Display systems can used to make a desired image visible to a user (viewer). Wearable display systems can be embodied in a wearable headset which is arranged to display an image within a short distance from a human eye. Such wearable headsets are sometimes referred to as head mounted displays, and are provided with a frame which has a central portion fitting over a user's (wearer's) nose bridge and left and right support extensions which fit over a user's ears. Optical components are arranged in the frame so as to display an image within a few centimeters of the user's eyes. The image can be a computer generated image on a display, such as a micro display. The optical components are arranged to transport light of the desired image which is generated on the display to the user's eye to make the image visible to the user. The display on which the image is generated can form part of a light engine, such that the image itself generates collimated lights beams which can be guided by the optical component to provide an image visible to the user.
Different kinds of optical components have been used to convey the image from the display to the human eye. These can include lenses, mirrors, optical waveguides, holograms and diffraction gratings, for example. In some display systems, the optical components are fabricated using optics that allows the user to see the image but not to see through this optics at the “real world”. Other types of display systems provide a view through this optics so that the generated image which is displayed to the user is overlaid onto a real world view. This is sometimes referred to as augmented reality.
Waveguide-based display systems typically transport light from a light engine to the eye via a TIR (Total Internal Reflection) mechanism in a waveguide (light guide). Such systems can incorporate diffraction gratings, which cause effective beam expansion so as to output expanded versions of the beams provided by the light engine. This means the image is visible over a wider area when looking at the waveguide's output than when looking at the light engine directly: provided the eye is within an area such that it can receive some light from substantially all of the expanded beams, the whole image will be visible to the user. Such an area is referred to as an eye box.
To maintain image quality, the structure of the waveguide can be configured in various ways to mitigate distortion of the transported light.
According to one aspect of the present disclosure there is provided a display system comprising: an optical waveguide having an incoupling grating, an intermediate grating and an exit grating; and a light engine configured to generate multiple input beams, each beam being substantially collimated and directed to the incoupling grating in a unique inward direction, whereby the multiple input beams form a virtual image image; wherein the intermediate and exit grating have widths substantially larger than the beams' diameters; wherein the incoupling grating is arranged to couple each beam into the intermediate grating, in which that beam is guided onto a splitting region of a first surface of the intermediate grating; wherein the intermediate grating comprises a second surface opposing the first surface and is arranged to split that beam at the splitting region to provide two versions of that beam which are coupled into the exit grating; whereby the two versions of that beam take respective optical paths between the splitting region before being incident on the exit grating at respective angles, said respective angles having an angular variation less than or equal to 0.5 miliradian, and beam footprints of the two versions of that beam partially overlap on the exit grating;
wherein the exit grating is arranged to diffract the two versions of that beam outwardly, the multiple input beams thus causing multiple exit beams to exit the waveguide which form a version of the virtual image; and wherein the first surface and/or the second surface comprise surface variations arranged to introduce an optical path length difference between the respective optical paths such that a visible banding effect is eliminated from the version of the virtual image.
According to another aspect of the present disclosure there is provided an optical waveguide for a display system, the optical waveguide having an incoupling grating, an intermediate grating and an exit grating, the incoupling grating arranged to receive multiple input beams, each beam being substantially collimated and directed to the incoupling grating in a unique inward direction, whereby the multiple input beams form a virtual image; the intermediate and exit grating have widths substantially larger than the beams' diameters; wherein the incoupling grating is arranged to couple each beam into the intermediate grating, in which that beam is guided onto a splitting region of a first surface of the intermediate grating; wherein the intermediate grating comprises a second surface opposing the first surface and is arranged to split that beam at the splitting region to provide two versions of that beam which are coupled into the exit grating; whereby the two versions of that beam take respective optical paths between the splitting region before being incident on the exit grating at respective angles, said respective angles having an angular variation less than or equal to 0.5 miliradian, and beam footprints of the two versions of that beam partially overlap on the exit grating;
wherein the exit grating is arranged to diffract the two versions of that beam outwardly, the multiple input beams thus causing multiple exit beams to exit the waveguide which form a version of the virtual image; and wherein the first surface and/or the second surface comprise surface variations arranged to introduce an optical path length difference between the respective optical paths such that a visible banding effect is eliminated from the version of the virtual image.
According to another aspect of the present disclosure there is provided a wearable headset comprising: a headpiece; an optical waveguide having an incoupling grating, an intermediate grating and an exit grating; and a light engine mounted on the headpiece, the light engine configured to generate multiple input beams, each beam being substantially collimated and directed to the incoupling grating in a unique inward direction, whereby the multiple input beams form a virtual image image; wherein the intermediate and exit grating have widths substantially larger than the beams' diameters; wherein the incoupling grating is arranged to couple each beam into the intermediate grating, in which that beam is guided onto a splitting region of a first surface of the intermediate grating; wherein the intermediate grating comprises a second surface opposing the first surface and is arranged to split that beam at the splitting region to provide two versions of that beam which are coupled into the exit grating; whereby the two versions of that beam take respective optical paths between the splitting region before being incident on the exit grating at respective angles, said respective angles having an angular variation less than or equal to 0.5 miliradian, and beam footprints of the two versions of that beam partially overlap on the exit grating;
wherein the exit grating is arranged to diffract the two versions of that beam outwardly, the multiple input beams thus causing multiple exit beams to exit the waveguide which form a version of the virtual image; and wherein the first surface and/or the second surface comprise surface variations arranged to introduce an optical path length difference between the respective optical paths such that a visible banding effect is eliminated from the version of the virtual image.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Nor is the claimed subject matter limited to implementations that solve any or all of the disadvantages noted in the background section.
The frame 2 supports left and right optical components, labelled 10L and 10R, which are waveguides. For ease of reference herein an optical component 10 (optical waveguide 10) will be considered to be either a left or right component, because the components are essentially identical apart from being mirror images of each other. Therefore, all description pertaining to the left-hand component also pertains to the right-hand component. The optical components will be described in more detail later with reference to
Other headpieces are also within the scope of the subject matter. For instance, the display optics can equally be attached to the users head using a head band, helmet or other fit system. The purpose of the fit system is to support the display and provide stability to the display and other head borne systems such as tracking systems and cameras. The fit system will also be designed to meet user population in anthropometric range and head morphology and provide comfortable support of the display system.
Beams from the same display 15 may be coupled into both components 10L, 10R so that an image is perceived by both eyes from a single display, or separate displays may be used to generate different images for each eye e.g. to provide a stereoscopic image. In alternative headsets, light engine(s) may be mounted at one or both of left and right portions of the frame—with the arrangement of the incoupling, fold and exit zones 12, 14, 16 flipped accordingly.
The optical component 10 is substantially transparent such that a user can not only view the image from the light engine 13, but also can view a real world view through the optical component 10.
The optical component 10 has a refractive index n which is such that total internal reflection takes place guiding the beam from the incoupling zone along the intermediate expansion zone 14, and down towards the exit zone 16.
As shown in the plan view of
Principles of the diffraction mechanisms which underlie operation of the head mounted display described herein will now be described with reference to
The optical components described herein interact with light by way of reflection, refractions and diffraction. Diffraction occurs when a propagating wave interacts with a structure, such as an obstacle or slit. Diffraction can be described as the interference of waves and is most pronounced when that structure is comparable in size to the wavelength of the wave. Optical diffraction of visible light is due to the wave nature of light and can be described as the interference of light waves. Visible light has wavelengths between approximately 390 and 700 nanometers (nm) and diffraction of visible light is most pronounced when propagating light encounters structures of a similar scale e.g. of order 100 or 1000 nm in scale.
One example of a diffractive structure is a periodic (substantially repeating) diffractive structure. Herein, a “diffraction grating” means any (part of) an optical component which has a periodic diffractive structure. Periodic structures can cause diffraction of light, which is typically most pronounced when the periodic structure has a spatial period of similar size to the wavelength of the light. Types of periodic structures include, for instance, surface modulations on the surface of an optical component, refractive index modulations, holograms etc. When propagating light encounters the periodic structure, diffraction causes the light to be split into multiple beams in different directions. These directions depend on the wavelength of the light thus diffractions gratings cause dispersion of polychromatic (e.g. white) light, whereby the polychromatic light is split into different coloured beams travelling in different directions.
When the period structure is on the surface of an optical component, it is referred to a surface grating. When the periodic structure is due to modulation of the surface itself, it is referred to as a surface relief grating (SRG). An example of a SRG is uniform straight grooves in a surface of an optical component that are separated by uniform straight groove spacing regions. Groove spacing regions are referred to herein as “lines”, “grating lines” and “filling regions”. The nature of the diffraction by a SRG depends both on the wavelength of light incident on the grating and various optical characteristics of the SRG, such as line spacing, groove depth and groove slant angle. An SRG can be fabricated by way of a suitable microfabrication process, which may involve etching of and/or deposition on a substrate to fabricate a desired periodic microstructure on the substrate. The substrate may be the optical component itself or a production master such as a mould for manufacturing optical components.
For a straight binary SRG, the walls are substantially perpendicular to the surface S. For this reason, the SRG 44a causes symmetric diffraction of incident light I that is entering perpendicularly to the surface, in that each +n-order mode beam (e.g. T1) created by the SRG 4a has substantially the same intensity as the corresponding −n-order mode beam (e.g. T−1), typically less than about one fifth (0.2) of the intensity of the incident beam I.
The binary SRGs 44a and 44b can be viewed as spatial waveforms embedded in the surface S that have a substantially square wave shape (with period d). In the case of the SRG 44b, the shape is a skewed square wave shape skewed by α.
The SRG 44c can be viewed as a spatial waveform embedded in S that has a substantially triangular wave shape, which is skewed by α.
Other SRGs are also possible, for example other types of trapezoidal SRGs (which may not narrow in width all the way to zero), sinusoidal SRGs etc. Such other SRGs also exhibit depth h, linewidth w, slant angle α and wall angles γ which can be defined in a similar manner to
In the present display system, d is typically between about 250 and 500 nm, and h between about 30 and 400 nm. The slant angle α is typically between about 0 and 45 degrees (such that slant direction is typically elevated above the surface S by an amount between about 45 and 90 degrees).
An SRG has a diffraction efficiency defined in terms of the intensity of desired diffracted beam(s) (e.g. T1) relative to the intensity of the illuminating beam I, and can be expressed as a ratio η of those intensities. As will be apparent from the above, slanted binary SRGs can achieve higher efficiency (e.g. 4b—up to η≈0.8 if T1 is the desired beam) than non-slanted SRGs (e.g. 44a—only up to about η≈0.2 if T1 is the desired beam). With overhanging triangular SRGs, it is possible to achieve near-optimal efficiencies of η≈1.
Returning to
Optical principles underlying certain embodiments will now be described with reference to
The imaging optics 17 can typically be approximated as a principal plane (thin lens approximation) or, in some cases, more accurately as a pair of principal planes (thick lens approximation) the location(s) of which are determined by the nature and arrangement of its constituent lenses 24, 20 (not shown individually in
The imaging optics 17 has an optical axis 30 and a front focal point, and is positioned relative to the optical component 10 so that the optical axis 30 intersects the incoupling SRG 52 at or near the geometric centre of the incoupling SRG 52 with the front focal point lying substantially at an image point X0 on the display (that is, lying in the same plane as the front of the display). Another arbitrary image point X on the display is shown, and principles underlying various embodiments will now be described in relation to X without loss of generality. In the following, the terminology “for each X” or similar is used as a convenient shorthand to mean “for each image point (including X)” or similar, as will be apparent in context.
