1. Field of the Invention
The invention relates in general to a display system, and more particularly to a head-up display (HUD).
2. Description of the Related Art
For a display device needing to show both an image and the background therebehind, a transparent or translucent reflecting screen (glass window or windshield) is usually used for reflecting images. For example, the display device is a head-up display (HUD) or shows a commercial advertisement, and the image is provided by a projecting device or a display. However, an observer may receive the same image reflected by different surfaces of the reflecting screen, which generates a ghost image caused by overlapping the images and greatly affects the image quality.
Please refer to
Therefore, it is important to reduce the ghost image resulted from multi-reflection for improving the image quality of such kind of display device.
The invention is directed to a display system for changing the polarizing directions of the reflecting image light reflected by different surfaces and the multi-reflected image light. As a result, the image quality is improved.
According to the present invention, a display system including an image device, an image reflecting element and a polarizing element is provided. The image device is used for producing a polarized image light. The image reflecting element includes a substrate and a phase modulating element. The phase reflecting element is adjacent to the substrate and has a reflecting surface for receiving the polarized image light. After the polarized image light is projected to the reflecting surface, the reflecting surface reflects a portion of the polarized image light to produce a first reflecting polarized image light. Another portion of the polarized image light is projected into the phase modulating element, reflected by the substrate and then projected out of the reflecting surface to produce a second reflecting polarized image light. The phase difference between the first reflecting polarized image light and the second reflecting polarized image light is substantially equal to nπ, wherein n is a positive odd number. The polarizing element is for receiving and allowing the first reflecting polarized image light to pass through, and blocking the second reflecting polarized image light.
According to the present invention, a display system including an image device, a transparent substrate and a phase modulating element is provided. The phase modulating element is adjacent to the transparent substrate and has a reflecting surface for receiving a polarized image light. After the polarized image light is projected to the reflecting surface, the reflecting surface reflects a portion of the polarized image light to produce a reflecting polarized image light. Another portion of the polarized image light is projected to the phase modulating element and becomes an incident polarized image light having a desired polarizing direction. Thus most of the incident polarized image light is transmitted into the transparent substrate.
The invention will become apparent from the following detailed description of the preferred but non-limiting embodiments. The following description is made with reference to the accompanying drawings.
Please refer to
As shown in
Preferably, the polarized image light P1 is a linearly-polarized image light, such as a p-type linearly-polarized image light, which means the polarizing direction of the light is parallel to plane defined by the propagation directions of the incident light and the reflecting light. Or, the polarized-image light P1 can be an s-type linearly-polarized image light, which means the polarizing direction of the light is perpendicular to the plane defined by the propagation directions of the incident light and the reflecting light. In the present embodiment, the polarized image light P1 is exemplified by a p-type linearly-polarized image light. But the present embodiment is not limited thereto. The polarized image light can be a linearly polarized image light categorized neither p-type nor s-type linearly-polarized image light. The polarized image light can be a circularly polarized image light or an elliptically polarized image light, too.
Preferably, the substrate 112 is a transparent substrate, such as a transparent glass plate or a transparent plastic plate. The phase modulating element 114 is for example a quarter-wave plate made of polymer material and attached to the substrate 112. Or, the phase modulating element 114 is a quarter-wave coating layer disposed on the substrate 112. Therefore, when a portion of the polarized image light P1 enters and then is projected out of the phase modulating element 114, a phase retardation or a phase difference of 180 degree (π) is generated between the second reflecting polarized image light S2 and the polarized image light P1. Otherwise, a phase retardation or a phase difference of nπ is generated between the second reflecting polarized image light S2 and the polarized image light P1, wherein n is a positive odd number selected from 1, 3, 5 . . . . The polarizing direction of the first reflecting polarized image light P2 and that of the second reflecting polarized image light S2 are substantially perpendicular to each other. In other words, the second reflecting polarized image light S2 is a s-type linearly-polarized image light.
As shown in
n is zero or a positive integer. λ is the wavelength of the second reflecting polarized image light.
