and the second color filter layer, the first color filter layer and the second color filter layer fill any space between them. Optionally, the interface is within the black matrix region (e.g., within a row region of the black matrix). Optionally, the interface is outside the black matrix region (e.g., the first color filter layer alone fills in any space between the first color filter layer and the second color filter layer along the column direction of the display substrate). Optionally, the interface is at an interface between the black matrix region and the second region.
In some embodiments, the first color filter layer extends into an interface between the second color filter layer and the third color filter layer, the first color filter layer abuts the second color filter layer on a first side and abuts the third color filter layer on a second side at the interface. That is, there is no gap between the second color filter layer and the third color filter layer. Optionally, the first color filter layer fills in any space between them. Optionally, the first color filter layer, the second color filter layer, and the third color filter layer fill in any space between the second color filter layer and the third color filter layer.
In some embodiments, the first color filter layer extends into an interface between the fourth color filter layer and the third color filter layer, the first color filter layer abuts the fourth color filter layer on a first side and abuts the third color filter layer on a second side at the interface. That is, there is no gap between the fourth color filter layer and the third color filter layer. Optionally, the first color filter layer fills in any space between them. Optionally, the first color filter layer, the fourth color filter layer, and the third color filter layer fill in any space between the fourth color filter layer and the third color filter layer.
In some embodiments, the display substrate further includes a protective layer at an interface between the second color filter layer and the third color filter layer, the protective layer abuts the second color filter layer on a first side and abuts the third color filter layer on a second side at the interface. That is, there is no gap between the second color filter layer and the third color filter layer. Optionally, the protective layer fills in any space between them. Optionally, the protective layer, the second color filter layer, and the third color filter layer fill in any space between the second color filter layer and the third color filter layer.
In some embodiments, the display substrate further includes a protective layer at an interface between the fourth color filter layer and the third color filter layer, the protective layer abuts the fourth color filter layer on a first side and abuts the third color filter layer on a second side at the interface. That is, there is no gap between the fourth color filter layer and the third color filter layer. Optionally, the protective layer fills in any space between them. Optionally, the protective layer, the fourth color filter layer, and the third color filter layer fill in any space between the second color filter layer and the third color filter layer.
In some embodiments, the second color filter layer and the third color filter layer abut each other at an interface between the second color filter layer and the third color filter layer. That is, there is no gap between the second color filter layer and the third color filter layer. Optionally, the second color filter layer fills in any space between them. Optionally, the third color filter layer fills in any space between them. Optionally, the second color filter layer and the third color filter layer together fill in any space between the second color filter layer and the third color filter layer.
In some embodiments, the fourth color filter layer and the third color filter layer abut each other at an interface between the fourth color filter layer and the third color filter layer. That is, there is no gap between the fourth color filter layer and the third color filter layer. Optionally, the fourth color filter layer fills in any space between them. Optionally, the third color filter layer fills in any space between them. Optionally, the fourth color filter layer and the third color filter layer together fill in any space between the second color filter layer and the third color filter layer.
In some embodiments, the display substrate (e.g., a display substrate as shown in
In some embodiments, the display substrate having at least a first region corresponding to a subpixel of a first color, a second region adjacent to the first region and corresponding to a subpixel of a second color, a third region adjacent to the second region and spaced apart from the first region by the second region on one side, the third region corresponding to a subpixel of a third color, and a black matrix region outside the first region, the second region, and the third region.
Referring to
The area circled by dotted lines in
Referring to
Referring to
In some embodiments, the edge of the color filter layer has a slope angle, as shown in
In some embodiments, the first portion CL1-1 of the first color filter layer in the first region 1 has a first thickness, and the second portion CL1-2 of the first color filter layer in the back matrix region B and the black matrix 12 between the second portion CL1-2 and the base substrate 11 in combination have a second thickness. Optionally, the first thickness and the second thickness are within 30% of each other, e.g., within 25%, within 20%, within 15%, within 10%, within 5%, within 1%, within 0.1%, of each other.