When active, image points—including the image point labelled X and X0—act as individual illumination point sources from which light propagates in a substantially isotropic manner through the half-space forward of the display 15. Image points in areas of the image perceived as lighter emit light of higher intensity relative to areas of the image perceived as darker. Image points in areas perceived as black emit no or only very low intensity light (inactive image points). The intensity of the light emitted by a particular image point may change as the image changes, for instance when a video is displayed on the display 15.
Each active image point provides substantially uniform illumination of a collimating area A of the imaging optics 17, which is substantially circular and has a diameter D that depends on factors such as the diameters of the constituent lenses (D may be of order 1-10 mm, but this is just an example). This is illustrated for the image point X in
The beam 34(X) corresponding to the image point X is directed in an inward propagation direction towards the incoupling SRG 52, which can be described by a propagation vector {circumflex over (k)}in(X) (herein, bold typeface is used to denote 3-dimensional vectors, with hats on such vectors indicating denoting a unit vector). The inward propagation direction depends on the location of X in the image and, moreover, is unique to X. That unique propagation direction can be parameterized in terms of an azimuthal angle φin(X) (which is the angle between the x-axis and the projection of {circumflex over (k)}in(X) in the xy-plane) and a polar angle θin(X) (which is the angle between the z-axis and {circumflex over (k)}in(P) as measured in the plane in which both the z-axis and {circumflex over (k)}in(X) lie—note this is not the xz-plane in general). The notation φin(X), θin(X) is adopted to denote the aforementioned dependence on X; as indicated φin(X), θin(X) are unique to that X. Note that, herein, both such unit vectors and such polar/azimuthal angle pairs parameterizing such vectors are sometimes referred herein to as “directions” (as the latter represent complete parameterizations thereof), and that sometimes azimuthal angles are referred to in isolation as xy-directions for the same reason. Note further that “inward” is used herein to refer to propagation that is towards the waveguide (having a positive z-component when propagation is towards the rear of the waveguide as perceived by the viewer and a negative z-component when propagation is towards the front of the waveguide).
The imaging optics has a principle point P, which is the point at which the optical axis 30 intersects the principal plane 31 and which typically lies at or near the centre of the collimation area A. The inward direction {circumflex over (k)}in(X) and the optical axis 30 have an angular separation β(X) equal to the angle subtended by X and X0 from P. β(X)=θin(X) if the optical axis is parallel to the z-axis (which is not necessarily the case).
As will be apparent, the above applies for each active image point and the imaging optics is thus arranged to substantially collimate the image which is currently on the display 15 into multiple input beams, each corresponding to and propagating in a unique direction determined by the location of a respective active image point (active pixel in practice). That is, the imaging optics 17 effectively converts each active point source X into a collimated beam in a unique inward direction {circumflex over (k)}in(X). As will be apparent, this can be equivalently stated as the various input beams for all the active image points forming a virtual image at infinity that corresponds to the real image that is currently on the display 17. A virtual image of this nature is sometimes referred to herein as a virtual version of the image (or similar).
The input beam corresponding to the image point X0 (not shown) would propagate parallel to the optical axis 30, towards or near the geometric centre of the incoupling SRG 52.
As mentioned, in practice, individual pixels of the display 15 can be approximated as single image points. This is illustrated in
The beams are highly collimated and are highly parallel to one another, exhibiting overall angular variation no greater (and potentially significantly less) than the angle subtended by an individual pixel from P (˜Δβ) e.g. typically having an angular range no more than about ½ milliradian. As will become apparent in view of the following, this increases the image quality of the final image as perceived by the wearer.
The optical component has a refractive index n and is configured such that the polar angle θ(X) satisfies total internal reflection criteria given by:
(1): sin θ(X)>1/n for each X.
As will be apparent, each beam input from the imaging optics 17 thus propagates through the optical component 10 by way of total internal reflection (TIR) in a generally horizontal (+x) direction (offset from the x-axis by φ(X)<φin(X)). In this manner, the beam 34(X) is coupled from the incoupling zone 12 into the fold zone 14, in which it propagates along the width of the fold zone 14.
In
As illustrated, the input beam 34(X) is coupled into the waveguide by way of the aforementioned diffraction by the incoupling SRG 52, and propagates along the width of the incoupling zone 12 by way of TIR in the direction φ(X), ±θ(X) (the sign but not the magnitude of the polar angle changing whenever the beam is reflected). As will be apparent, this results in the beam 34(X) eventually striking the fold SRG at the left-most splitting region S.
When the beam 34(X) is incident at a splitting region S, that incident beam 34(X) is effectively split in two by way of diffraction to create a new version of that beam 42(X) (specifically a −1 reflection mode beam) which directed in a specific and generally downwards (−y) direction φ′(X), ±θ′(X) towards the exit zone 16 due to the fold SRG 54 having a particular configuration which will be described in due course, in addition to a zero order reflection mode beam (specular reflection beam), which continues to propagate along the width of the beam in the same direction φ(X), ±θ(X) just as the beam 34(X) would in the absence of the fold SRG (albeit at a reduced intensity). Thus, the beam 34(X) effectively continues propagates along substantially the whole width of the fold zone 14, striking the fold SRG at various splitting regions S, with another new version of the beam (in the same specific downward direction φ′(X), ±θ′(X)) created at each splitting region S. As shown in
As also shown in
Propagation within the fold zone 14 is thus highly regular, with all beam versions corresponding to a particular image point X substantially constrained to a lattice like structure in the manner illustrated.
The exit zone 16 is located below the fold zone 14 and thus the downward-propagating versions of the beam 42(X) are coupled into the exit zone 16, in which they are guided onto the various exit regions E of the output SRG. The exit SRG 56 is configured so as, when a version of the beam strikes the output SRG, that beam is diffracted to create a first order mode beam directed outwardly from the exit SRG 56 in an outward direction that substantially matches the unique inward direction in which the original beam 34(X) corresponding to image point X was inputted. Because there are multiple versions of the beam propagating downwards that are substantially span the width of the exit zone 16, multiple output beams are generated across the width of the exit zone 16 (as shown in
Moreover, the exit SRG 56 is configured so that, in addition to the outwardly diffracted beams 38(X) being created at the various exit regions E from an incident beam, a zero order diffraction mode beam continuous to propagate downwards in the same specific direction as that incident beam. This, in turn, strikes the exit SRG at a lower exit zone 16s in the manner illustrated in
The output beams 38(X) are directed outwardly in outward directions that substantially match the unique input direction in which the original beam 34(X) is inputted. In this context, substantially matching means that the outward direction is related to the input direction in a manner that enables the wearer's eye to focus any combination of the output beams 38(X) to a single point on the retina, thus reconstructing the image point X (see below).
For a flat optical component (that is, whose front and rear surfaces lie substantially parallel to the xy-plane in their entirety), the output beams are substantially parallel to one another (to at least within the angle Δβ subtended by two adjacent display pixels) and propagate outwardly in an output propagation direction {circumflex over (k)}out(X) that is parallel to the unique inward direction {circumflex over (k)}in (X) in which the corresponding input beam 34(X) was directed to the incoupling SRG 52. That is, directing the beam 34(X) corresponding to the image point X to the incoupling SRG 52 in the inward direction {circumflex over (k)}in(X) causes corresponding output beams 38(X) to be diffracted outwardly and in parallel from the exit zone 16, each in an outward propagation direction {circumflex over (k)}out(X)={circumflex over (k)}in(X) due to the configuration of the various SRGs (see below).
As will now be described with reference to
Because the beams 38(X) corresponding to the image point X are all substantially parallel, any light of one or more of the beam(s) 38(X) which is received by the eye 37 is focussed as if the eye 37 were perceiving an image at infinity (i.e. a distant image). The eye 37 thus focuses such received light onto a single retina point, just as if the light were being received from the imaging optics 17 directly, thus reconstructing the image point X (e.g. pixel) ion the retina. As will be apparent, the same is true of each active image point (e.g. pixel) so that the eye 37 reconstructs the whole image that is currently on the display 15.
However, in contrast to receiving the image directly from the optics 17—from which only a respective single beam 34(X) of diameter D is emitted for each X—the output beams 39(X) are emitted over a significantly wider area i.e. substantially that of the exit zone 16, which is substantially larger than the area of the inputted beam (˜D2). It does not matter which (parts) of the beam(s) 38(X) the eye receives as all are focused to the same retina point—e.g., were the eye 37 to be moved horizontally (±x) in
The same relative angular separation A3 exhibited the input beams corresponding any two adjacent pixels Xa, Xb is also exhibited by the corresponding sets of output beams 38(Xa), 38(Xb)—thus adjacent pixels are focused to adjacent retina points by the eye 37. All the various versions of the beam remain highly collimated as they propagate through the optical component 10, preventing significant overlap of pixel images as focused on the retina, thereby preserving image sharpness.
It should be noted that
The configuration of the incoupling SRG 52 will now be described with reference to
Such angles θ(X), φ(X) are given by the (transmissive) grating equations:
n sin θ(X) sin φ(X)=sin θin(X) sin φin(X) (2)
with the SRG 52 having a grating period d1, the beam light having a wavelength λ, and n the refractive index of the optical component.
It is straightforward to show from (2), (3) that θ(XL)=θmax and θ(XR)=θmin i.e. that any beam as coupled into the component 10 propagates with an initial polar angle in the range [θ(XR), θ(XL)]; and that φ(XR2)=φmax and φ(XR1)=φmin (≈−φmax in this example) i.e. that any beam as coupled into the component initially propagates with an azimuthal angle in the range [φ(XR1), φ(XR2)] (≈[−φ(XR2), φ(XR2)]).
The configuration of the fold SRG 54 will now be described with references to
The fold SRG 54 and incoupling SRG 52 have a relative orientation angle A (which is the angle between their respective grating lines). The beam thus makes an angle A+φ(X) (see
As indicated, the new version of the beam 42(X) propagates in a specific direction (φ′(X), θ′(X)) which is given by the known (reflective) grating equations:
n sin θ′(X) sin(A+φ′(X))=n sin θ(X) sin(A+φ(X)) (4)
where the fold SRG has a grating period d2, the beam light has a wavelength A and n is the refractive index of the optical component 10.
As shown in
A first new version 42a(X) (−1 mode) of the beam 34(X) is created when it is first diffracted by the fold SRG 54 and a second new version 42b(X) (−1 mode) when it is next diffracted by the fold SRG 54 (and so on), which both propagate in xy-direction φ′(X). In this manner, the beam 34(X) is effectively split into multiple versions, which are horizontally separated (across the width of the fold zone 14). These are directed down towards the exit zone 16 and thus coupled into the exit zone 16 (across substantially the width of the exit zone 16 due to the horizontal separation). As can be see, the multiple versions are thus incident on the various exit regions (labelled E) of the exit SRG 56, which lie along the width of the exit zone 16.