Furthermore, even the polarized image light is not categorized either p-type or s-type linearly-polarized image light, the polarizing direction of the first reflecting polarized image light and that of the second reflecting polarized image light are still perpendicular to each other. When the first reflecting polarized image light is reflected by the reflecting surface 114a, the first reflecting polarized image light will be different in phase angle by 180 degrees compared with the polarized image light. Therefore, as long as the polarizing axis of the polarizing element 120 is consistent with the polarizing direction of the first reflecting polarized image light, the polarizing element can still allow the first reflecting polarized image light pass through and block the second reflecting polarized image light.
Besides, if the polarized image light is circularly or elliptically polarized image light, the rotating direction of light of the first reflecting polarized image light and that of the second polarized image light which passed through the quarter-wave plate will be opposite. Therefore, as long as a circular polarizing plate whose rotating direction of light is consistent with that of the first reflecting polarizing light is adopted as the polarizing element, the circular polarizing plate can still allow the first reflecting polarized image light pass through and block the second reflecting polarized image light.
Furthermore, though the present embodiment uses a linearly-polarized image light as an example, the present embodiment can be applied to a circularly-polarized image light or an elliptically-polarized image light. As long as the first reflecting light and the second reflecting light have different polarizing directions when passing through the polarizing element 120 so that the polarizing element 120 allows the first reflecting polarized image light passing through and blocks the second reflecting polarized image light, the present invention encompasses all of such modifications.
Therefore, as long as the reflecting polarized image light passes through the phase modulating element 114, the polarizing element 120 is able to block such light to avoid ghost image resulted from multi-reflection.
Moreover, when the polarized image light P1 is a light of color, the wavelength of the phase modulating element 114 can be taken in the middle band, such as the wavelength of green light, for reducing color shift.
Please refer to
As shown in
Preferably, the transparent substrate 210 is a glass plate or a transparent plastic plate. The phase modulating element 220 is a half-wave plate disposed on the transparent substrate 210. Or, the phase modulating element 220 is a half-wave coating layer disposed on the transparent substrate 210. As shown in
As shown in
Preferably, when the incident angle δ is close to the Brewster's angle of the phase modulating element 220 and the transparent substrate 210, the incident polarized image light TM2 passes through the transparent substrate 210 with almost none reflection. Please refer to
Though the phase modulating element is a half-wave plate as an example in the present embodiment, the present invention is not limited thereto. As long as the retardation wavelength of the wave plate satisfies the formula (3), the same phase retardation can be caused.
n is zero or a positive integer. λ is the wavelength of the incident polarized image light.
Furthermore, if the polarized image light is a circularly polarized image light or an elliptically polarized image light, the phase modulating element can be a quarter-wave plate disposed on the transparent substrate 210, or a quarter-wave coating layer disposed on the transparent substrate 210. Therefore, the incident polarized image light resulted form a portion of the polarized image light projected into the phase modulating element is transformed into a linearly polarized image light, and the polarizing direction thereof is adjusted to become a TM electromagnetic wave. Therefore, as long as the incident angle of the incident polarized image light entering the transparent substrate 210 is close to the Brewster's angle of the phase modulating element and the transparent substrate 210, the effect of reducing the reflecting rate can also be achieved.
Moreover, when the polarized image light TE1 is a light of color, the wavelength of the phase modulating element 114 can be in the middle band, such as the wavelength of green light, for reducing color shift. Meanwhile, the reflectance of most of the incident polarized image light is kept low.
In the display systems of the above embodiments, the phase modulating element is used for changing the phase of the polarized image light entering the phase modulating element. The phase of the polarized image light reflected by other surfaces is changed and then filtered by the polarizing element or is projected out of the transparent substrate directly. The present invention effectively reduces redundant reflecting image light and reduces ghost image for improving the display quality.
While the invention has been described by way of example and in terms of preferred embodiments, it is to be understood that the invention is not limited thereto. On the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN2008/000312 | 2/4/2008 | WO | 00 | 8/24/2010 |