The present invention relates to a display system for an excavating machine, an excavating machine, and a display method for an excavating machine.
In general, in an excavator, a work implement including a bucket or an upper swing body operates by an operator operating operating levers provided near an operator cab. At this time, when a slope with a predetermined inclination, a ditch with a predetermined depth, or the like, is excavated, it is difficult for the operator to determine whether excavation is properly performed just as a target shape, only by visually checking the operation of the work implement. In addition, the operator requires a skill to become able to efficiently and properly excavate such a slope with the predetermined inclination just as the target shape. Hence, for example, there is a technique for assisting in operator's operations of the operating levers, by displaying position information of the bucket located at the tip of the work implement, on a display apparatus provided near the operator cab. For example, Patent Literature 1 describes that a facing compass is displayed as an icon indicating the direction of facing a target plane and the direction in which an excavator is to swing.
Patent Literature 1: Japanese Laid-open Patent Publication No. 2012-172431
Patent Literature 1 does not clearly describe how to move the facing compass, etc. It is desired to present the operator with more appropriate information for allowing the bucket to face the target plane, taking into account the type of bucket, the positional relationship between the target plane and the excavator, or the like.
An object of the present invention is to present the operator with appropriate information for allowing the bucket to face the target plane.
According to the present invention, A display system for an excavating machine, the display system being used for an excavating machine that can allow an upper swing body including a work implement having a bucket to swing about a predetermined swing central axis, the display system comprises: a vehicle state detecting unit that detects information about a current position and posture of the excavating machine; a storage unit that stores at least position information of a target plane indicating a target shape of a work object; and a processing unit that obtains target swing information indicating an amount of swing of the upper swing body including the work implement, based on information including a direction of a tooth edge of the bucket, information including a direction orthogonal to the target plane, and information including a direction of the swing central axis, and displays an image corresponding to the obtained target swing information on a display apparatus, the amount of swing being required for the tooth edge of the bucket to face the target plane, and the direction of the tooth edge of the bucket being determined based on the information about the current position and posture of the excavating machine.
In the present invention, it is preferable that when the target swing information is not determined or when the target swing information is not obtained, the processing unit makes a display mode of the image corresponding to the target swing information displayed on the display apparatus different from that for when the target swing information is determined or when the target swine information is obtained.
In the present invention, it is preferable that the processing unit makes a mode of the image displayed on a screen of the display apparatus different before and after the tooth edge of the bucket faces the target plane.
In the present invention, it is preferable that the bucket rotates about a first axis and rotates about a second axis orthogonal to the first axis, by which the tooth edge is tilted with respect to a third axis orthogonal to the first axis and the second axis, the display system further comprises a bucket tilt detecting unit that detects a tilt angle of the bucket, and the processing unit determines the direction of the tooth edge of the bucket, based on the tilt angle of the bucket detected by the bucket tilt angle detecting unit and the information about the current position and posture of the excavating machine.
According to the present invention, a display system for an excavating machine, the display system being used for an excavating machine that can allow an upper swing body including a work implement having a bucket to swing about a predetermined swing central axis, the display system comprises: a vehicle state detecting unit that detects information about a current position and posture of the excavating machine; a storage unit that stores at least position information of a target plane indicating a target shape of a work object; and a processing unit that obtains, as target swing information, an amount of swing of the upper swing body including the work implement, based on information including a direction of a tooth edge of the bucket, information including a direction orthogonal to the target plane, and information including a direction of the swing central axis, and displays an image corresponding to the obtained target swine information, together with an image corresponding to the excavating machine and an image corresponding to the target plane, on a display apparatus, the amount of swing being required for the tooth edge of the bucket to become parallel to the target plane, and the direction of the tooth edge of the bucket being determined based on the information about the current position and posture of the excavating machine, wherein the processing unit makes a mode of the image corresponding to the target swing information displayed on a screen of the display apparatus different before and after the tooth edge of the bucket faces the target plane.
According to the present invention, an excavating machine comprises: an upper swing body that swings about a predetermined swing central axis, a work implement having a bucket being mounted on the upper swing body; a traveling apparatus provided underneath the upper swing body; and the display system for the excavating machine.
According to the present invention, a display method for an excavating machine, the display method being used for an excavating machine that can allow an upper swing body including a work implement having a bucket to swing about a predetermined. swing central axis, the display method comprises: obtaining target swing information indicating an amount of swing of the upper swing body including the work implement, based on information including a direction of a tooth edge of the bucket, information including a direction orthogonal to the target plane, and information including a direction of the swing central, axis, the amount of swing being required for the tooth edge of the bucket to face the target plane, and the direction of the tooth edge of the bucket being determined based on information about a current position and posture of the excavating machine; and displaying an image corresponding to the obtained target swing information on a display apparatus.
In the present invention, it is preferable that when the target swing information is not determined or when the target swing information is not obtained, a display mode of the image corresponding to the target swing information displayed on the display apparatus is made different from that for when the target swing information is determined or when the target swing information is obtained.
The present invention can present the operator with appropriate information for allowing the bucket to face the target plane.
A mode (embodiment) for carrying out the present invention will be described in detail with reference to the drawings.
<Overall Configuration of an Excavating Machine>
In the present embodiment, the excavator 100 serving as an excavating machine has a vehicle main body 1 serving as a main body unit; and a work implement 2. The vehicle main body 1 has an upper swing body 3 serving as a swing body; and a traveling apparatus 5. The upper swing body 3 includes, in an engine room 3EG, apparatuses such as a power generating apparatus and a hydraulic pump (not illustrated). The engine room 3EG is disposed on the one end side of the upper swing body 3.
Although in the present embodiment the excavator 100 uses an internal-combustion engine, e.g., a diesel engine, as the power generating apparatus, the excavator 100 is not limited thereto. The excavator 100 may include, for example, a so-called hybrid power generating apparatus where an internal-combustion engine, a generator motor, and a storage apparatus are combined together.
The upper swing body 3 has an operator cab 4. The operator cab 4 is placed on the other end side of the upper swing body 3. Namely, the operator cab 4 is disposed on the opposite side of the side where the engine room 3EG is disposed. In the operator cab 4, a display input apparatus 38 and an operating apparatus 25 which are illustrated in
Note that the excavator 100 may include a traveling apparatus that includes tires instead of the cracks 5a and 5b and that can travel by transmitting a driving force of a diesel engine (not illustrated) to the tires through a transmission. For example, the excavator 100 of such a mode may be a wheel type excavator.