As shown in
Referring to
In some embodiments, a color filter layer other than the first color filter layer and directly adjacent to the respective one of the plurality of columns of the black matrix covers 1% to 10% of the respective one of the plurality of columns of the black matrix along the row direction. Referring to
In some embodiments, 0% to 5% of respective one of the plurality of columns of the black matrix along the row direction is uncovered by any color filter layer. Referring to
In some embodiments, at least one of two color filter layers directly adjacent to a respective one of the plurality of rows of the black matrix at least partially covers the respective one of the plurality of rows of the black matrix. In particular, when the two color filter layers are color filter layers corresponding to subpixels other than a subpixel of white color (for example, the two color filter layers are non-white color filter layers), each of the two color filter layers directly adjacent to the respective one of the plurality of rows of the black matrix partially covers the respective one of the plurality of rows of the black matrix. Referring to
In some embodiments, the subpixel of the fourth color is a white subpixel.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
In some embodiments, a respective subpixel aperture Spa of the display substrate has an elongated shape. Optionally, the elongated shape has a longitudinal width Z as shown in
In another aspect, the present disclosure provides a display panel including the display substrate described herein, a second display substrate facing the display substrate, and a spacer layer between the display substrate and the second display substrate. Optionally, the spacer layer includes a plurality of spacers in the black matrix region, the plurality of spacers being in in regions corresponding to the plurality of columns of the black matrix. In another aspect, the present disclosure provides a display apparatus including the display panel described herein, and one or more integrated circuits connected to the display panel.
In another aspect, the present disclosure provides a method of fabricating a display substrate.
The method may involve formation of a plurality of color filters. Optionally, a red color filter R, a green color filter G, a blue color filter B, and a white color filter W are formed on the black matrix. Optionally, a red color filter R, a green color filter G, and a blue color filter B are formed on the black matrix. Optionally, the color filter has a thickness in the range of about 1.8 μm to about 3.0 μm.
Similarly, a green color filter and/or a white color filter may be formed by a method similar to the method described above in connection with the red color filter.
When forming the blue color filter (e.g., when a mask plate as shown in
When any one of the red color filter R, the green color filter G, and the white color filter W includes an adjacent overlapping portion on a side of an adjacent overlapped portion of the black matrix distal to the base substrate, the adjacent overlapping portion extends over the adjacent overlapped portion of the black matrix by a distance of, e.g., 6 μm to about 7 μm.
The spacer layer may be formed on the protective layer 14. Referring to
In a display substrate fabricated by the method described herein, at least one of the two adjacent color filters has an overlapping portion on a side of an overlapped portion of the black matrix distal to the base substrate, and the spacers disposed on the display substrate surface are in contact with and substantially level with the surface. By having this novel design, the surface planarization of the display substrate is greatly enhanced, the spacer elevations distribution throughout the display substrate is significantly more uniform. The recess in the region corresponding to the interface between two adjacent color filters has a much smaller dimension as compared to that of the convention display substrate. For example, the width and depth of the recess is much reduced. As a result, the liquid crystal layer around the recess region can recover quickly upon the withdrawal of external touch, resulting in a highly uniform touch darkness. Due to a much smaller recess dimension, the amount of liquid crystal required for the display panel can be reduced, lowering the manufacturing costs. In a display panel having the present display substrate, touch dark non-uniformity is significantly reduced or eliminated to a level of 1 or 2, as compared to a level of 4 to 5 in a conventional display panel.
In a display substrate fabricated by the mask plate described herein, at least one of the two adjacent color filters has an overlapping portion on a side of an overlapped portion of the black matrix distal to the base substrate, and the spacers disposed on the display substrate surface are in contact with and substantially level with the surface. By having this novel design, the surface planarization of the display substrate is greatly enhanced, the spacer elevations distribution throughout the display substrate is significantly more uniform. The recess in the region corresponding to the interface between two adjacent color filters has a much smaller dimension as compared to that of the convention display substrate. For example, the width and depth of the recess is much reduced. As a result, the liquid crystal layer around the recess region can recover quickly upon the withdrawal of external touch, resulting in a highly uniform touch darkness. Due to a much smaller recess dimension, the amount of liquid crystal required for the display panel can be reduced, lowering the manufacturing costs. In a display panel having the present display substrate, touch dark non-uniformity is significantly reduced or eliminated to a level of 1 or 2, as compared to a level of 4 to 5 in a conventional display panel.
In some embodiments, the second region is formed to be adjacent to the first region, the third region is formed to be adjacent to the second region, the fourth region is formed to be adjacent to the third region. The third region is formed to be spaced apart from the first region by the second region on one side, and spaced apart from the first region by the fourth region on the other side. The first region is formed to be adjacent to the second region on one side and adjacent to the fourth region on the other side.