These new, downward-propagating versions (in the φ′(X) direction) may themselves meet the fold SRG once again, as illustrated. However, it can be shown from (4), (5) that any first order reflection mode beam (e.g. 40a(X), +1 mode) created by diffraction at an SRG of an incident beam (e.g. 42a(X), −1 mode) which is itself a first order reflection mode beam created by an earlier diffraction of an original beam (e.g. 34(X)) at the same SRG will revert to the direction of the original beam (e.g. φ(X), ±θ(X), which is the direction of propagation of 40a(X)). Thus, propagation within the fold zone 14 is restricted to a diamond-like lattice, as can be seen from the geometry of
The exit SRG and incoupling SRG 52, 56 are oriented with a relative orientation angle A′ (which is the angle between their respective grating lines). At each of the exit regions, the version meeting that region is diffracted so that, in addition to a zero order reflection mode beam propagating downwards in the direction φ′(X), ±θ′(X), a first order (+1) transmission mode beam 38(X) which propagates away from the optical component 10 in an outward direction φout(X), θout(X) given by:
sin θout(X) sin (A′+φout(X))=n sin θ′(X) sin(A′+φ′(X)) (6)
The output direction θout(X), φout(X) is that of the output beams outside of the waveguide (propagating in air). For a flat waveguide, equations (6), (7) hold both when the exit grating is on the front of the waveguide—in which case the output beams are first order transmission mode beams (as can be seen, equations (6), (7) correspond to the known transmission grating equations)—but also when the exit grating is on the rear of the waveguide (as in
n sin θ′out(X) sin(A′+φ′out(X))=n sin θ′(X) sin(A′+φ′(X)) (6′)
these beams are then refracted at the front surface of the optical component, and thus exit the optical component in a direction θin(X), φin(X) given by Snell's law:
sin θout(X)=n sin θ′out(X) (8)
φ′out(X)=φout(X) (9)
As will be apparent, the conditions of equations (6), (7) follow straight forwardly from (6′), (7′), (8) and (9). Note that such refraction at the front surface, whilst not readily visible in
It can be shown from the equations (2-7) that, when
d=d1=d3 (10)
(that is, when the periods of the incoupling and exit SRGs 52, 56 substantially match);
d2=d/(2 cos A); (11)
and
A′=2A; (12)
then (θout(X), φout(X))=(θin(X),φin(X)).
Moreover, when the condition
is met, no modes besides the above-mentioned first order and zero order reflection modes are created by diffraction at the fold SRG 54. That is, no additional undesired beams are created in the fold zone when this criteria is met. The condition (13) is met for a large range of A, from about 0 to 70 degrees.
In other words, when these criteria are met, the exit SRG 56 effectively acts as an inverse to the incoupling SRG 52, reversing the effect of the incoupling SRG diffraction for each version of the beam with which it interacts, thereby outputting what is effectively a two-dimensionally expanded version of that beam 34(X) having an area substantially that of the exit SRG 56 (>>D2 and which, as noted, is independent of the imaging optics 17) in the same direction as the original beam was inputted to the component 10 so that the outwardly diffracted beams form substantially the same virtual image as the inwardly inputted beams but which is perceivable over a much larger area.
In the example of
The above considers flat optical components, but a suitably curved optical component (that is, having a radius of curvature extending substantially along the z direction) can be configured to function as an effective lens such that the output beams 30(X) are and are no longer as highly collimated and are not parallel, but have specific relative direction and angular separations such that each traces back to a common point of convergence—this is illustrated in
Note, in general the “width” of the fold and exit zones does not have to be their horizontal extent—in general, the width of a fold or exit zone 14, 16 is that zone's extent in the general direction in which light is coupled into the fold zone 14 from the incoupling zone 12 (which is horizontal in the above examples, but more generally is a direction substantially perpendicular to the grating lines of the incoupling zone 12).
Note that the above arrangement of the light engine 13 is just an example. For example, an alternative light engine based on so-called scanning can provide a single beam, the orientation of which is fast modulated whilst simultaneously modulating its intensity and/or colour. As will be apparent, a virtual image can be simulated in this manner that is equivalent to a virtual image that would be created by collimating light of a (real) image on a display with collimating optics.
As is well known to persons skilled in the art, the modular transfer function (MTF) is a measure of the ability of an optical system to transfer various levels of detail from object to image. An MTF of 1.0 (or 100%) represents perfect contrast preservation, whereas values less than this mean that more and more contrast is being lost—until an MTF of 0 (or 0%), where line pairs (a line pair is a sequence of one black line and one white line) can no longer be distinguished at all.
The optical components described herein achieve high MTF performance due to the highly regular diffractive surfaces which produce the highly collimated output beams which are highly parallel to each other, exhibiting overall angular variation no greater (an potentially significantly less) than the angle subtended by an individual pixel from P (˜Δβ) e.g. exhibiting an overall angular variation of less than or equal to 0.5 milliradian, thus increasing the image quality of the final image as perceived by the wearer.
The inventors have noticed a surprising effect that has arisen due to the increased performance of the optical components described herein. That is, a banding effect is observed in the final image by the wearer.
Along a first optical path, a first version (of the two versions) propagates from point A (where beam 34(X) is first diffracted by the fold SRG 54) in beam 42a(X) by way of TIR to point B otherwise referred to herein as a second splitting region of the fold SRG 54 (where beam 42a(X) is diffracted by the fold SRG 54) and propagates in first order reflection beam 40a(X) to a third splitting region of the fold SRG 54 by way of TIR.
Along a second optical path, a second version (of the two versions) propagates from point A in beam 34(X) by way of TIR to point C otherwise referred to herein as a fourth splitting region of the fold SRG 54 (where beam 34(X) is diffracted by the fold SRG 54) and propagates in beam 42b(X) to a fifth splitting region of the fold SRG 54 by way of TIR. The third and fifth splitting regions of the fold SRG 54 partially overlap which is shown collectively in
It has been observed by the inventors that banding occurs at very high MTF, which suggests that as the difference in path lengths between path A→B→D and path A→C→D is surprisingly very small (e.g. less than 50 nanometers) due to the highly regular diffractive surfaces of the fold zone 14, this causes destructive and constructive interference (referred to herein as loop interference) and thus dark and bright areas in the final image perceived by the wearer.
Embodiments of the present disclosure relate to the introduction of surface variations in the front wall of the fold zone 14 and/or the opposing rear wall of the fold zone 14 (on which the fold SRG 54 is formed) at the time of manufacture to introduce optical path length mismatches to eliminate the observed banding effect.
The inventors have observed that an optical path length difference between optical paths (such as the two optical paths described above) of at least 50 nanometers is sufficient to eliminate the observed banding effect, therefore the surface variations have physical characteristics that provide this optical path length difference. The surface variations result in a varying thickness of the fold zone 14 of the optical component 10 (distance between the front wall of the fold zone 14 and the opposing rear wall of the fold zone 14). That is, there is a difference in thickness of the fold zone 14 between different portions of the fold zone 14.
Based on a refractive index n of the optical component 10, the required thickness difference TD of the fold zone 14 can be calculated, to achieve an optical path length difference OPD of at least 50 nanometers according to equation (13) below:
TD*2*tan 0(X)=OPD (13)
In order to achieve an optical path length difference of at least 50 nanometers the thickness difference TD of the fold zone 14 is in a range of 10 nm≦TD≦12 nm in dependence on the refractive index n of the optical component 10. It will be apparent that when the surface variations are introduced on only one of the front wall of the fold zone 14 and the opposing rear wall of the fold zone 14, then the thickness difference TD of the optical component 10 corresponds to the height h of the surface variations.
As explained above, beam 42a(X) will be diffracted by the fold SRG 54 at the second splitting region of the fold SRG 54 (point B) and propagate in the φ(X) direction in beam 40a(X). However due to the optical path length mismatch introduced by the surface variation in the surface of the front wall of the fold zone 14, beam 40a(X) will propagate from the second splitting region of the fold SRG 54 (point B) in the φ(X) direction towards the front wall of the fold zone 14 and reflect off of the front wall of the fold zone 14 by way of TIR such that the centre of third splitting region of the fold SRG 54 is shifted along the Q-axis in the y-direction from the centre of the fifth splitting region of the fold SRG 54 by at least 50 nanometers, thus avoiding the destructive interference described above.
Whilst
Due to the optical path length mismatch introduced by the surface variation in the surface of the front wall of the fold zone 14, beam 40a(X) will propagate from the second splitting region of the fold SRG 54 (point B) in the φ(X) direction towards the front wall of the fold zone 14 and reflect off of the front wall of the fold zone 14 by way of TIR such that the centre of third splitting region of the fold SRG 54 is shifted in the φ′(X) direction from the centre of the fifth splitting region of the fold SRG 54 by at least 50 nanometers, thus avoiding the destructive interference described above.
Whilst
Whilst embodiments have been described above with reference to varying the path length of beam 42a(x) to increase the separation distance between the centres of the third and fifth splitting regions of the fold SRG 54, additionally or alternatively, or more of (i) the optical path length travelled by beam 34(X) between the first splitting region of the fold SRG 54 (point A) on the rear wall of the fold zone 14 and the third splitting region of the fold SRG 54 (point C) on the rear wall of the fold zone 14; (ii) the optical path length travelled by beam 42b(X) between the third splitting region of the fold SRG 54 (point C) on the rear wall of the fold zone 14 and the fifth splitting region of the fold SRG 54 (point D) on the rear wall of the fold zone 14; and (iii) the optical path length travelled by beam 40a(X) between the second splitting region of the fold SRG 54 (point B) on the rear wall of the fold zone 14 and the third splitting region of the fold SRG 54 (point D) on the rear wall of the fold zone 14; may be varied to increase the separation distance between the centres of the third and fifth splitting regions of the fold SRG 54.
Whilst
In order to avoid diffraction when light travelling through the fold zone 14 is incident on the front wall of the fold zone 14, the spatial period d′ of the spatial variations is selected to be significantly greater than the wavelength of the light. The spatial period d′ of the spatial variations is in the order of mm, typically 3 mm.
In one aspect of the present disclosure there is provided a display system comprising:
an optical waveguide having an incoupling grating, an intermediate grating and an exit grating; and a light engine configured to generate multiple input beams, each beam being substantially collimated and directed to the incoupling grating in a unique inward direction, whereby the multiple input beams form a virtual image image; wherein the intermediate and exit grating have widths substantially larger than the beams' diameters; wherein the incoupling grating is arranged to couple each beam into the intermediate grating, in which that beam is guided onto a splitting region of a first surface of the intermediate grating; wherein the intermediate grating comprises a second surface opposing the first surface and is arranged to split that beam at the splitting region to provide two versions of that beam which are coupled into the exit grating; whereby the two versions of that beam take respective optical paths between the splitting region before being incident on the exit grating at respective angles, said respective angles having an angular variation less than or equal to 0.5 miliradian, and beam footprints of the two versions of that beam partially overlap on the exit grating;
wherein the exit grating is arranged to diffract the two versions of that beam outwardly, the multiple input beams thus causing multiple exit beams to exit the waveguide which form a version of the virtual image; and wherein the first surface and/or the second surface comprise surface variations arranged to introduce an optical path length difference between the respective optical paths such that a visible banding effect is eliminated from the version of the virtual image.
The surface variations may be arranged to introduce an optical path length difference between the respective optical paths of at least 50 nanometers.
That beam may be guided onto the splitting region of the first surface of the intermediate grating in a direction along the width of the intermediate grating.
In an embodiment, along a first optical path taken by the first version of that beam the first version is guided from the first splitting region in a direction towards the exit grating onto a second splitting region of the first surface of the intermediate grating and guided from the second splitting region in the direction along the width of the intermediate grating onto a third splitting region of the first surface of the intermediate grating; along a second optical path taken by the second version of that beam the second version is guided from the first splitting region in a direction along the width of the intermediate grating onto a fourth splitting region of the first surface of the intermediate grating and guided from the fourth splitting region in the direction towards the exit grating onto a fifth splitting region of the first surface of the intermediate grating; and the third and fifth splitting regions of the first surface of the intermediate grating partially overlap.