The side of the upper swing body 3 where the work implement 2 and the operator cab 4 are disposed is the front, and the side of the upper swing body 3 where the engine room 3EG is disposed is the rear. The left side toward the front is the left of the upper swing body 3, and the right side toward the front is the right of the upper swing body 3. In addition, in the excavator 100 or the vehicle main body 1, its traveling apparatus 5's side with reference to the upper swing body 3 is the bottom, and its upper swing body 3's side with reference to the traveling apparatus 5 is the top. When the excavator 100 is placed on a horizontal plane, the bottom is the side of a vertical direction, i.e., the side of a gravity action direction, and the top is the opposite side of the vertical direction, Handrails 3G are provided on the upper swing body 3. As illustrated in
The work implement 2 has a boom 6, an arm 7, the bucket 9, a boom cylinder 10, an arm cylinder 11, a bucket cylinder 12, and tilt cylinders 13. Note that an arrow SW and an arrow TIL illustrated in
Note that the term “orthogonal” described below refers to a positional relationship where two objects, such as two lines (or axes), a line (or an axis) and a plane, or a plane and a plane, are orthogonal to each other in space. For example, a state in which a plane containing one line (or axis) and a plane containing another line (or axis) are parallel to each other, and the one line and another line are orthogonal to each other when viewed in the direction perpendicular to either one of the planes is also represented that the one line and another line are orthogonal to each other. The same also applies to the case of a line (axis) and a plane and the case of a plane and a plane.
(Bucket 9)
In the present embodiment, the bucket 9 is one called a tilt bucket. The bucket 9 is joined to the arm 7 through the linkage member 8 and further through the bucket pin 16. Furthermore, the bucket 9 is mounted, through the tilt pin 17, on the bucket 9's side of the linkage member 8 which is opposite of the side where the bucket pin 16 of the linkage member 8 is mounted. The tilt pin 17 is orthogonal to the bucket pin 16. Namely, a plane containing the central axis of the tilt pin 17 is orthogonal to the central axis of the bucket pin 16. As such, the bucket 9 is mounted on the linkage member 8 through the tilt pin 17 so as to be able to rotate about the central axis of the tilt pin 17 (see the arrow TIL illustrated in
The central axis extending in an axial. direction of the bucket pin 16 is a first axis AX1, and the central axis in an extending direction of the tilt pin 17 orthogonal to the bucket pin 16 is a tilt central axis (hereinafter, referred to as a second axis AX2, as appropriate)) orthogonal to the first axis AX1. Hence, the bucket 9 can rotate about the first axis AX1 and rotate about the second axis AX2. That is, when a third axis AX3 having an orthogonal positional relationship to both of the first axis AX1 and the second axis AX2 is used as a reference axis, the bucket 9 can rotate left and right (the arrow TIL illustrated in
The bucket 9 includes a plurality of teeth 9B. The plurality of teeth 9B are mounted on an end of the bucket 9 that is on the opposite side of the side where the tilt pin 17 of the bucket 9 is mounted. The plurality of teeth 9B are arranged in a line in a direction orthogonal to the tilt pin 17, i.e., in parallel positional relationship to the first axis AX1. The tooth edges 9T are tips of the teeth 9B. In the present embodiment, the tooth edge array 9TG refers to the plurality of tooth edges 9T arranged side by side an a line. Inc tooth edge array 9TG is a set of the tooth edges 9T. In representing the tooth edge array 9TG, in the present embodiment, a straight line connecting the plurality of tooth edges 9T (hereinafter, referred to as a tooth edge array line, as appropriate) LBT is used.
The tilt cylinders 13 in the bucket 9 to the linkage member 8. Specifically, the tips of cylinder rods of the tilt cylinders 13 are joined to the main, body side of the bucket 9, and the cylinder tube sides of the tilt cylinders 13 are joined to the linkage member 8. Although in the present embodiment the two tilt cylinders 13 and 13 loin the bucket 9 and the linkage member 8 together on both of the left and right sides of the bucket 9 and the linkage member 8, at least one tilt cylinder 13 may in them together. When one tilt cylinder 13 extends, the other tilt cylinder 13 retracts, by which the bucket 9 rotates around the tilt pin 17. As a result, the tilt cylinders 13 and 13 can allow the tooth edges 9T, more specifically, the tooth edge array 9TG which is a set of the tooth edges 9T and is represented by the tooth edge array LBT, to be tilted with respect to the third axis AX3.
Extension and retraction of the tilt cylinders 13 and 13 can be performed using an operating apparatus such as a slide switch or a foot-operated pedal (not illustrated) which is provided in the operator cab 4. When the operating apparatus is a slide switch, by the operator of the excavator 100 operating the slide switch, hydraulic oil is supplied to the tilt cylinders 13 and 13 or is discharged from the tilt cylinders 13 and 13, by which the tilt cylinders 13 and 13 extend or retract. As a result, the tilt bucket (bucket 9) rotates (the tooth edges 9T are tilted) left or right (the arrow TIL illustrated in
The bucket 9a illustrated in
As illustrated in
The boom cylinder 10, the arm cylinder 11, the bucket cylinder 12, and the tilt cylinders 13 illustrated in
As illustrated in FIG, 4, the boom 6, the arm 7, and the bucket 9 are provided with a first stroke sensor 18A, a second stroke sensor 18B, and a third stroke sensor 18C and a bucket tilt sensor 18D serving as a bucket tilt detecting unit, respectively. The first stroke sensor 18A, the second stroke sensor 18B, and the third stroke sensor 18C are posture detecting units that detect posture of the work implement 2. The first stroke sensor 18A. detects a stroke length of the boom cylinder 10. A display control apparatus 39 (see
As illustrated in
The upper swing body 3, and the work implement 2 and the bucket 9 which are mounted on the upper swing body 3 rotate about a predetermined swing central axis. The vehicle main body coordinate system Xa-Ya-Za is a coordinate system of the vehicle main body 1. In the vehicle main body coordinate system Xa-Ya-Za, the swing central axis of the work implement 2, etc., is the Za-axis, an axis orthogonal to the Za-axis and parallel to the operating plane of the work implement 2 is the Xa-axis, and an axis orthogonal to the Za-axis and the Xa-axis is the Ya-axis. The operating plane of the work implement 2 is for example, a plane orthogonal to the boom pin 14. The Xa-axis corresponds to a front-rear direction of the upper swing body 3, and the Ya-axis corresponds to a width direction of the upper swing body 3.