In some embodiments, the first color filter layer is a blue color filter layer, the second color filter layer is a green color filter layer, the third color filter layer is a red color filter layer, and the fourth color filter layer is a white color filter layer.
In some embodiments, the first color filter layer is formed in the first region, and extends into the black matrix region. Optionally, the first color filter layer is formed to overlap with the black matrix throughout the plurality of columns of the black matrix (e.g., the first color filter layer is formed in at least the first region and column portions of the black matrix region). The second color filter layer is formed in the second region, the third color filter layer is formed in the third region, and the fourth color filter layer is formed in the fourth region. Optionally, the first color filter layer is formed to overlap with the black matrix throughout the plurality of rows and the plurality of columns of the black matrix. Optionally, the first color filter layer is formed to completely cover an entire area of the black matrix region throughout the plurality of rows and the plurality of columns of the black matrix.
In some embodiments, the first color filter layer is formed to abuts the second color filter layer at an interface between the first color filter layer and the second color filter layer along a column direction of the display substrate. That is, there is no gap between the first color filter layer and the second color filter layer, the first color filter layer and the second color filter layer are formed to fill any space between them. Optionally, the interface is within the black matrix region (e.g., within a row region of the black matrix). Optionally, the interface is outside the black matrix region (e.g., the first color filter layer alone is formed to fill in any space between the first color filter layer and the second color filter layer along the column direction of the display substrate). Optionally, the interface is at an interface between the black matrix region and the second region.
In some embodiments, the first color filter layer is formed to extend into an interface between the second color filter layer and the third color filter layer, the first color filter layer is formed to abut the second color filter layer on a first side and is formed to abut the third color filter layer on a second side at the interface. That is, there is no gap between the second color filter layer and the third color filter layer. Optionally, the first color filter layer is formed to fill in any space between them. Optionally, the first color filter layer, the second color filter layer, and the third color filter layer are formed to fill in any space between the second color filter layer and the third color filter layer.
In some embodiments, the first color filter layer is formed to extend into an interface between the fourth color filter layer and the third color filter layer, the first color filter layer is formed to abut the fourth color filter layer on a first side and is formed to abut the third color filter layer on a second side at the interface. That is, there is no gap between the fourth color filter layer and the third color filter layer. Optionally, the first color filter layer is formed to fill in any space between them. Optionally, the first color filter layer, the fourth color filter layer, and the third color filter layer are formed to fill in any space between the fourth color filter layer and the third color filter layer.
In some embodiments, the method further includes forming a protective layer at an interface between the second color filter layer and the third color filter layer, the protective layer is formed to abut the second color filter layer on a first side and is formed to abut the third color filter layer on a second side at the interface. That is, there is no gap between the second color filter layer and the third color filter layer. Optionally, the protective layer is formed to fill in any space between them. Optionally, the protective layer, the second color filter layer, and the third color filter layer are formed to fill in any space between the second color filter layer and the third color filter layer.
In some embodiments, the method further includes forming a protective layer at an interface between the fourth color filter layer and the third color filter layer, the protective layer is formed to abut the fourth color filter layer on a first side and is formed to abut the third color filter layer on a second side at the interface. That is, there is no gap between the fourth color filter layer and the third color filter layer. Optionally, the protective layer is formed to fill in any space between them. Optionally, the protective layer, the fourth color filter layer, and the third color filter layer are formed to fill in any space between the second color filter layer and the third color filter layer.
In some embodiments, the second color filter layer and the third color filter layer are formed to abut each other at an interface between the second color filter layer and the third color filter layer. That is, there is no gap between the second color filter layer and the third color filter layer. Optionally, the second color filter layer is formed to fill in any space between them. Optionally, the third color filter layer is formed to fill in any space between them. Optionally, the second color filter layer and the third color filter layer together are formed to fill in any space between the second color filter layer and the third color filter layer.
In some embodiments, the fourth color filter layer and the third color filter layer are formed to abut each other at an interface between the fourth color filter layer and the third color filter layer. That is, there is no gap between the fourth color filter layer and the third color filter layer. Optionally, the fourth color filter layer is formed to fill in any space between them. Optionally, the third color filter layer is formed to fill in any space between them. Optionally, the fourth color filter layer and the third color filter layer are formed so that the fourth color filter layer and the third color filter layer together fill in any space between the second color filter layer and the third color filter layer.
In some embodiments, the method further includes forming a spacer layer having a plurality of spacers in the black matrix region, the plurality of spacers are substantially on a same level with each other.