The surface variations may introduce an optical path length mismatch between (i) an optical path length between the first and second splitting regions; and (ii) an optical path length between the fourth and fifth splitting regions; to introduce said optical path length difference.
Alternatively or additionally, the surface variations may introduce an optical path length mismatch between (i) an optical path length between the first and fourth splitting regions; and (ii) an optical path length between the second and third splitting regions; to introduce said optical path length difference.
The optical waveguide may be substantially flat so as to outwardly diffract the multiple versions of each beam substantially in parallel to one another and in an outward direction which substantially matches the unique inward direction in which that beam was incoupled. Alternatively, the optical waveguide may be curved so as to form the version of the virtual image a finite distance from the waveguide.
In one embodiment, only the first surface comprises said surface variations. In an alternative embodiment, only the second surface comprises said surface variations. In an alternative embodiment, both the first surface and the second surface comprise said surface variations.
The display system may be wearable by a user.
The display system may be embodied in a wearable headpiece, the exit grating positioned forward of an eye of the user when worn to make the image visible to the user.
The display system may comprise two such optical waveguides, each of which provides image light to a different eye of the user.
In another aspect of the present disclosure there is provided an optical waveguide for a display system, the optical waveguide having an incoupling grating, an intermediate grating and an exit grating, the incoupling grating arranged to receive multiple input beams, each beam being substantially collimated and directed to the incoupling grating in a unique inward direction, whereby the multiple input beams form a virtual image; the intermediate and exit grating have widths substantially larger than the beams' diameters; wherein the incoupling grating is arranged to couple each beam into the intermediate grating, in which that beam is guided onto a splitting region of a first surface of the intermediate grating; wherein the intermediate grating comprises a second surface opposing the first surface and is arranged to split that beam at the splitting region to provide two versions of that beam which are coupled into the exit grating; whereby the two versions of that beam take respective optical paths between the splitting region before being incident on the exit grating at respective angles, said respective angles having an angular variation less than or equal to 0.5 miliradian, and beam footprints of the two versions of that beam partially overlap on the exit grating;
wherein the exit grating is arranged to diffract the two versions of that beam outwardly, the multiple input beams thus causing multiple exit beams to exit the waveguide which form a version of the virtual image; and wherein the first surface and/or the second surface comprise surface variations arranged to introduce an optical path length difference between the respective optical paths such that a visible banding effect is eliminated from the version of the virtual image.
The surface variations may be arranged to introduce an optical path length difference between the respective optical paths of at least 50 nanometers.
That beam may be guided onto the splitting region of the first surface of the intermediate grating in a direction along the width of the intermediate grating.
In one embodiment, along a first optical path taken by the first version of that beam the first version is guided in a direction towards the exit grating onto a second splitting region of the first surface of the intermediate grating and guided from the second splitting region in the direction along the width of the intermediate grating onto a third splitting region of the first surface of the intermediate grating; along a second optical path taken by the second version of that beam the second version is guided in a direction along the width of the intermediate grating onto a fourth splitting region of the first surface of the intermediate grating and guided from the fourth splitting region in the direction towards the exit grating onto a fifth splitting region of the first surface of the intermediate grating; and the third and fifth splitting regions of the first surface of the intermediate grating partially overlap.
The surface variations may introduce an optical path length mismatch between (i) an optical path length between the first and second splitting regions; and (ii) an optical path length between the fourth and fifth splitting regions; to introduce said optical path length difference. Alternatively or additionally, the surface variations may introduce an optical path length mismatch between (i) an optical path length between the first and fourth splitting regions; and (ii) an optical path length between the second and third splitting regions; to introduce said optical path length difference
In another aspect of the present disclosure there is provided a wearable headset comprising: a headpiece; an optical waveguide having an incoupling grating, an intermediate grating and an exit grating; and a light engine mounted on the headpiece, the light engine configured to generate multiple input beams, each beam being substantially collimated and directed to the incoupling grating in a unique inward direction, whereby the multiple input beams form a virtual image image; wherein the intermediate and exit grating have widths substantially larger than the beams' diameters; wherein the incoupling grating is arranged to couple each beam into the intermediate grating, in which that beam is guided onto a splitting region of a first surface of the intermediate grating; wherein the intermediate grating comprises a second surface opposing the first surface and is arranged to split that beam at the splitting region to provide two versions of that beam which are coupled into the exit grating; whereby the two versions of that beam take respective optical paths between the splitting region before being incident on the exit grating at respective angles, said respective angles having an angular variation less than or equal to 0.5 miliradian, and beam footprints of the two versions of that beam partially overlap on the exit grating;
wherein the exit grating is arranged to diffract the two versions of that beam outwardly, the multiple input beams thus causing multiple exit beams to exit the waveguide which form a version of the virtual image; and wherein the first surface and/or the second surface comprise surface variations arranged to introduce an optical path length difference between the respective optical paths such that a visible banding effect is eliminated from the version of the virtual image.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
Number | Name | Date | Kind |
---|---|---|---|
3542453 | Kantor | Nov 1970 | A |
3836258 | Courten et al. | Sep 1974 | A |
3906528 | Johnson | Sep 1975 | A |
3971065 | Bayer | Jul 1976 | A |
4294507 | Johnson | Oct 1981 | A |
4402610 | Lacombat | Sep 1983 | A |
4664524 | Hattori et al. | May 1987 | A |
4711512 | Upatnieks | Dec 1987 | A |
4758087 | Hicks, Jr. | Jul 1988 | A |
4799752 | Carome | Jan 1989 | A |
4822145 | Staelin | Apr 1989 | A |
4860361 | Sato et al. | Aug 1989 | A |
4957351 | Shioji | Sep 1990 | A |
5004673 | Vlannes | Apr 1991 | A |
5019808 | Prince et al. | May 1991 | A |
5019898 | Chao et al. | May 1991 | A |
5106181 | Rockwell, III | Apr 1992 | A |
5114236 | Matsugu et al. | May 1992 | A |
5146355 | Prince et al. | Sep 1992 | A |
5162656 | Matsugu et al. | Nov 1992 | A |
5309169 | Lippert | May 1994 | A |
5313535 | Williams | May 1994 | A |
5359444 | Piosenka et al. | Oct 1994 | A |
5413884 | Koch et al. | May 1995 | A |
5453877 | Gerbe et al. | Sep 1995 | A |
5455458 | Quon et al. | Oct 1995 | A |
5459611 | Bohn et al. | Oct 1995 | A |
5483307 | Anderson | Jan 1996 | A |
5543588 | Bisset et al. | Aug 1996 | A |
5549212 | Kanoh et al. | Aug 1996 | A |
5574473 | Sekiguchi | Nov 1996 | A |
5579830 | Giammaruti | Dec 1996 | A |
5583609 | Mizutani et al. | Dec 1996 | A |
5606455 | Eichenlaub | Feb 1997 | A |
5614941 | Hines | Mar 1997 | A |
5630902 | Galarneau et al. | May 1997 | A |
5648643 | Knowles et al. | Jul 1997 | A |
5651414 | Suzuki et al. | Jul 1997 | A |
5673146 | Kelly | Sep 1997 | A |
5708449 | Heacock et al. | Jan 1998 | A |
5712995 | Cohn | Jan 1998 | A |
5714967 | Okamura et al. | Feb 1998 | A |
5737171 | Buller et al. | Apr 1998 | A |
5751476 | Matsui et al. | May 1998 | A |
5771042 | Santos-Gomez | Jun 1998 | A |
5771320 | Stone | Jun 1998 | A |
5772903 | Hirsch | Jun 1998 | A |
5856842 | Tedesco | Jan 1999 | A |
5861931 | Gillian et al. | Jan 1999 | A |
5880725 | Southgate | Mar 1999 | A |
5886822 | Spitzer | Mar 1999 | A |
5940149 | Vanderwerf | Aug 1999 | A |
5959664 | Woodgate | Sep 1999 | A |
5982553 | Bloom et al. | Nov 1999 | A |
5991087 | Rallison | Nov 1999 | A |
6101008 | Popovich | Aug 2000 | A |
6144439 | Carollo | Nov 2000 | A |
6160667 | Smoot | Dec 2000 | A |