it is preferred that the GNSS antennas 21 and 22 be placed on the upper swing body 3 and in both end positions distanced from each other in the front-rear direction (the Xa-axis direction of the vehicle main body coordinate system Xa-Ya-Za illustrated in
Signals according to GNSS radio waves received by the GNSS antennas 21 and 22 are inputted to the three-dimensional position sensor 23. The three-dimensional position sensor 23 detects the positions of placement positions P1 and P2 of the GNSS antennas 21 and 22. As illustrated in
As illustrated in
The work implement operating members 31L and 31R are members used by the operator to operate the work implement 2, and are, for example, operating levers having a grip portion and a rod member, such as joysticks. The work implement operating members 31L and 31R of such a structure can be tilted back and forth and left to right by grabbing the grip portion. As illustrated in
The work implement operation detecting unit 32L, 32R generates a pilot pressure, according to an input, i.e., an operation content, to the work implement operating member 31L, 31R and supplies the generated hydraulic oil pilot pressure to a work control valve 37W included in the vehicle control apparatus 27. The work control valve 37W operates according to the magnitude of the pilot pressure, by which hydraulic oil is supplied from the hydraulic pump (not illustrated) to the boom cylinder 10, the arm cylinder 11, the bucket cylinder 12, and the like, illustrated in FIG, 1, When the work implement operating member 31L, 31R is an electric operated lever, the work implement operation detecting unit 32L, 32R detects an input, i.e., an operation content, to the work implement operating member 31L, 31R using, for example, a potentiometer, and converts the input into an electrical signal (detection signal) and then sends the electrical signal to the work implement electronic control apparatus 26. The work implement electronic control apparatus 26 controls the work control valve 37W, based on the detection signal.
The travel operating members 33L and 33R are members used by the operator to operate travel of the excavator 100. The travel operating members 33L and 33R are for example, operating levers having a grip portion and a rod member (hereinafter, referred to as traveling levers, as appropriate). Such travel operating members 33L and 33R can be tilted back and forth by the operator grabbing the grip portion. The travel operating members 33L and 33R are such that by simultaneously tilting the two operating levers forward, the excavator 100 moves forward, and by tilting backward, the excavator 100 moves backward. Alternatively, the travel operating members 33L and 33R are seesaw pedals (not illustrated) operable by the operator stepping on the pedals with his/her feet. By stepping on either the front side or rear side of the pedals, a pilot pressure is generated as with the operating levers described above, by which a traveling control valve 37D is controlled and hydraulic motors 5c are driven, and the excavator 100 can move forward or backward. By simultaneously stepping on the front side of the two pedals, the excavator 100 moves forward, and by stepping on the rear side, the excavator 100 moves backward. Alternatively, by stepping on the front or rear side of one pedal, only one side of the tracks 5a and 5b turns, by which the excavator 100 can swing. As such, when the operator wants the excavator 100 to travel, by performing either operation, tilting the operating levers back and forth with his/her hands or stepping on the front side or rear side of the pedals with his/her feet, he/she can drive the hydraulic motors 5c of the traveling apparatus 5. As illustrated in
The travel operation detecting unit 34L, 34R generates a pilot pressure, according to an input, i.e., an operation content, to the travel operating member 33L, 33R and supplies the generated pilot pressure to the traveling control valve 37D included in the vehicle control apparatus 27. The traveling control valve 37D operates according to the magnitude of the pilot pressure, by which hydraulic oil is supplied to the traveling hydraulic motor 5c. When the travel operating member 33L, 33R is an electric operated lever, the travel operation detecting unit 34L, 34R detects an input, i.e., an operation content, to the travel operating member 33L, 33R using, for example, a potentiometer, and converts the input into an electrical signal (detection signal) and then sends the electrical signal to the work implement electronic control apparatus 26. The work implement electronic control apparatus 26 controls the traveling control valve 37D, based on the detection signal.
As illustrated in
The vehicle control apparatus 27 is a hydraulic device including hydraulic control valves, etc., and has the traveling control valve 37D and the work control valve 37W. These valves are proportional control valves, and are controlled by pilot, pressures from the work implement operation detecting units 32L and 32R and the travel operation detecting units 34L and 34R. When the work implement operating members 31L and 31R and the travel operating members 33L and 33R are electric operated levers, the traveling control valve 37D and the work control valve 37W are controlled based on control signals from the work implement electronic control apparatus 26.
In, the case in which the travel operating members 33L and 33R are pilot pressure operated traveling levers, when the operator of the excavator 100 operates the travel operating members 33L and 33R by providing inputs thereto, hydraulic oil with a flow rate according to pilot pressures from the travel operation detecting units 34L and 34R flows out of the traveling control valve 37D, and is supplied to the traveling hydraulic motors 5c. When one or both of the travel operating members 33L and 33R is (are) operated, one or both of the left and right hydraulic motors 5c illustrated in
The vehicle control apparatus 27 includes hydraulic sensors 37Slf, 37Slb, 37Srf, and 37Srb that detect magnitudes of pilot pressures to be supplied to the traveling control valve 37D, and generate corresponding electrical signals. The hydraulic sensor 37Slf detects a pilot pressure for left-forward movement, the hydraulic sensor 37Slb detects a pilot pressure for left-backward movement, the hydraulic sensor 373rf detects a pilot pressure for right-forward movement, and the hydraulic sensor 37Srb detects a pilot pressure for right-backward movement. The work implement electronic control apparatus 26 obtains an electrical signal indicating the magnitude of a hydraulic oil pilot pressure detected and generated by the hydraulic sensor 37Slf, 37Slb, 37Srf, or 375rb. The electrical signal is used for control of the engine or the hydraulic pump, operation of a construction management apparatus (described later), or the like. As described above, in the present embodiment, the work implement operating members 31L and 31R and the travel operating members 33L and 33R are pilot pressure operated levers. In this case, the hydraulic sensors 37Slf, 37Slb, 37Srf, and 37Srb and hydraulic sensors 37SBM, 37SBK, 37SAM, and 37SRM (described later) function as operation detecting units that detect inputs to the work implement operating members 31L and 31R and the travel, operating members 33L and 33R which serve as the operating units.
In the case in which the work implement operating members 31L and 31R are pilot pressure operated operating levers, when the operator of the excavator 100 operates the operating lever, hydraulic oil with a flow rate corresponding to a pilot pressure generated according to the operation performed on the work implement operating member 31L, 31R flows out of the work control valve 37W. The hydraulic oil having flown out of the work control valve 37W is supplied to at least one of the boom cylinder 10, the arm cylinder 11, the bucket cylinder 12, and a swing motor. Then, in at least one of the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12 illustrated in
The vehicle control apparatus 27 includes the hydraulic sensors 37SBM, 37SBK, 37SAM, and 37SRM that detect magnitudes of pilot pressures to be supplied to the work control valve 37W, and generate electrical signals. The hydraulic sensor 37SBM detects a pilot pressure for the boom cylinder 10, the hydraulic sensor 37SBK detects a pilot pressure for the arm cylinder 11, the hydraulic sensor 37SAM detects a pilot pressure for the bucket cylinder 12, and the hydraulic sensor 37SRM detects a pilot pressure for the swing motor. The work implement electronic control apparatus 26 obtains an electrical signal indicating the magnitude of a pilot pressure detected and generated by the hydraulic sensor 37SBM, 37SBK, 37SAM, or 37SRM. The electrical signal is used for control of the engine or the hydraulic pump, etc.