In another aspect, the present disclosure provides a method of fabricating a display substrate having at least a first region corresponding to a subpixel of a first color, a second region adjacent to the first region and corresponding to a subpixel of a second color, a third region adjacent to the second region and spaced apart from the first region by the second region on one side, the third region corresponding to a subpixel of a third color, and a black matrix region outside the first region, the second region, and the third region. In some embodiments, the method includes forming a black matrix on the base substrate and in the black matrix region, the black matrix comprising a plurality of rows and a plurality of columns intersecting each other; forming a first color filter layer having a net structure with a plurality of openings, and comprising a first portion in the first region and a second portion in the black matrix region, the first color filter layer substantially covering the plurality of columns of the black matrix; forming a second color filter layer in the second region; and forming a third color filter layer in the third region. Optionally, the second color filter layer and the third color filter layer are both formed in the plurality of openings, and are formed to be respectively spaced apart from the first color filter layer. Optionally, a first height of a surface of the first portion away from the base substrate relative to the base substrate and a second height of a surface of the second portion away from the base substrate relative to the base substrate are within 30% of each other.
In another aspect, the present disclosure provides a display panel having a display substrate described herein or manufactured by a method described herein (e.g., a color filter substrate). The display panel further includes a second display substrate (e.g., an array substrate).
In the present display panel, at least one of the two adjacent color filters has an overlapping portion on a side of an overlapped portion of the black matrix distal to the base substrate, and the spacers disposed on the display substrate surface are in contact with and substantially level with the surface. By having this novel design, the surface planarization of the display substrate is greatly enhanced, the spacer elevations distribution throughout the display substrate is significantly more uniform. The recess in the region corresponding to the interface between two adjacent color filters has a much smaller dimension as compared to that of the convention display substrate. For example, the width and depth of the recess is much reduced. As a result, the liquid crystal layer around the recess region can recover quickly upon the withdrawal of external touch, resulting in a highly uniform touch darkness. Due to a much smaller recess dimension, the amount of liquid crystal required for the display panel can be reduced, lowering the manufacturing costs. In a display panel having the present display substrate, touch dark non-uniformity is significantly reduced or eliminated to a level of 1 or 2, as compared to a level of 4 to 5 in a conventional display panel.
In another aspect, the present disclosure provides a display apparatus having a display panel described herein. Optionally, the display apparatus is an Advanced Super Dimension Switch (ADS)-type display device. Optionally, the second display substrate is an ADS-type array substrate.
In the present display apparatus, at least one of the two adjacent color filters has an overlapping portion on a side of an overlapped portion of the black matrix distal to the base substrate, and the spacers disposed on the display substrate surface are in contact with and substantially level with the surface. By having this novel design, the surface planarization of the display substrate is greatly enhanced, the spacer elevations distribution throughout the display substrate is significantly more uniform. The recess in the region corresponding to the interface between two adjacent color filters has a much smaller dimension as compared to that of the convention display substrate. For example, the width and depth of the recess is much reduced. As a result, the liquid crystal layer around the recess region can recover quickly upon the withdrawal of external touch, resulting in a highly uniform touch darkness. Due to a much smaller recess dimension, the amount of liquid crystal required for the display panel can be reduced, lowering the manufacturing costs. In a display panel having the present display substrate, touch dark non-uniformity is significantly reduced or eliminated to a level of 1 or 2, as compared to a level of 4 to 5 in a conventional display panel.