6169829 | Laming et al. | Jan 2001 | B1 |
6181852 | Adams et al. | Jan 2001 | B1 |
6226178 | Broder et al. | May 2001 | B1 |
6239502 | Grewe et al. | May 2001 | B1 |
6271808 | Corbin | Aug 2001 | B1 |
6307142 | Allen et al. | Oct 2001 | B1 |
6323949 | Lading et al. | Nov 2001 | B1 |
6323970 | Popovich | Nov 2001 | B1 |
6377401 | Bartlett | Apr 2002 | B1 |
6411512 | Mankaruse et al. | Jun 2002 | B1 |
6417892 | Sharp et al. | Jul 2002 | B1 |
6446442 | Batchelor et al. | Sep 2002 | B1 |
6466198 | Feinstein | Oct 2002 | B1 |
6470289 | Peters et al. | Oct 2002 | B1 |
6481851 | McNelley et al. | Nov 2002 | B1 |
6483580 | Xu et al. | Nov 2002 | B1 |
6496218 | Takigawa et al. | Dec 2002 | B2 |
6529331 | Massof et al. | Mar 2003 | B2 |
6542307 | Gleckman et al. | Apr 2003 | B2 |
6545650 | Yamada et al. | Apr 2003 | B1 |
6553165 | Temkin et al. | Apr 2003 | B1 |
6554428 | Fergason et al. | Apr 2003 | B2 |
6577411 | David | Jun 2003 | B1 |
6580529 | Amitai et al. | Jun 2003 | B1 |
6606152 | Littau | Aug 2003 | B2 |
6621702 | Elias et al. | Sep 2003 | B2 |
6631755 | Kung et al. | Oct 2003 | B1 |
6635999 | Belliveau | Oct 2003 | B2 |
6639201 | Almogy et al. | Oct 2003 | B2 |
6661436 | Barksdale et al. | Dec 2003 | B2 |
6735499 | Ohki et al. | May 2004 | B2 |
6753828 | Tuceryan et al. | Jun 2004 | B2 |
6775460 | Steiner et al. | Aug 2004 | B2 |
6792328 | Laughery et al. | Sep 2004 | B2 |
6804115 | Lai | Oct 2004 | B2 |
6809925 | Belady et al. | Oct 2004 | B2 |
6819426 | Sezginer et al. | Nov 2004 | B2 |
6825987 | Repetto et al. | Nov 2004 | B2 |
6829095 | Amitai | Dec 2004 | B2 |
6867753 | Chinthammit et al. | Mar 2005 | B2 |
6888613 | Robins et al. | May 2005 | B2 |
6889755 | Zuo et al. | May 2005 | B2 |
6906901 | Liu | Jun 2005 | B1 |
6916584 | Sreenivasan et al. | Jul 2005 | B2 |
6919867 | Sauer | Jul 2005 | B2 |
6947020 | Kiser et al. | Sep 2005 | B2 |
6964731 | Krisko et al. | Nov 2005 | B1 |
6971443 | Kung et al. | Dec 2005 | B2 |
6992738 | Ishihara et al. | Jan 2006 | B2 |
6997241 | Chou et al. | Feb 2006 | B2 |
7006215 | Hoff et al. | Feb 2006 | B2 |
7015876 | Miller | Mar 2006 | B1 |
7031894 | Niu et al. | Apr 2006 | B2 |
7048385 | Beeson et al. | May 2006 | B2 |
7061624 | Ishizuka | Jun 2006 | B2 |
7069975 | Haws et al. | Jul 2006 | B1 |
7099005 | Fabrikant et al. | Aug 2006 | B1 |
7113605 | Rui et al. | Sep 2006 | B2 |
7116555 | Kamath et al. | Oct 2006 | B2 |
7151635 | Bidnyk et al. | Dec 2006 | B2 |
7181699 | Morrow et al. | Feb 2007 | B2 |
7184615 | Levola | Feb 2007 | B2 |
7189362 | Nordin et al. | Mar 2007 | B2 |
7191820 | Chou et al. | Mar 2007 | B2 |
7193584 | Lee et al. | Mar 2007 | B2 |
7196758 | Crawford et al. | Mar 2007 | B2 |
7206107 | Levola | Apr 2007 | B2 |
7212709 | Hosoi | May 2007 | B2 |
7212723 | McLeod et al. | May 2007 | B2 |
7250930 | Hoffman et al. | Jul 2007 | B2 |
7261453 | Morejon et al. | Aug 2007 | B2 |
7261827 | Ootsu et al. | Aug 2007 | B2 |
7271795 | Bradski | Sep 2007 | B2 |
7277282 | Tate | Oct 2007 | B2 |
7301587 | Uehara et al. | Nov 2007 | B2 |
7333690 | Peale et al. | Feb 2008 | B1 |
7337018 | Espinoza-Ibarra et al. | Feb 2008 | B2 |
7359420 | Shchegrov et al. | Apr 2008 | B2 |
7365734 | Fateh et al. | Apr 2008 | B2 |
7369101 | Sauer et al. | May 2008 | B2 |
7372565 | Holden et al. | May 2008 | B1 |
7376852 | Edwards | May 2008 | B2 |
7396133 | Burnett et al. | Jul 2008 | B2 |
7412306 | Katoh et al. | Aug 2008 | B2 |
7416017 | Haws et al. | Aug 2008 | B2 |
7417617 | Eichenlaub | Aug 2008 | B2 |
7428001 | Schowengerdt et al. | Sep 2008 | B2 |
7430349 | Jones | Sep 2008 | B2 |
7430355 | Heikenfeld et al. | Sep 2008 | B2 |
7437678 | Awada et al. | Oct 2008 | B2 |
7455102 | Cheng | Nov 2008 | B2 |
7505269 | Cosley et al. | Mar 2009 | B1 |
7513627 | Larson et al. | Apr 2009 | B2 |
7515143 | Keam et al. | Apr 2009 | B2 |
7532227 | Nakajima et al. | May 2009 | B2 |
7542665 | Lei | Jun 2009 | B2 |
7551814 | Smits | Jun 2009 | B1 |
7576916 | Amitai | Aug 2009 | B2 |
7583327 | Takatani | Sep 2009 | B2 |
7607111 | Vaananen et al. | Oct 2009 | B2 |
7612882 | Wu et al. | Nov 2009 | B2 |
7619895 | Wertz et al. | Nov 2009 | B1 |
7631687 | Yang | Dec 2009 | B2 |
7646606 | Rytka et al. | Jan 2010 | B2 |
7649594 | Kim et al. | Jan 2010 | B2 |
7656912 | Brueck et al. | Feb 2010 | B2 |
7660500 | Konttinen et al. | Feb 2010 | B2 |
7679641 | Lipton et al. | Mar 2010 | B2 |
7693292 | Gross et al. | Apr 2010 | B1 |
7701716 | Blanco, Jr. et al. | Apr 2010 | B2 |
7706785 | Lei et al. | Apr 2010 | B2 |
7716003 | Wack et al. | May 2010 | B1 |
7719769 | Sugihara et al. | May 2010 | B2 |
7728933 | Kim et al. | Jun 2010 | B2 |
7764413 | Levola | Jul 2010 | B2 |
7768534 | Pentenrieder et al. | Aug 2010 | B2 |
7777944 | Ho et al. | Aug 2010 | B2 |
7788474 | Switzer et al. | Aug 2010 | B2 |
7817104 | Ryu et al. | Oct 2010 | B2 |
7826508 | Reid et al. | Nov 2010 | B2 |
7832885 | Hsiao et al. | Nov 2010 | B2 |
7843691 | Reichert et al. | Nov 2010 | B2 |
7871811 | Fang et al. | Jan 2011 | B2 |
7890882 | Nelson | Feb 2011 | B1 |
7894613 | Ong et al. | Feb 2011 | B1 |
7903409 | Patel et al. | Mar 2011 | B2 |
7904832 | Ubillos | Mar 2011 | B2 |
7909958 | Washburn et al. | Mar 2011 | B2 |
7941231 | Dunn | May 2011 | B1 |
7949214 | DeJong | May 2011 | B2 |
7986462 | Kobayashi et al. | Jul 2011 | B2 |
8004621 | Woodgate et al. | Aug 2011 | B2 |
8014644 | Morimoto et al. | Sep 2011 | B2 |
8033709 | Kao et al. | Oct 2011 | B2 |
8046616 | Edwards | Oct 2011 | B2 |
8061411 | Xu et al. | Nov 2011 | B2 |
8085948 | Thomas et al. | Dec 2011 | B2 |
8092064 | Erchak et al. | Jan 2012 | B2 |
8125579 | Khan et al. | Feb 2012 | B2 |
8128800 | Seo et al. | Mar 2012 | B2 |
8139504 | Mankins et al. | Mar 2012 | B2 |
8150893 | Bohannon et al. | Apr 2012 | B2 |
8160411 | Levola et al. | Apr 2012 | B2 |
8162524 | Van Ostrand et al. | Apr 2012 | B2 |
8165988 | Shau et al. | Apr 2012 | B2 |
8176436 | Arend et al. | May 2012 | B2 |
8189263 | Wang et al. | May 2012 | B1 |
8195220 | Kim et al. | Jun 2012 | B2 |
8233204 | Robbins et al. | Jul 2012 | B1 |
8233273 | Chen et al. | Jul 2012 | B2 |
8244667 | Weinberger et al. | Aug 2012 | B1 |
8246170 | Yamamoto et al. | Aug 2012 | B2 |
8274614 | Yokote et al. | Sep 2012 | B2 |
8300614 | Ankaiah et al. | Oct 2012 | B2 |
8320032 | Levola | Nov 2012 | B2 |
8332402 | Forstall et al. | Dec 2012 | B2 |
8358400 | Escuti | Jan 2013 | B2 |
8384999 | Crosby et al. | Feb 2013 | B1 |
8392035 | Patel et al. | Mar 2013 | B2 |
8395898 | Chamseddine et al. | Mar 2013 | B1 |
8418083 | Lundy et al. | Apr 2013 | B1 |
8434019 | Nelson | Apr 2013 | B2 |
8446340 | Aharoni | May 2013 | B2 |
8466953 | Levola | Jun 2013 | B2 |
8472119 | Kelly | Jun 2013 | B1 |
8482920 | Tissot et al. | Jul 2013 | B2 |
8571539 | Ranganathan et al. | Oct 2013 | B1 |
8576143 | Kelly | Nov 2013 | B1 |
8589341 | Golde et al. | Nov 2013 | B2 |
8593734 | Laakkonen | Nov 2013 | B2 |
8594702 | Naaman et al. | Nov 2013 | B2 |
8605700 | Gurin | Dec 2013 | B2 |
8611014 | Valera et al. | Dec 2013 | B2 |
8627228 | Yosef et al. | Jan 2014 | B2 |
8629815 | Brin et al. | Jan 2014 | B2 |
8634139 | Brown et al. | Jan 2014 | B1 |
8638498 | Bohn et al. | Jan 2014 | B2 |
8645871 | Fong et al. | Feb 2014 | B2 |
8666212 | Amirparviz | Mar 2014 | B1 |
8693500 | Ludwig et al. | Apr 2014 | B2 |
8698845 | Lemay | Apr 2014 | B2 |
8700931 | Gudlavenkatasiva et al. | Apr 2014 | B2 |
8712598 | Dighde et al. | Apr 2014 | B2 |
8717676 | Rinko | May 2014 | B2 |
8754831 | Kollin et al. | Jun 2014 | B2 |
8810600 | Bohn et al. | Aug 2014 | B2 |
8817350 | Robbins et al. | Aug 2014 | B1 |
8823531 | McCleary et al. | Sep 2014 | B1 |
8885997 | Nguyen et al. | Nov 2014 | B2 |
8909384 | Beitelmal et al. | Dec 2014 | B1 |
8917453 | Bohn | Dec 2014 | B2 |
8934235 | Rubenstein et al. | Jan 2015 | B2 |
8941683 | Son et al. | Jan 2015 | B2 |
8989535 | Robbins | Mar 2015 | B2 |
9304235 | Sainiemi et al. | Apr 2016 | B2 |
20010043208 | Furness, III et al. | Nov 2001 | A1 |
20020035455 | Niu et al. | Mar 2002 | A1 |
20020038196 | Johnson et al. | Mar 2002 | A1 |
20020041735 | Cai et al. | Apr 2002 | A1 |
20020044152 | Abbott et al. | Apr 2002 | A1 |
20020044162 | Sawatari | Apr 2002 | A1 |
20020063820 | Broer et al. | May 2002 | A1 |
20020097558 | Stone et al. | Jul 2002 | A1 |
20020138772 | Crawford et al. | Sep 2002 | A1 |
20020171939 | Song | Nov 2002 | A1 |
20020180659 | Takahashi | Dec 2002 | A1 |
20030006364 | Katzir et al. | Jan 2003 | A1 |
20030023889 | Hofstee et al. | Jan 2003 | A1 |
20030137706 | Rmanujam et al. | Jul 2003 | A1 |
20030179453 | Mori et al. | Sep 2003 | A1 |
20040011503 | Kung et al. | Jan 2004 | A1 |
20040042724 | Gombert et al. | Mar 2004 | A1 |
20040085649 | Repetto et al. | May 2004 | A1 |
20040108971 | Waldern et al. | Jun 2004 | A1 |
20040109234 | Levola | Jun 2004 | A1 |
20040135209 | Hsieh et al. | Jul 2004 | A1 |
20040151466 | Crossman-Bosworth et al. | Aug 2004 | A1 |
20040267990 | Lin | Dec 2004 | A1 |
20050100272 | Gilman | May 2005 | A1 |
20050174737 | Meir | Aug 2005 | A1 |
20050207120 | Tseng et al. | Sep 2005 | A1 |
20050243107 | Haim et al. | Nov 2005 | A1 |
20050248705 | Smith et al. | Nov 2005 | A1 |
20050285878 | Singh et al. | Dec 2005 | A1 |
20060018025 | Sharon et al. | Jan 2006 | A1 |
20060032616 | Yang | Feb 2006 | A1 |
20060038881 | Starkweather et al. | Feb 2006 | A1 |
20060054787 | Olsen et al. | Mar 2006 | A1 |