Although in the present embodiment the work implement operating members 31L and 31R and the travel operating members 33L and 33R are pilot pressure operated operating levers, they may be electric operated levers. In this case, the work implement electronic control apparatus 26 generates a control signal for allowing the work implement 2, the upper swing body 3, or the traveling apparatus 5 to operate, according to an operation performed on the work implement operating member 31L, 31R or the travel operating member 33L, 33R, and outputs the control signal to the vehicle control apparatus 27.
in the vehicle control apparatus 27, the work control valve 37W and the traveling control valve 37D are controlled based on control signals from the work implement electronic control apparatus 26. Hydraulic oil with a flow rate according to a control signal from the work implement electronic control apparatus 26 flows out of the work control valve 37W, and is supplied to at least one of the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12. The boom cylinder 10, the arm cylinder 11, the bucket cylinder 12, and the tilt cylinders 13 illustrated in
<Display System 101>
The display system 101 is a system for providing the operator with information for working on the ground in a work area to obtain a shape such as design planes (described later) by excavating the ground by the excavator 100. The display system 101 includes stroke sensors such as the first stroke sensor 18A, the second stroke sensor 18B, and the third stroke sensor 18C, the display input apparatus 38 serving as a display apparatus, the display control apparatus 39, the work implement electronic control apparatus 26, and a sound generating apparatus 46 including a speaker for sounding an audible alarm, etc., in addition to the above-described three--dimensional position sensor 23, tilt angle sensor 24, and bucket tilt sensor 18D. In addition, the display system 101 includes the position detecting unit 19 illustrated in
The display input apparatus 38 is a display apparatus having a touch panel type input unit 41 and a display unit 42 such as an LCD (Liquid Crystal Display). The display input. apparatus 38 displays a guidance screen for providing the operator with information for performing excavation. In addition, various types of keys are displayed on the guidance screen. The operator (a service person when the excavator 100 is checked or repaired) serving as an operator can allow various types of functions of the display system 101 to be performed by touching various types of keys on the guidance screen. The guidance screen will be described later.
The display control apparatus 39 performs various types of functions of the display system 101. The display control apparatus 39 is an electronic control apparatus having a storage unit 43 including at least one of a RAM and a ROM; and a processing unit 44 such as a CPU. The storage unit 43 stores work implement data. The work implement data includes the above-described length L1 of the boom, length L2 of the arm 7, length L3 of the linkage member 8, and length L4 of the bucket 9. When the bucket 9 is replaced with another bucket, values of the length L3 of the linkage member 8 and the length L4 of the bucket 9 which are work implement data, according to the dimensions of another bucket 9 are inputted from the input unit 41 and stored in the storage unit 43. In addition, the work implement data includes minimum values and maximum values of each of the tilt angle θ1 of the boom 6, the tilt angle θ2 of the arm 7, and the tilt angle θ3 of the bucket 9. The storage unit 43 stores a display computer program for the excavator 100, i.e., the excavating machine. By the processing unit 44 reading and executing the display computer program for the excavating machine according to the present embodiment, which is stored in the storage unit 43, the processing unit 44 displays a guidance screen or displays posture information for guiding the operator of the excavator 100 on the operations of the bucket 9, on the display unit 42 serving as a display apparatus.
The display control apparatus 39 and the work implement electronic control apparatus 26 can communicate with each other through a wireless or wired communication means. The storage unit 43 of the display control apparatus 39 stores design terrain data generated in advance. The design terrain data is information about the shape and position of a three-dimensional design terrain, and is information on design planes 45. The design terrain represents a target shape of the ground which is a work object. The display control apparatus 39 displays a guidance screen on the display input apparatus 38, based on the design terrain data and information such as detection results from the above-described various types of sensors. Specifically, as illustrated in
<Guidance Screen>
(Example of the Rough Excavation Screen 53)
The rough excavation screen 53 illustrated in
In addition, the target plane 70 which is selected as a target work object from among the plurality of design planes 45 (only one design plane is given reference sign in
The side view 53b of the ranch excavation screen 53 includes an image representing a positional relationship between the target plane 70 and the tooth edges 9T of the bucket 9; and distance information indicating the distance between the target plane 70 and the tooth edges 9T of the bucket 9. Specifically, the side view 53b includes a target plane line 79 and an icon 75 of the side-viewed excavator 100. The target plane line 79 indicates a cross section of the target plane 70. The target plane line 79 is obtained, as illustrated in
In the side view 53b, the distance information indicating the distance between the target plane 70 and the tooth edges 9T of the bucket 9 includes graphics information 84. The distance between the target plane 70 and the tooth edges 9T of the bucket 9 is a distance between a point where a line dropped from the tooth edges 9T toward the target plane 70 in a vertical direction (gravity direction) intersects the target plane 70 and the tooth edges 9T. Alternatively, the distance between the target plane 70 and the tooth edges 9T of the bucket 9 may be a distance between an Intersection point obtained when a perpendicular line is dropped from the tooth edges 9T to the target plane 70 (the perpendicular line is orthogonal to the target plane 70) and the tooth edges 9T. The graphics information 84 is in indicating, by graphics, the distance between the tooth edges 9T of the bucket 9 and the target plane 70. The graphics information 84 is a guidance index for indicating the position of the tooth edges 9T of the bucket 9. Specifically, the graphics information 84 includes index bars 84a and an index mark 84b indicating a position corresponding to a zero distance between the tooth edges of the bucket 9 and the target plane 70 among the index bars 84a. The index bars 84a are such that each index bar 84a lights up according to the shortest distance between the tip of the bucket 9 and the target plane 70. Note that the configuration may be such that the on/off of display of the graphics information 84 can be changed by an operation performed on the input unit 41 by the operator of the excavator 100.
A distance (numerical value) (not illustrated) may be displayed on the rough excavation screen 53 to show a positional relationship between the target plane line 79 and the excavator 100 such as that described above. The operator of the excavator 100 can easily perform excavation such that the current terrain becomes the design terrain, by moving the tooth edges 9T of the bucket 9 along the target plane line 79. Note that a screen switching key 65 for switching the guidance screen is displayed on the rough excavation screen 53. The operator can switch from the rough excavation screen 53 to the fine excavation screen 54 by operating the screen switching key 65.