The foregoing description of the embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form or to exemplary embodiments disclosed. Accordingly, the foregoing description should be regarded as illustrative rather than restrictive. Obviously, many modifications and variations will be apparent to practitioners skilled in this art. The embodiments are chosen and described in order to best explain the principles of the invention and its best mode practical application, thereby to enable persons skilled in the art to understand the invention for various embodiments and with various modifications as are suited to the particular use or implementation contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents in which all terms are meant in their broadest reasonable sense unless otherwise indicated. Therefore, the term “the invention”, “the present invention” or the like does not necessarily limit the claim scope to a specific embodiment, and the reference to exemplary embodiments of the invention does not imply a limitation on the invention, and no such limitation is to be inferred. The invention is limited only by the spirit and scope of the appended claims. Moreover, these claims may refer to use “first”, “second”, etc. following with noun or element. Such terms should be understood as a nomenclature and should not be construed as giving the limitation on the number of the elements modified by such nomenclature unless specific number has been given. Any advantages and benefits described may not apply to all embodiments of the invention. It should be appreciated that variations may be made in the embodiments described by persons skilled in the art without departing from the scope of the present invention as defined by the following claims. Moreover, no element and component in the present disclosure is intended to be dedicated to the public regardless of whether the element or component is explicitly recited in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2015 1 0391596 | Jul 2015 | CN | national |
This application is a continuation-in-part of U.S. application Ser. No. 15/325,866 filed May 20, 2016, which is a national stage application under 35 U.S.C. § 371 of International Application No. PCT/CN2016/082879, filed May 20, 2016, which claims priority to Chinese Patent Application No. 201510391596.7, filed Jul. 1, 2015. Each of the forgoing applications is herein incorporated by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
20010026347 | Sawasaki | Oct 2001 | A1 |
20020060771 | Sumino et al. | May 2002 | A1 |
20040189895 | Chen | Sep 2004 | A1 |
20050105017 | Choi | May 2005 | A1 |
20050117092 | Park | Jun 2005 | A1 |
20050134763 | Kang | Jun 2005 | A1 |
20070132921 | Yoon | Jun 2007 | A1 |
20070216832 | Takahashi et al. | Sep 2007 | A1 |
20090135345 | Yajima et al. | May 2009 | A1 |
20090153785 | Iwato | Jun 2009 | A1 |
20090161046 | Tokuda et al. | Jun 2009 | A1 |
20090161047 | Cho et al. | Jun 2009 | A1 |
20110069258 | Joo | Mar 2011 | A1 |
20110155296 | Nakamura | Jun 2011 | A1 |
20130128193 | Yang et al. | May 2013 | A1 |
20130222746 | Itoh | Aug 2013 | A1 |
20140168584 | Lee | Jun 2014 | A1 |
20150062506 | Cho et al. | Mar 2015 | A1 |
20150138477 | You | May 2015 | A1 |
20160062170 | Yin | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
1379060 | Nov 2002 | CN |
1979229 | Jun 2007 | CN |
101042445 | Sep 2007 | CN |
101326044 | Dec 2008 | CN |
101326462 | Dec 2008 | CN |
104298010 | Jan 2015 | CN |
104460105 | Mar 2015 | CN |
104460142 | Mar 2015 | CN |
2002311227 | Oct 2002 | JP |
2003139938 | May 2003 | JP |
2008083364 | Apr 2008 | JP |
2008268511 | Nov 2008 | JP |
2012027385 | Feb 2012 | JP |
2012211952 | Nov 2012 | JP |
2014038354 | Feb 2014 | JP |
M060130302 | Dec 2006 | KR |
20070021750 | Feb 2007 | KR |
M070036867 | Apr 2007 | KR |
20110053016 | May 2011 | KR |
20110054723 | May 2011 | KR |
101055190 | Aug 2011 | KR |
20130135547 | Dec 2013 | KR |
Entry |
---|
The extended European search report in the European Patent Application No. 16817070.2, dated Jan. 7, 2019. |
Third Office Action in the Chinese Patent Application No. 201510391596.7, dated Dec. 12, 2019; English translation attached. |
International Search Report & Written Opinion dated Aug. 31, 2016 regarding PCT/CN2016/082879. |
First Office Action in the Chinese Patent Application No. 201510391596.7, dated Aug. 1, 2017; English translation attached. |
Second Office Action in the Chinese Patent Application No. 201510391596.7, dated Jul. 30, 2018; English translation attached. |
Notice of Allowance in the U.S. Appl. No. 15/325,866, dated Nov. 14, 2018. |
Non-Final Office Action in the U.S. Appl. No. 15/325,866, dated May 29, 2018. |
Response to Non-Final Office Action in the U.S. Appl. No. 15/325,866, dated Aug. 29, 2018. |
Applicant-Initiated Interview Summary in the U.S. Appl. No. 15/325,866, dated Sep. 5, 2018. |
Response to Applicant-Initiated Interview Summary in the U.S. Appl. No. 15/325,866, dated Sep. 13, 2018. |
Restriction Requirement in the U.S. Appl. No. 15/325,866, dated Mar. 12, 2018. |
Response to Restriction Requirement in the U.S. Appl. No. 15/325,866, dated Apr. 16, 2018. |
Number | Date | Country | |
---|---|---|---|
20190162884 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15325866 | US | |
Child | 16264899 | US |