20060072206 | Tsuyuki et al. | Apr 2006 | A1 |
20060118280 | Liu | Jun 2006 | A1 |
20060126181 | Levola | Jun 2006 | A1 |
20060129951 | Vaananen et al. | Jun 2006 | A1 |
20060132806 | Shchegrov et al. | Jun 2006 | A1 |
20060132914 | Weiss et al. | Jun 2006 | A1 |
20060139447 | Unkrich | Jun 2006 | A1 |
20060152646 | Schrader | Jul 2006 | A1 |
20060164382 | Kulas et al. | Jul 2006 | A1 |
20060183331 | Hofmann | Aug 2006 | A1 |
20060196643 | Hata et al. | Sep 2006 | A1 |
20060221448 | Nivon et al. | Oct 2006 | A1 |
20060228073 | Mukawa et al. | Oct 2006 | A1 |
20060249765 | Hsieh | Nov 2006 | A1 |
20060250541 | Huck | Nov 2006 | A1 |
20070002412 | Aihara | Jan 2007 | A1 |
20070008456 | Lesage et al. | Jan 2007 | A1 |
20070023703 | Sunaoshi et al. | Feb 2007 | A1 |
20070027591 | Goldenberg et al. | Feb 2007 | A1 |
20070041684 | Popovich et al. | Feb 2007 | A1 |
20070097019 | Wynne-Powell et al. | May 2007 | A1 |
20070147673 | Crandall | Jun 2007 | A1 |
20070153395 | Repetto et al. | Jul 2007 | A1 |
20070171328 | Freeman et al. | Jul 2007 | A1 |
20070177260 | Kuppenheimer et al. | Aug 2007 | A1 |
20070214180 | Crawford | Sep 2007 | A1 |
20070236959 | Tolbert | Oct 2007 | A1 |
20070284093 | Bhatti et al. | Dec 2007 | A1 |
20080008076 | Raguin et al. | Jan 2008 | A1 |
20080014534 | Barwicz et al. | Jan 2008 | A1 |
20080025350 | Arbore et al. | Jan 2008 | A1 |
20080043100 | Sobel et al. | Feb 2008 | A1 |
20080043425 | Hebert et al. | Feb 2008 | A1 |
20080088603 | Eliasson et al. | Apr 2008 | A1 |
20080088624 | Long et al. | Apr 2008 | A1 |
20080106677 | Kuan et al. | May 2008 | A1 |
20080117341 | McGrew | May 2008 | A1 |
20080141681 | Arnold | Jun 2008 | A1 |
20080150913 | Bell et al. | Jun 2008 | A1 |
20080174735 | Quach et al. | Jul 2008 | A1 |
20080232680 | Berestov et al. | Sep 2008 | A1 |
20080248852 | Rasmussen | Oct 2008 | A1 |
20080285140 | Amitai | Nov 2008 | A1 |
20080297535 | Reinig | Dec 2008 | A1 |
20080303918 | Keithley | Dec 2008 | A1 |
20080311386 | Wendt | Dec 2008 | A1 |
20090002939 | Baugh et al. | Jan 2009 | A1 |
20090015742 | Liao et al. | Jan 2009 | A1 |
20090021908 | Patel et al. | Jan 2009 | A1 |
20090051283 | Cok et al. | Feb 2009 | A1 |
20090059376 | Hayakawa | Mar 2009 | A1 |
20090084525 | Satou et al. | Apr 2009 | A1 |
20090092261 | Bard | Apr 2009 | A1 |
20090097127 | Amitai | Apr 2009 | A1 |
20090128449 | Brown et al. | May 2009 | A1 |
20090128901 | Tilleman et al. | May 2009 | A1 |
20090180250 | Holling et al. | Jul 2009 | A1 |
20090189974 | Deering | Jul 2009 | A1 |
20090190003 | Park et al. | Jul 2009 | A1 |
20090195756 | Li et al. | Aug 2009 | A1 |
20090199128 | Matthews et al. | Aug 2009 | A1 |
20090222147 | Nakashima et al. | Sep 2009 | A1 |
20090224416 | Laakkonen et al. | Sep 2009 | A1 |
20090235203 | Iizuka | Sep 2009 | A1 |
20090244413 | Ishikawa et al. | Oct 2009 | A1 |
20090246707 | Li et al. | Oct 2009 | A1 |
20090256837 | Deb et al. | Oct 2009 | A1 |
20090262419 | Robinson et al. | Oct 2009 | A1 |
20090303599 | Levola | Dec 2009 | A1 |
20100002989 | Tokushima | Jan 2010 | A1 |
20100021108 | Kang et al. | Jan 2010 | A1 |
20100053151 | Marti et al. | Mar 2010 | A1 |
20100060551 | Sugiyama et al. | Mar 2010 | A1 |
20100061078 | Kim | Mar 2010 | A1 |
20100074291 | Nakamura | Mar 2010 | A1 |
20100079865 | Saarikko et al. | Apr 2010 | A1 |
20100084674 | Paetzold et al. | Apr 2010 | A1 |
20100096617 | Shanks | Apr 2010 | A1 |
20100103078 | Mukawa et al. | Apr 2010 | A1 |
20100134534 | Seesselberg et al. | Jun 2010 | A1 |
20100141905 | Burke | Jun 2010 | A1 |
20100149073 | Chaum et al. | Jun 2010 | A1 |
20100188353 | Yoon et al. | Jul 2010 | A1 |
20100200736 | Laycock et al. | Aug 2010 | A1 |
20100201953 | Freeman et al. | Aug 2010 | A1 |
20100202725 | Popovich et al. | Aug 2010 | A1 |
20100211575 | Collins et al. | Aug 2010 | A1 |
20100213467 | Lee et al. | Aug 2010 | A1 |
20100220439 | Qin | Sep 2010 | A1 |
20100229853 | Vandal et al. | Sep 2010 | A1 |
20100238270 | Bjelkhagen et al. | Sep 2010 | A1 |
20100245387 | Bachelder et al. | Sep 2010 | A1 |
20100259889 | Chen et al. | Oct 2010 | A1 |
20100271467 | Akeley | Oct 2010 | A1 |
20100277421 | Charlier et al. | Nov 2010 | A1 |
20100277439 | Charlier et al. | Nov 2010 | A1 |
20100277779 | Futterer et al. | Nov 2010 | A1 |
20100277803 | Pockett et al. | Nov 2010 | A1 |
20100300654 | Edwards | Dec 2010 | A1 |
20100309687 | Sampsell et al. | Dec 2010 | A1 |
20100315781 | Agostini | Dec 2010 | A1 |
20100317132 | Rogers et al. | Dec 2010 | A1 |
20100321609 | Qi et al. | Dec 2010 | A1 |
20100321781 | Levola | Dec 2010 | A1 |
20100328351 | Tan | Dec 2010 | A1 |
20110012814 | Tanaka | Jan 2011 | A1 |
20110021251 | Lindén | Jan 2011 | A1 |
20110025605 | Kwitek | Feb 2011 | A1 |
20110026128 | Baker et al. | Feb 2011 | A1 |
20110032482 | Agurok | Feb 2011 | A1 |
20110038049 | Vallius et al. | Feb 2011 | A1 |
20110050547 | Mukawa | Mar 2011 | A1 |
20110050655 | Mukawa | Mar 2011 | A1 |
20110063795 | Yeh et al. | Mar 2011 | A1 |
20110075442 | Chiang | Mar 2011 | A1 |
20110084893 | Lee et al. | Apr 2011 | A1 |
20110090343 | Alt et al. | Apr 2011 | A1 |
20110091156 | Laughlin | Apr 2011 | A1 |
20110096401 | Levola | Apr 2011 | A1 |
20110099512 | Jeong | Apr 2011 | A1 |
20110114823 | Katzir et al. | May 2011 | A1 |
20110115340 | Lee | May 2011 | A1 |
20111051660 | Popovich et al. | May 2011 | |
20110127024 | Patel et al. | Jun 2011 | A1 |
20110134017 | Burke | Jun 2011 | A1 |
20110134645 | Hitchcock et al. | Jun 2011 | A1 |
20110141388 | Park et al. | Jun 2011 | A1 |
20110148931 | Kim | Jun 2011 | A1 |
20110163986 | Lee et al. | Jul 2011 | A1 |
20110175930 | Hwang et al. | Jul 2011 | A1 |
20110194029 | Herrmann et al. | Aug 2011 | A1 |
20110205251 | Auld | Aug 2011 | A1 |
20110210946 | Goertz et al. | Sep 2011 | A1 |
20110214082 | Osterhout et al. | Sep 2011 | A1 |
20110215349 | An et al. | Sep 2011 | A1 |
20110221658 | Haddick et al. | Sep 2011 | A1 |
20110221659 | King et al. | Sep 2011 | A1 |
20110222236 | Luo et al. | Sep 2011 | A1 |
20110227820 | Haddick et al. | Sep 2011 | A1 |
20110227913 | Hyndman | Sep 2011 | A1 |
20110235179 | Simmonds | Sep 2011 | A1 |
20110242145 | Nishimura et al. | Oct 2011 | A1 |
20110242392 | Chiang | Oct 2011 | A1 |
20110242757 | Tracy et al. | Oct 2011 | A1 |
20110248904 | Miyawaki et al. | Oct 2011 | A1 |
20110248958 | Gruhlke et al. | Oct 2011 | A1 |
20110267799 | Epstein et al. | Nov 2011 | A1 |
20110283223 | Vaittinen et al. | Nov 2011 | A1 |
20110299044 | Yeh et al. | Dec 2011 | A1 |
20110304640 | Noge | Dec 2011 | A1 |
20110309378 | Lau et al. | Dec 2011 | A1 |
20110310232 | Wilson et al. | Dec 2011 | A1 |
20110310312 | Yokote et al. | Dec 2011 | A1 |
20120013651 | Trayner et al. | Jan 2012 | A1 |
20120019434 | Kuhlman et al. | Jan 2012 | A1 |
20120026161 | Chen et al. | Feb 2012 | A1 |
20120030616 | Howes et al. | Feb 2012 | A1 |
20120033306 | Valera et al. | Feb 2012 | A1 |
20120038629 | Brown et al. | Feb 2012 | A1 |
20120041721 | Chen | Feb 2012 | A1 |
20120044573 | Simmonds et al. | Feb 2012 | A1 |
20120050144 | Morlock et al. | Mar 2012 | A1 |
20120052934 | Maharbiz et al. | Mar 2012 | A1 |
20120062998 | Schultz et al. | Mar 2012 | A1 |
20120069413 | Schultz | Mar 2012 | A1 |
20120084710 | Sirpal et al. | Apr 2012 | A1 |
20120106170 | Matthews et al. | May 2012 | A1 |
20120111544 | Senatori | May 2012 | A1 |
20120113092 | Bar-Zeev et al. | May 2012 | A1 |
20120120493 | Simmonds et al. | May 2012 | A1 |
20120134623 | Boudreau et al. | May 2012 | A1 |
20120144331 | Tolonen et al. | Jun 2012 | A1 |
20120157114 | Alameh et al. | Jun 2012 | A1 |
20120162764 | Shimizu | Jun 2012 | A1 |
20120176322 | Karmi et al. | Jul 2012 | A1 |
20120176474 | Border | Jul 2012 | A1 |
20120182687 | Dighde et al. | Jul 2012 | A1 |
20120188205 | Jansson et al. | Jul 2012 | A1 |
20120195553 | Hasegawa et al. | Aug 2012 | A1 |
20120200495 | Johansson | Aug 2012 | A1 |
20120206589 | Crandall | Aug 2012 | A1 |
20120206880 | Andres et al. | Aug 2012 | A1 |
20120218301 | Miller | Aug 2012 | A1 |
20120227006 | Amm | Sep 2012 | A1 |
20120235885 | Miller et al. | Sep 2012 | A1 |
20120242561 | Sugihara | Sep 2012 | A1 |
20120256856 | Suzuki et al. | Oct 2012 | A1 |
20120256963 | Suzuki et al. | Oct 2012 | A1 |
20120262657 | Nakanishi et al. | Oct 2012 | A1 |
20120287381 | Li et al. | Nov 2012 | A1 |
20120292535 | Choi et al. | Nov 2012 | A1 |
20120304092 | Jarrett et al. | Nov 2012 | A1 |
20130000871 | Olson et al. | Jan 2013 | A1 |
20130033485 | Kollin et al. | Feb 2013 | A1 |
20130081779 | Liao et al. | Apr 2013 | A1 |
20130093741 | Akimoto et al. | Apr 2013 | A1 |
20130106592 | Morgan et al. | May 2013 | A1 |
20130106674 | Wheeler et al. | May 2013 | A1 |
20130148864 | Dolson et al. | Jun 2013 | A1 |
20130162673 | Bohn | Jun 2013 | A1 |
20130163089 | Bohn | Jun 2013 | A1 |
20130170031 | Bohn | Jul 2013 | A1 |
20130170802 | Pitwon | Jul 2013 | A1 |
20130186596 | Rubenstein | Jul 2013 | A1 |
20130186598 | Rubenstein | Jul 2013 | A1 |
20130187943 | Bohn et al. | Jul 2013 | A1 |
20130198176 | Kim | Aug 2013 | A1 |
20130207964 | Fleck | Aug 2013 | A1 |
20130208003 | Bohn | Aug 2013 | A1 |
20130208362 | Bohn | Aug 2013 | A1 |
20130208482 | Fleck | Aug 2013 | A1 |
20130215081 | Levin et al. | Aug 2013 | A1 |
20130226931 | Hazel et al. | Aug 2013 | A1 |
20130242056 | Fleck | Sep 2013 | A1 |