(Example of the Fine Excavation Screen 54)
The fine excavation screen 54 illustrated in
The front-viewed target plane line 78 is obtained as follows. When a perpendicular line is dropped from the tooth edges 9T of the bucket 9 in a vertical direction (gravity direction), a line of intersection formed when a plane containing the perpendicular line intersects the target plane 70 is the front-viewed target plane line 78. Namely, the line of intersection is the front-viewed target plane line 78 in a global coordinate system. On the other hand, on condition that there is a parallel positional relationship to a line in a top-bottom direction of the vehicle main body 1, furthermore, when a line is dropped from the tooth edges 9T of the bucket 9 toward the target plane 70, a line of intersection formed when a plane containing the line intersects the target plane 70 may be the front-viewed target plane line 78. Namely, the line of intersection is the front-viewed target plane line 78 in the vehicle main body coordinate system. In which coordinate system the front-viewed target plane line 78 is to be displayed can be selected by the operator operating a switching key (not illustrated) of the input unit 41.
The side view 54b of the fine excavation screen 54 includes an icon 90 of the side-viewed bucket 9; and a target plane line 79. In addition, information indicating a positional relationship between the target plane 70 and the bucket 9, such as that described next, is displayed on each of the front view 54a and the side view 54b of the fine excavation screen 54. The term “side-viewed” refers to viewing from the extending direction of the central axis of the bucket pin 16 (the direction of the central axis of rotation of the bucket 9) illustrated in
The front view 54a may include distance information indicating the distance in the Za-direction of the vehicle main body coordinate system (or the Z-direction of the global coordinate system) between the tooth edges 9T and the target plane 70, as information indicating a positional relationship between the target plane 70 and the bucket 9. The distance is a distance between the closest position to the target plane 70 among positions in the width direction of the tooth edges 9T of the bucket 9, and the target plane 70. Namely, as described above, the distance between the target plane 70 and the tooth edges 9T of the bucket 9 may be a distance between a point where a line dropped from the tooth edges 9T toward the target plane 70 in the vertical direction intersects the target plane 70 and the tooth edges 9T. Alternatively, the distance between the target plane 70 and the tooth edges 9T of the bucket 9 may be a distance between an intersection point obtained when a perpendicular line is dropped from the tooth edges 9T to the target plane 70 (the perpendicular line is orthogonal to the target plane 70) and the tooth edges 9T.
The fine excavation screen 54 includes graphics information 84 indicating, by graphics, the above-described distance between the tooth edges 9T of the bucket 9 and the target plane 70. As with the graphics information 84 of the rough excavation screen 53, the graphics information 84 has index bars 84a and an index mark 84b. As described above, a relative positional relationship between the front-viewed target plane line 78 and the target plane line 79 and the tooth edges 9T of the bucket 9 is displayed in detail on the fine excavation screen 54. The operator of the excavator 100 can more easily and accurately perform excavation such that the current terrain obtains the same shape as the three-dimensional design terrain, by moving the tooth edges 9T of the bucket 9 along the front-viewed target plane line 78 and the target plane line 79. Note that, as with the above-described rough excavation screen 53, a screen switching key 65 is displayed on the fine excavation screen 54. The operator can switch from the fine excavation screen 54 to the rough excavation screen 53 by operating the screen switching key 65.
Next, a display method for the excavating machine according to the present embodiment will be described. The display method is implemented by the display control apparatus 39 included in the display system 101 illustrated in
<Example of Posture Information Display Control>
Posture information display control is control for assisting in operator's operations on the excavator 100, by moving the pointer 73I of the facing compass 73 illustrated in
When the tooth edges 9T of the bucket 9 illustrated in
The normal vector N illustrated in
In the posture information display control, the amount of swine (hereinafter, referred to as the amount of rotation, as appropriate) of the upper swing body 3 including the work implement 2 having the bucket 9, which is required for the tooth edge vector B of the bucket 9 to become orthogonal to the normal vector N of the target plane 70 is determined. In the present embodiment, the amount of rotation is referred to as the target amount of rotation, and information indicating the target amount of rotation is referred to as target swing information. The target amount of rotation is, for example, the angle of swing (hereinafter, referred to as a rotation angle, as appropriate) around the swing central axis of the upper swing body 3 including the work implement 2, which is required for the tooth edges 9T of the bucket 9 to become parallel to the target plane 70. The rotation angle is referred to as a target rotation angle, as appropriate.
in the posture information display control, as illustrated in
The facing compass 73 is provided with, for example, a facing mark 73M at the top thereof. When the tooth edges 9T of the bucket 9 face the target plane 70, the pointer 73I rotates and the position of a top 73IT coincides with the position of the facing mark 73M. The operator of the excavator can grasp that the tooth edges 9T of the bucket 9 have faced the target plane 70, by the position of the top 73IT of the pointer 73I coinciding with the position of the facing mark 73M.
In the present embodiment, in the facing compass 73 serving as posture information, the mode of the facing compass 73 displayed on the display unit 42 of the display input apparatus 38 illustrated in
By employing such a display mode of the facing compass 73, the operator of the excavator 100 can securely and intuitively recognize that the tooth edges 9T of the bucket 9 have faced the target plane 70, and thus, work efficiency improves. For example, when the excavator 100 is on a slope ground, etc., the operator views the display unit 42 or an outside terrain with the operator him/herself tilted. Thus, it is difficult to intuitively recognize that the tooth edges 9T of the bucket 9 have faced the target plane 70, only by viewing the direction indicated by the top 73IT of the pointer 73I. In addition, in the case in which the display unit 42 is placed far from the operator's seat, when the operator views the facing compass 73, it may be difficult to accurately and visually recognize that the position of the top 73IT of the pointer 73I has coincided with the position of the facing mark 73M. Hence, by making the display mode of the facing compass 73 different before and after the tooth edges 9T of the bucket 9 face the target plane 70, the operator can intuitively grasp facing of the tooth edges 9T of the bucket 9.
When the tooth edges 9T of the bucket 9 have faced the target plane 70, the processing unit 44 may display the facing compass 73 such that the design mode of the facing compass 73 is changed from that before the facing. For example, when the tooth edges 9T of the bucket 9 have faced the target plane 70, display may be performed such that the facing compass 73 serving as posture information is changed to text indicating “completion of facing”, or a predetermined mark by which the operator can intuitively understand the completion of facing may be displayed as posture information. In addition, as posture information, a target rotation angle may be displayed on the display unit 42, instead of the facing compass 73 or together with the facing compass 73. The operator can allow the bucket 9 to face the target plane 70 by operating the excavator 100 such that the magnitude of the displayed target rotation angle approaches zero. Next, the posture information display control according to the present embodiment will be described in more detail.
Then, processing proceeds to step S2, and the processing unit 44 finds a tooth edge vector B of the bucket 9. When the bucket 9 has a plurality of teeth 9, the tooth edge vector B is a vector in the same direction as a tooth edge array line LBT (see
(Example of a Technique for Determining the Tooth Edge Vector B)
Upon finding the tooth edge vector B, the display control apparatus 39 finds, as illustrated in
The three-dimensional, position sensor 23 illustrated in
Xa=(P1−P−2)/|P1−P2| (1)
When, as illustrated in
(Z′,Xa)=0 (2)
Z′=(1−c)×Z+c×Xa (3)
Z′=Z+{(Z,Xa)/((Z,Xa)−1)}×(Xa−Z) (4)
Y′=Xa⊥Z′ (5)
As illustrated in
In addition, the processing unit 44 obtains detection results of the first stroke sensor 18A, the second stroke sensor 18B, and the third stroke sensor 18C, and finds the above-described current tilt angles θ1, θ2, and θ3 of the boom 6, the arm 7, and the bucket 9, using the obtained detection results. Coordinates 93 (xa3, ya3, za3) on the second axis AX2 in the vehicle main body coordinate system COM can be found by equations (7), (8), and (9), using the tilt angles θ1, θ2, and θ3 and the lengths L1, L2, and L3 of the boom 6, the arm 7, and the linkage member 8. The coordinates 93 are coordinates on the second axis AX2 and at the center in the axial direction of the tilt pin 17.
xa3=Lb1+L1×sin θ1+L2×sin(θ1+θ2)+L3×sin(θ1+θ2+θ3) (7)
ya3=0 (8)
za3=−Lb2+L1×cos θ1+L2×cos(θ1+θ2)+L3×cos(θ1+θ2+θ3) (9)
The tooth edge vector B illustrated in
The first tooth edge coordinates P4A′ (xa4A, ya4A, za4A) can be found by equations (10), (11), and (12), using the bucket tilt angle θ4 detected by the bucket tilt sensor 18D, the length L4 of the bucket 9, and the distance W between the first tooth edge 9T1 and the second tooth edge 9T2 in the width direction of the bucket 9 (hereinafter, referred to as a maximum tooth-edge-to-tooth-edge distance, as appropriate). The second tooth edge coordinates 94B′ (xa4B, ya4B, za4) can be found by equations (13), (14), and (15), using the bucket tilt angle θ4 detected by the bucket tilt sensor 18D, the length L4 of the bucket 9, and the distance W between the first tooth edge 9T1 and the second tooth edge 9T2 in the width direction of the bucket 9.
Equation (10) is an equation for determining a distance (xa4A) between coordinates xa3A and xa4A′ illustrated in
Equation (13) is an equation for determining a distance (xa4B) between coordinates xa3B and xa4B′ illustrated in
The first tooth edge coordinates P4A′ (xa4A, ya4A, za4A) and the second tooth edge coordinate P4B′ (xa4B, ya4B, za4B) are, as illustrated in
As can be seen from
As can be seen from
As can be seen from
As described above, the first tooth edge coordinates P4A′ (xa4A, ya4A, za4A) and the second tooth edge coordinates P4B′ (xa4B, ya4B, za4B) are obtained with reference to the coordinates P3 (xa3, ya3, za3) of the second axis AX2. As can be seen from
xatA=xa3−xa4A (16)
yatA=ya3−ya4A (17)
zatA=za3−za4A (18)
As can be seen from
xatB=xa3−xa4B (19)
yatB=ya3−ya4B (20)
zatB=za3−za4B) (21)
When the processing unit 44 finds, at step S2, the tooth edge vector B based. on the above-described technique, the processing unit 44 proceeds processing to step 33. At step S3, the processing unit 44 finds a target rotation angle α serving as target swing information, using the tooth edge vector B found at step S2 and a normal vector N of a target plane 70. Next, a technique for finding the target rotation angle α will be described.
In
When finding the target rotation angle α, in the present. embodiment, the tooth edge vector B and the target tooth edge vector B′ are used. It is assumed that, when the work implement 2 and the bucket 9 mounted on the work implement 2 swing at the angle −α from the current position by allowing the upper swing body 3 to swing, a normal vector N of the target plane 70 is orthogonal to the tooth edge vector B. The target plane 70 is selected in advance by the operator, as a target work object of the excavator 100.
The tooth edge vector B for when the normal vector N of the target plane 70 is orthogonal to the tooth edge vector B is the target tooth edge vector B′. The unit vector ez illustrated in
When the target tooth edge vector B′ becomes orthogonal to the normal vector N of the target plane 70, equation (22) holds. Namely, the inner product of the target tooth edge vector B′ and the normal vector N is 0. At this time, in the target plane 70, the relationship between the tooth edge vector B, the target tooth edge vector B′, the normal vector N, and the unit vector ex is as illustrated in
{right arrow over (B′)}⊥{right arrow over (N)}{right arrow over (B′)}·{right arrow over (N)}=0 (22)
{right arrow over (B′)}={right arrow over (ez)}({right arrow over (ez)}·{right arrow over (B)})+[{right arrow over (B)}−{right arrow over (ez)}({right arrow over (ez)}({right arrow over (ez)}·{right arrow over (B)})] cos(−α)−({right arrow over (B)}×{right arrow over (ez)})sin(−α) (23)
From equations (22) and (23), equation (24) is obtained. When equation (24) is organized, equation (25) is obtained. P, Q, and R in equation (25) are as shown in equation (26). To find the target rotation angle α from equation (25), P, Q, and R need to satisfy a relational expression of equation (27). Equation (25) can be rewritten into the form as shown in equation (28) by the synthesis formula of trigonometric functions. In this case, the relationship shown in equation (27) holds. That is, satisfying equation (27) indicates that the target rotation angle α can be obtained as a real solution. φ in equation (28) satisfies cosφ=P/√(P2+(Q+R)2) and sinφ=(Q+R)/√(P2+(Q+R)2). From equation (28), the target rotation angle α is found as shown in equation (29).