20130250431 | Robbins et al. | Sep 2013 | A1 |
20130252628 | Kuehnel | Sep 2013 | A1 |
20130254412 | Menezes et al. | Sep 2013 | A1 |
20130257848 | Westerinen et al. | Oct 2013 | A1 |
20130258701 | Westerinen et al. | Oct 2013 | A1 |
20130267309 | Robbins | Oct 2013 | A1 |
20130294030 | Wang et al. | Nov 2013 | A1 |
20130305184 | Kim et al. | Nov 2013 | A1 |
20130307875 | Anderson | Nov 2013 | A1 |
20130314793 | Robbins | Nov 2013 | A1 |
20130322810 | Robbins | Dec 2013 | A1 |
20130332159 | Federighi et al. | Dec 2013 | A1 |
20130335671 | Fleck | Dec 2013 | A1 |
20130339446 | Balassanian et al. | Dec 2013 | A1 |
20130342674 | Dixon | Dec 2013 | A1 |
20130346725 | Lomet et al. | Dec 2013 | A1 |
20140010265 | Peng | Jan 2014 | A1 |
20140022265 | Canan | Jan 2014 | A1 |
20140041827 | Giaimo | Feb 2014 | A1 |
20140059139 | Filev et al. | Feb 2014 | A1 |
20140063367 | Yang et al. | Mar 2014 | A1 |
20140078130 | Uchino et al. | Mar 2014 | A1 |
20140089833 | Hwang et al. | Mar 2014 | A1 |
20140094973 | Giaimo et al. | Apr 2014 | A1 |
20140098671 | Raleigh et al. | Apr 2014 | A1 |
20140104665 | Popovich et al. | Apr 2014 | A1 |
20140104685 | Bohn | Apr 2014 | A1 |
20140111865 | Kobayashi | Apr 2014 | A1 |
20140116982 | Schellenberg et al. | May 2014 | A1 |
20140140653 | Brown et al. | May 2014 | A1 |
20140140654 | Brown et al. | May 2014 | A1 |
20140143247 | Rathnavelu et al. | May 2014 | A1 |
20140143351 | Deng | May 2014 | A1 |
20140176528 | Robbins | Jun 2014 | A1 |
20140184699 | Ito et al. | Jul 2014 | A1 |
20140204455 | Popovich | Jul 2014 | A1 |
20140240842 | Nguyen et al. | Aug 2014 | A1 |
20140300966 | Travers et al. | Oct 2014 | A1 |
20140314374 | Fattal et al. | Oct 2014 | A1 |
20150086163 | Valera et al. | Mar 2015 | A1 |
20150168731 | Robbins | Jun 2015 | A1 |
20160033697 | Sainiemi et al. | Feb 2016 | A1 |
20160033784 | Levola et al. | Feb 2016 | A1 |
20160035539 | Sainiemi et al. | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
1440513 | Sep 2003 | CN |
101029968 | Sep 2007 | CN |
101105512 | Jan 2008 | CN |
102004315 | Apr 2011 | CN |
0977022 | Feb 2000 | EP |
1494109 | Jan 2005 | EP |
1847924 | Oct 2007 | EP |
2065750 | Jun 2009 | EP |
2083310 | Jul 2009 | EP |
2112547 | Oct 2009 | EP |
2144177 | Jan 2010 | EP |
2216678 | Jan 2010 | EP |
2662761 | Nov 2013 | EP |
2752691 | Jul 2014 | EP |
2942811 | Sep 2010 | FR |
2500631 | Oct 2013 | GB |
H0422358 | Jan 1992 | JP |
7311303 | Nov 1995 | JP |
2000347037 | Dec 2000 | JP |
2001078234 | Mar 2001 | JP |
2008017135 | Jan 2008 | JP |
20070001771 | Jan 2007 | KR |
20090076539 | Jul 2009 | KR |
20090084316 | Aug 2009 | KR |
20110070087 | Jun 2011 | KR |
20120023458 | Mar 2012 | KR |
201407202 | Feb 2014 | TW |
WO-9418595 | Aug 1994 | WO |
WO 9952002 | Oct 1999 | WO |
WO-0133282 | May 2001 | WO |
WO-0195027 | Dec 2001 | WO |
WO-03090611 | Nov 2003 | WO |
WO-2006054056 | May 2006 | WO |
WO-2007057500 | May 2007 | WO |
WO-2008021504 | Feb 2008 | WO |
WO 2008081070 | Jul 2008 | WO |
WO-2009077601 | Jun 2009 | WO |
WO-2010125337 | Nov 2010 | WO |
WO-2011003381 | Jan 2011 | WO |
WO-2011051660 | May 2011 | WO |
WO-2011090455 | Jul 2011 | WO |
WO-2011110728 | Sep 2011 | WO |
WO-2011131978 | Oct 2011 | WO |
WO-2012172295 | Dec 2012 | WO |
WO-2012177811 | Dec 2012 | WO |
WO-2013058769 | Apr 2013 | WO |
WO-2014051920 | Apr 2014 | WO |
WO-2014085502 | Jun 2014 | WO |
WO-2014088343 | Jun 2014 | WO |
WO-2014130383 | Aug 2014 | WO |
Entry |
---|
“Adobe Audition / Customizing Workspaces”, Retrieved From: <http://help.adobe.com/en—US/audition/cs/using/WS9FA7B8D7-5991-4e05-B13C-4C85DAF1F051.html> Jul. 5, 2014, May 18, 2011, 6 Pages. |
“Always Connected”, Available at: http://www.samsung.com/global/microsite/galaxycamera/nx/, Jun. 24, 2013, 5 pages. |
“Controlling Your Desktop's Power Management”, Retrieved From: <http://www.vorkon.de/SU1210.001/drittanbieter/Dokumentation/openSUSE—11.2/manual/sec.gnomeuser.start.power—mgmt.html> Jul. 7, 2014, 6 Pages. |
“Display Control”, Retrieved From: <http://www.portrait.com/technology/display-control.html> Jul. 4, 2014, Jun. 24, 2013, 5 Pages. |
“Manage Multiple Windows”, Retrieved From: <http://windows.microsoft.com/en-hk/windows/manage-multiple-windows#1TC=windows-7> Jul. 8, 2014, 4 Pages. |
“Merge Operator”, Retrieved on: Jun. 3, 2014, Available at: https://github.com/facebook/rocksdb/wiki/Merge-Operator, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/774,875, Sep. 16, 2015, 8 pages. |
“Organize Your Desktop Workspace for More Comfort with Window Space”, Retrieved From: <http://www.ntwind.com/software/windowspace.html> Jul. 4, 2014, Sep. 19, 2008, 5 Pages. |
“SizeUp The Missing Window Manager”, Retrieved From: <https://www.irradiatedsoftware.com/sizeup/> Jul. 4, 2014, Jan. 17, 2013, 4 Pages. |
“Using Flickr to Organize a Collection of Images”, Available at: http://www.jiscdigitalmedia.ac.uk/guide/using-flickr-to-organise-a-collection-of-images, Apr. 2, 2013, 17 pages. |
“Window Magnet”, Retrieved From: <http://magnet.crowdcafe.com/> Jul. 4, 2014, Jun. 23, 2011, 2 Pages. |
“Windows 7: Display Reminder When Click on Shutdown?”, Retrieved From: <http://www.sevenforums.com/customization/118688-display-reminder-when-click-shutdown.html> Jul. 8, 2014, Oct. 18, 2010, 5 Pages. |
“Working with Windows”, Retrieved From: <http://windows.microsoft.com/en-us/windows/working-with-windows#1TC=windows-7> Jul. 4, 2014, 10 Pages. |
Ashraf,“Winsplit Revolution: Tile, Resize, and Position Windows for Efficient Use of Your Screen”, Retrieved From: <http://dottech.org/11240/winsplit-revolution-tile-resize-and-position-windows-for-efficient-use-of-your-screen/> Jul. 8, 2014, Dec. 18, 2011, 4 Pages. |
Callaghan,“Types of writes”, Available at: http://smalldatum.blogspot.in/2014/04/types-of-writes.html, Apr. 17, 2014, 3 pages. |
Cohen,“Automatic Strategies in the Siemens RTL Tiled Window Manager”, In Proceedings: The 2nd IEEE Conference on Computer Workstations, Mar. 7, 1988, pp. 111-119. |
Eckel,“Personalize Alerts with the Help of OS X Mavericks Notifications”, Retrieved From: <http://www.techrepublic.com/article/customize-os-x-mavericks-notifications-to-personalize-alerts/> Jul. 8, 2014, Mar. 10, 2014, 7 Pages. |
Elnaka,“Real-Time Traffic Classification for Unified Communication Networks”, In Proceedings of International Conference on Selected Topics in Mobile and Wireless Networking, Aug. 19, 2013, 6 pages. |
Hepburn,“Color: The Location Based Social Photo App”, Available at: http://www.digitalbuzzblog.com/color-the-location-based-social-photo-iphone-app/, Mar. 27, 2011, 12 pages. |
Johnson,“Samsung Galaxy Tab Pro 10.1 Review”, Retrieved From: <http://hothardware.com/Reviews/Samsung-Galaxy-Tab-Pro-101-Review/?page=3#!baG2DY > Jul. 9, 2014, Mar. 21, 2014, 10 Pages. |
Kandogan,“Elastic Windows: Improved Spatial Layout and Rapid Multiple Window Operations”, In Proceedings of the Workshop on Advanced Visual Interfaces, May 27, 1996, 10 Pages. |
Levandoski,“Latch-Free, Log-Structured Storage for Multiple Access Methods”, U.S. Appl. No. 13/924,567, filed Jun. 22, 2013, 51 pages. |
Levandoski,“The Bw-Tree: A B-tree for New Hardware Platforms”, In IEEE 29th International Conference on Data Engineering, Apr. 8, 2013, 12 pages. |
Li,“QRON: QoS-Aware Routing in Overlay Networks”, In Proceedings of IEEE Journal on Selected Areas in Communications, vol. 22, No. 1, Jan. 2004, 12 pages. |
Mack,“Moto X: The First Two Weeks”, Retrieved From: <http://www.gizmag.com/two-weeks-motorola-google-moto-x-review/28722/> Jul. 8, 2014, Aug. 16, 2013, 8 pages. |
O'Reilly,“How to Use the Microsoft Surface Touch Screen and Keyboard”, Retrieved From: <http://www.cnet.com/how-to/how-to-use-the-microsoft-surface-touch-screen-and-keyboard/> Jul. 5, 2014, Nov. 6, 2012, 5 Pages. |
Paul,“Three Windows Multitasking Features That Help Maximize Your Screen Space”, Retrieved From: <http://www.pcworld.com/article/2094124/three-windows-multitasking-features-that-help-maximize-your-screen-space.html> Jul. 4, 2014, Feb. 4, 2014, 4 Pages. |
Prohaska,“Fast Updates with TokuDB”, Available at: http://www.tokutek.com/2013/02/fast-updates-with-tokudb/, Feb. 12, 2013, 2 pages. |
Thurrott,“Nokia Lumia ”Black“: Glance 2.0”, Retrieved From:<http://winsupersite.com/windows-phone/nokia-lumia-black-glance-20> Jul. 8, 2014, Jan. 11, 2014, 3 Pages. |
Vranjes,“Application Window Divider Control for Window Layout Management”, U.S. Appl. No. 13/863,369, filed Apr. 15, 2013, 21 pages. |
Wiebe,“Using screen space efficiently with Gridmove”, Available at: http://lowerthought.wordpress.com/2010/05/15/using-screen-space-efficiently-with-gridmove/, May 15, 2010, 2 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/042371, Oct. 2, 2015, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/042187, Oct. 20, 2015, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/042226, Oct. 27, 2015, 10 Pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/042205, Oct. 30, 2015, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/042218, Nov. 6, 2015, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/042259, Oct. 12, 2015, 11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/041930, Oct. 20, 2015, 12 Pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/041900, Oct. 21, 2015, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/041909, Oct. 20, 2015, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/041046, Nov. 9, 2015, 15 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/447,464, Nov. 9, 2015, 10 pages. |