The target rotation angle α a can be found by equation (30) when P is greater than or equal to 0, and by equation (31) when P is less than 0. Furthermore, by substituting β=−α, equations (32) and (33) are obtained. In equation (32), β is for when P is greater than or equal. to 0. In equation (33), β is for when P is less than 0, Note that β can also be a candidate for the target amount of rotation, and is the target rotation angle and is target swing information. In the present embodiment, in the following, the target rotation angle α is referred to as a first target rotation angle α, and the target rotation angle β is referred to as a second target rotation angle β, as appropriate. The first target rotation angle a is first target swing information, and the second target rotation angle β is second target swing information. As illustrated in
The processing unit 44 finds the first target rotation angle α and the second target rotation angle β using the above-described equations (26) and (30) to (33) and using the unit vector ez, the normal vector N of the target plane 70, and the tooth edge vector B found at step S2. The unit vector ez and the normal vector N of the target plane 70 are stored in the storage unit 43 of the display control apparatus 39 illustrated in
A circle C illustrated in
Upon selecting the first target rotation angle α or the second target rotation angle β to be used to display the facing compass 73, the processing unit 44 determines a first angle γ1 and a second angle γ2. First, four imaginary lines LN1, LN2, LN3, and LN4 are extended from an arbitrary point on the swing central axis (Za-axis) to a plurality of (four in the present embodiment) ends 70T1, 70T2, 70T3, and 70T4 of the target plane 70 on condition that the imaginary lines LN1, LN2, LN3, and LN4 have the same coordinates in the Za-axis direction as the arbitrary point. That is, with the target plane 70 and the excavator 100 viewed in the Za-axis direction as a two-dimensional plane, the imaginary lines LN1, LN2, LN3, and LN4 are extended from the Za-axis to the plurality of ends 70T1, 70T2, 70T3, and 70T4 of the target plane 70. In the example illustrated in
Furthermore, a forward line which is perpendicular to the swing central axis (Za-axis) and which is extended forward of the excavator 100 is determined. The forward line is forward of the Xa-axis which is a front-rear direction axis in a local coordinate system (Xa-Ya-Za) of the excavator 100, i.e., a portion of the Xa-axis on the side of the work implement 2. Angles each formed by each of the four imaginary lines LN1, LN2, LN3, and LN4 and the forward, line (Xa-ax) as viewed from the swing central axis (Za-axis) side are found. Here, a counterclockwise direction about the Za-axis with reference to the Xa-axis when the excavator 100 is viewed from the top is defined as a positive direction, and a clockwise direction as a negative direction.
Of the found plurality of (four in the present embodiment) angles, a maximum value and a minimum value are picked up. The maximum value is the first angle γx, and the minimum value is the second angle γ2. In the case illustrated in
The first angle (hereinafter, referred to as a first direction angle, as appropriate) γ1 will be further described using
As such, the first angle γ1 is an angle having a minimum value when comparing angles formed by the Xa-axis and each of the imaginary lines LN1, LN2, LN3, and LN4 passing through the Za-axis and the ends 70T1, 70T2, 70T3, and 70T4 of the target plane 70, taking into account the positive and negative of the angles. The second angle is an angle having a maximum value when comparing the angles formed by the Xa-axis and each of the imaginary lines LN1, LN2, LN3, and LN4, taking into account the positive and negative of the angles. In the present embodiment, the absolute value of the first angle γ1 is greater than that of the second angle γ2. In the present embodiment, it may be said that, of the angles formed by the Xa-axis and each of the imaginary lines LN1, LN2, LN3, and LN4 passing through the Za-axis and the ends 70T1, 70T2, 70T3, and 70T4 of the target plane 70, an angle having a maximum absolute value is one of the first angle γ1 and the second angle γ2, and an angle having a minimum absolute value is the other one
One of the three examples illustrated in
The example illustrated in
One of the three examples illustrated in
The processing unit 44 finds a first direction angle γ1 and a second direction angle γ2, based on position information of the Za-axis and position information of the Xa-axis of the excavator 100 and position information of the target plane 70. Then, based on the first direction angle γ1 and the second direction angle γ2, the processing unit 44 selects either one of a first target rotation angle α and a second target rotation angle β, as information for displaying the facing compass 73. Displaying the facing compass 73 includes changing the display mode of the facing compass 73, determining the tilt of the pointer 73I, moving the pointer 73I, and the like. Next, this technique will be described.
First, a direction angle range for the target plane 70 determined by the first direction angle γ1 and the second direction angle γ2 is defined. As illustrated in
When only the first target rotation angle α is in the above-described direction angle range, the processing unit 44 selects the first target rotation angle α and uses the first target rotation angle α as target swing information to display the facing compass 73. The example illustrated in
When neither the first target rotation angle α nor the second target rotation angle β is in the above-described direction angle range, the processing unit 44 selects either one of the first target rotation angle α and the second target rotation angle β, based on equation. (34). In equation (34), θ1 is the first direction angle γ1 and θ2 is the second direction angle γ2. The processing unit 44 determines a difference between the first direction angle γ1 and the first target rotation angle α, and further determines a difference between the second direction angle γ2 and the first target rotation angle α. Furthermore, the processing unit 44 compares magnitudes between the two determined differences, and selects the smaller one. Here, the selected one is a first selection. Furthermore, the processing unit 44 determines a difference between the first direction angle γ1 and the second target rotation angle β, and further determines a difference between the second direction angle γ2 and the second target rotation. angle β. The processing unit 44 compares magnitudes between the two determined differences, and selects the smaller one. Here, the selected one is a second selection. Furthermore, the processing unit 44 compares magnitudes between the first selection and the second selection.
That is, a comparison is made between the smaller one of (θ1−α) and (θ2−α) and the smaller one of (θ1−β) and (θ2−β). As a result of the comparison, if equation (34) holds, then the processing unit 44 selects the first target rotation angle α, and if equation (34) does not hold, then the processing unit 44 selects the second target rotation angle β, and uses the selected one as target swing information to display the facing compass 73.
One of the three examples illustrated in
When either one of the first target rotation angle α and the second target rotation angle β is selected as target swing information for displaying the facing compass 73, the processing unit 44 proceeds to step S4, and displays an image corresponding to the selected target swing information, specifically, the facing compass 73, on the display unit 42 illustrated in
In the present embodiment, when the relationship between the unit vector ez and the normal vector N does not satisfy the above-described equation (27), target swing information cannot be mathematically obtained (no-solution. state). The no-solution state is a state in which, the bucket 9 is a tilt bucket and even if the bucket 9 greatly rotates around the tilt pin 17 and the upper swing body 3 is swung with the bucket 9 greatly rotating, the tooth edge vector B of the tooth edges 9T and the normal vector N of the target plane 70 do not become orthogonal to each other.
When the relationship defined in equation (35) is not satisfied, target swing information is not determined to a fixed value (indeterminate solution state).
When the target swing information is in an indeterminate solution state, the tooth edges 9T of the bucket 9 always face the target plane 70, and thus, provision of guidance by the pointer 73I on the operations of the upper swing body 3 including the work implement 2, etc., itself has no meaning.
It is assumed that, in the case in which the bucket 9 is a tilt bucket, the bucket 9 is rotated around the tilt pin 17 as illustrated in
Hence, the processing unit 44 makes the display mode of an image corresponding to the target swing information which is displayed on the display unit 42 of the display input apparatus 38 different from that for when the target swing information is determined to a fixed value. In the present embodiment, as illustrated in
Next, the case in which target swing information cannot be mathematically obtained, i.e., a no-solution state, will be described in detail. In the case in which target swing information cannot be obtained, guidance on the operations of the upper swing body 3 including the work implement 2, etc., by rotation of the pointer 73I cannot be provided. The case in which target swing information cannot be obtained is, for example, the case in which, as illustrated in
In the present embodiment, when the processing unit 44 changes the mode of the facing compass 73 displayed on the screen 42P of the display unit 42, the processing unit 44 may, for example, use sound notification in combination. In this case, for example, the processing unit 44 provides sound notification at predetermined intervals from the sound generating apparatus 46 illustrated in
When the bucket 9 is a tilt bucket, the flexibility in the direction of the tooth edge array line LBT of the bucket 9 increases, complicating computations for displaying the pointer 73I of the facing compass 73. In the present embodiment, the display system 101 finds a first target rotation angle α and a second target rotation angle β which serve as target swing information, based on the tooth edge vector B, the normal vector N of the target plane 70, and the unit vector ez in the Za-axis direction which is the swing central axis of the upper swing body 3 including the work implement 2. As such, by using the tooth edge vector B of the bucket 9, even if the bucket 9 is a tilt bucket, the display system 101 can easily compute a target rotation angle required for the tooth edges 9T to face the target plane 70.
In addition, by using the tooth edge vector B of the bucket 9, even if the bucket 9 is a tilt bucket having a tilt function and is rotated about the second axis AX2 and tilted, or even if the bucket 9 does not have a tilt function, the display system 101 can properly display a target rotation angle required for the tooth edges 9T to face the target plane 70, on the facing compass 73. As a result, the display system 101 can provide information for assisting in the operations of the work implement 2, in such a manner that the operator can readily and intuitively understand the information. Hence, for example, even an operator who is not used to handling a tilt bucket can easily allow the tooth edges 9T of the bucket 9 to face the target plane 70 only by performing swing operations on the upper swing body 3 according to the display of the facing compass 73. As such, the display system 101 can present the operator of the excavator 100 with appropriate information for allowing the tooth edges 9T of the bucket 9 to face the target plane.
In the case of considering only the orientation (tilt) of the target plane 70, when a target rotation angle at which. the tooth edges 9T of the bucket 9 face the target plane 70 is found from the direction of the tooth edge array line LBT of the bucket 9, i.e., the direction of the tooth edge vector B, in general, two real solutions thereof including a multiple solution are found. They are a first target rotation angle α and a second target rotation angle β. The display system 101 selects either one of the first target rotation angle α and the second target rotation angle β as target swing information, based on a direction angle range for the target plane 70 which is determined by a first direction angle γ1 and a second direction angle γ2. By doing so, the display system 101 can select target swing information indicating a proper and fewer amount of rotation for the target plane 70 having a finite region. Thus, the operator can allow the tooth edges 9T of the bucket 9 to face the target plane 70 at a minimum amount of swing with no waste, by following the pointer 73I indicated by the facing compass 73. As such, the display system 101 can present the operator of the excavator 100 with appropriate information for allowing the tooth edges 9T of the bucket 9 to face the target plane.
Although the present embodiment is described above, the present embodiment is not limited to the above-described content. In addition, the above-described components include those that can be easily assumed by those skilled in the art, substantially the same ones, and those in a so-called range of equivalency. Furthermore, the above-described components can be combined, as appropriate. Furthermore, various omissions, replacements, or changes can be made to the components without departing from the spirit and scope of the present embodiment.
For example, the content of each guidance screen is not limited to that described above, and may be changed as appropriate. In addition, some or all of the functions of the display control apparatus 39 may be performed by a computer disposed external to the excavator 100. The input unit 41 of the display input apparatus 38 is not limited to that of a touch panel type, and may be operating members such as hard keys or switches. Namely, the display input apparatus 38 may be structured such that the display unit 42 and the input unit 41 are separated from each other.
Although in the above-described embodiment the work implement 2 has the boom 6, the arm 7, and the bucket 9, the work implement 2 is not limited thereto. For example, the boom 6 may be an offset boom. In addition, the bucket 9 is not limited to a tilt bucket, and may be a bucket that does not have a tilt function.
Although in the above-described embodiment the posture and positions of the boom 6, the arm 7, and the bucket 9 are detected by detection means such as the first stroke sensor 18A, the second stroke sensor 18B, and the third stroke sensor 18C, the detection means are not limited thereto. For example, as the detection means, angle sensors that detect the tilt angles of the boom 6, the arm 7, and the bucket 9 may be provided.
Although the above-described embodiment shows the case of the work implement 2 having a structure in which, as illustrated in
In addition, although in the present embodiment a bucket tilt angle θ4 is detected using the bucket tilt sensor 18D illustrated in
1 VEHICLE MAIN BODY
2 WORK IMPLEMENT
3 UPPER SWING BODY
4 OPERATOR CAB
5 TRAVELING APPARATUS
6 BOOM
7 ARM
8 BUCKET
8 LINKAGE MEMBER
9, 9a, and 9b BUCKET
9B and 9Ba TOOTH
9T, PTa, and 9TC TOOTH EDGE
9T1 FIRST TOOTH EDGE
9T2 SECOND TOOTH EDGE
9TG and 9TGa TOOTH EDGE ARRAY
10 BOOM CYLINDER
11 ARM CYLINDER
12 BUCKET CYLINDER
13 TILT CYLINDER
14 BOOM PIN
15 ARM PIN
16 BUCKET PIN
17 TILT PIN
19 POSITION DETECTING UNIT
21 and 22 ANTENNA
25 OPERATING APPARATUS
26 WORK IMPLEMENT ELECTRONIC CONTROL APPARATUS
27 VEHICLE CONTROL APPARATUS
35 WORK IMPLEMENT SIDE STORAGE UNIT
36 ARITHMETIC UNIT
37 PROPORTIONAL CONTROL VALVE
37W WORK CONTROL VALVE
37D TRAVELING CONTROL VALVE
38 DISPLAY INPUT APPARATUS
39 DISPLAY CONTROL APPARATUS
41 INPUT UNIT
42 DISPLAY UNIT
43 STORAGE UNIT
44 PROCESSING UNIT
70 DESIGN PLANE
70T1 ONE END
70T2 OTHER END
73 FACING COMPASS
73I POINTER
100 EXCAVATOR
101 DISPLAY SYSTEM
B TOOTH EDGE VECTOR
B′ TARGET TOOTH EDGE VECTOR
ez UNIT VECTOR
LBT TOOTH EDGE ARRAY LINE
N NORMAL VECTOR
α FIRST TARGET ROTATION ANGLE
β SECOND TARGET ROTATION ANGLE
γ1 FIRST DIRECTION ANGLE
γ2 SECOND DIRECTION ANGLE
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/062998 | 5/15/2014 | WO | 00 |