“Restriction Requirement”, U.S. Appl. No. 14/617,697, Nov. 30, 2015, 6 pages. |
Ando,“Development of Three-Dimensional Microstages Using Inclined Deep-Reactive Ion Etching”, Journal of Microelectromechanical Systems, Jun. 1, 2007, 10 pages. |
Antonopoulos,“Efficient Updates for Web-Scale Indexes over the Cloud”, IEEE 28th International Conference on Data Engineering Workshops, Apr. 2012, 8 pages. |
Garcia,“Comet: Content Mediator Architecture for Content-Aware Networks”, In IEEE Future Network & Mobile Summit, 2011, 8 pages. |
Gila,“First Results From a Multi-Ion Beam Lithography and Processing System at the University of Florida”, AIP Conference Proceedings, Jun. 1, 2011, 6 pages. |
Levandoski,“Ranking and New Database Architectures”, In Proceedings of the 7th International Workshop on Ranking in Databases, Aug. 2013, 4 pages. |
“Restriction Requirement”, U.S. Appl. No. 14/447,419, Aug. 4, 2015, 6 pages. |
“Advisory Action”, U.S. Appl. No. 13/428,879, Sep. 19, 2014, 3 pages. |
“Augmented Reality and Physical Games”, U.S. Appl. No. 13/440,165, Apr. 5, 2012, 49 pages. |
“BragGrate Mirror”, Retrieved from <http://web.archive.org/web/20090814104232/http://www.optigrate.com/BragGrate—Mirror.html> on Jul. 8, 2014, Aug. 14, 2009, 2 pages. |
“Corrected Final Office Action”, U.S. Appl. No. 13/432,311, Dec. 24, 2014, 25 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/355,836, Sep. 11, 2014, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/355,836, Dec. 15, 2014, 2 pages. |
“DigiLens”, SBG Labs—retrieved from <http://www.digilens.com/products.html> on Jun. 19, 2012, 1 page. |
“Final Office Action”, U.S. Appl. No. 13/336,873, Jan. 5, 2015, 21 pages. |
“Final Office Action”, U.S. Appl. No. 13/336,895, May 27, 2014, 11 pages. |
“Final Office Action”, U.S. Appl. No. 13/355,836, Mar. 10, 2014, 18 pages. |
“Final Office Action”, U.S. Appl. No. 13/355,914, Feb. 23, 2015, 21 pages. |
“Final Office Action”, U.S. Appl. No. 13/355,914, Jun. 19, 2014, 11 pages. |
“Final Office Action”, U.S. Appl. No. 13/397,495, May 29, 2014, 10 pages. |
“Final Office Action”, U.S. Appl. No. 13/397,516, Jan. 29, 2015, 13 pages. |
“Final Office Action”, U.S. Appl. No. 13/397,539, Jun. 29, 2015, 11 pages. |
“Final Office Action”, U.S. Appl. No. 13/428,879, Jul. 14, 2014, 12 pages. |
“Final Office Action”, U.S. Appl. No. 13/432,311, Dec. 15, 2014, 24 pages. |
“Final Office Action”, U.S. Appl. No. 13/432,372, Jan. 29, 2015, 33 pages. |
“Final Office Action”, U.S. Appl. No. 13/440,165, Jun. 6, 2014, 12 pages. |
“Final Office Action”, U.S. Appl. No. 13/440,165, Jul. 21, 2015, 11 pages. |
“Final Office Action”, U.S. Appl. No. 13/477,646, Feb. 23, 2015, 36 pages. |
“Final Office Action”, U.S. Appl. No. 13/477,646, May 5, 2014, 26 pages. |
“Final Office Action”, U.S. Appl. No. 13/525,649, Oct. 9, 2014, 8 pages. |
“Final Office Action”, U.S. Appl. No. 13/774,875, Jun. 4, 2015, 10 pages. |
“Final Office Action”, U.S. Appl. No. 14/134,993, Jul. 16, 2015, 19 pages. |
“Final Office Action”, U.S. Appl. No. 14/134,993, Aug. 20, 2014, 15 pages. |
“Foreign Notice of Allowance”, CN Application No. 201320034345.X, Aug. 14, 2013, 2 Pages. |
“Foreign Office Action”, CN Application No. 201210563730.3, Jan. 7, 2015, 16 pages. |
“Foreign Office Action”, CN Application No. 201210567932.5, Aug. 14, 2014, 12 pages. |
“Foreign Office Action”, EP Application No. 13769961.7, Mar. 11, 2015, 8 pages. |
“Foreign Office Action”, EP Application No. 13769961.7, Jun. 30, 2015, 6 pages. |
“HDTV Helmet Mounted Display”, Available at <http://defense-update.com/products/h/HDTV-HMD.htm>, Jan. 26, 2005, 1 page. |
“International Search Report and Written Opinion”, Application No. PCT/US2012/069331, Mar. 29, 2013, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2014/016658, Apr. 23, 2014, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/053676, Oct. 16, 2013, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/030632, Jun. 26, 2013, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/028477, Jun. 21, 2013, 11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/031111, Jun. 26, 2013, 11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/076832, Mar. 17, 2014, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/061225, Jun. 4, 2014, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2012/071563, Apr. 25, 2013, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/021784, Apr. 30, 2013, 9 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2012/069330, Mar. 28, 2013, 9 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/021783, May 15, 2013, 9 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/026200, Jun. 3, 2013, 9 pages. |
“Light Guide Techniques using LED Lamps”, Application Brief I-003, retrieved from <http://www.ciri.org.nz/downloads/Lightpipe%20design.pdf> on Jan. 12, 2012, Oct. 14, 2008, 22 pages. |
“New Technology from MIT may Enable Cheap, Color, Holographic Video Displays”, Retrieved from <http://www.gizmag.com/holograph-3d-color-video-display-inexpensive-mit/28029/> on Feb. 25, 2015, Jun. 24, 2013, 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/397,495, Nov. 13, 2013, 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/440,165, Feb. 6, 2014, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/336,873, Apr. 9, 2015, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/336,873, Jul. 25, 2014, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/336,895, Oct. 24, 2013, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/343,675, Jul. 16, 2013, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/355,836, Nov. 4, 2013, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/355,914, Feb. 14, 2014, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/355,914, Oct. 28, 2014, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/397,495, Apr. 3, 2015, 11 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/397,516, Jun. 12, 2014, 11 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/397,516, Nov. 25, 2013, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/397,539, Mar. 16, 2015, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/397,617, May 5, 2015, 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/397,617, Oct. 9, 2014, 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/428,879, Feb. 24, 2015, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/428,879, Mar. 17, 2014, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/428,879, Jun. 26, 2015, 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/432,311, Jun. 2, 2015, 25 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/432,311, Jul. 8, 2014, 33 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/432,372, May 9, 2014, 26 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/432,372, Oct. 24, 2014, 27 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/440,165, Feb. 13, 2015, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/440,165, Oct. 16, 2014, 11 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/477,646, Jun. 18, 2015, 43 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/477,646, Oct. 6, 2014, 34 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/477,646, Nov. 22, 2013, 20 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/525,649, Jan. 29, 2014, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/525,649, Feb. 5, 2015, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/525,649, Jun. 5, 2014, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/570,073, Jan. 23, 2015, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/631,308, Feb. 23, 2015, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/722,917, May 21, 2015, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/774,875, Nov. 24, 2014, 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/134,993, Jan. 22, 2015, 17 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/134,993, Apr. 17, 2014, 34 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/336,895, Aug. 11, 2014, 6 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/343,675, Sep. 16, 2013, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/355,836, Jun. 13, 2014, 11 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/355,836, Oct. 8, 2014, 11 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/356,545, Mar. 28, 2014, 6 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/488,145, Nov. 19, 2014, 8 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/355,836, Sep. 27, 2013, 6 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/397,539, Dec. 1, 2014, 6 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/488,145, Sep. 8, 2014, 14 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/570,073, Nov. 18, 2014, 7 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/356,545, Jul. 22, 2014, 2 pages. |
“Supplementary European Search Report”, EP Application No. 13769961.7, Mar. 3, 2015, 3 pages. |
“Two-Faced: Transparent Phone with Dual Touch Screens”, Retrieved from <http://gajitz.com/two-faced-transparent-phone-with-dual-touch-screens/>, Jun. 7, 2012, 3 pages. |
“Variable Groove Depth (VGD) Master Gratings”, Retrieved From: <http://www.horiba.com/scientific/products/diffraction-gratings/catalog/variable-groove-depth-vgd/> May 28, 2014, 2 pages. |
“Written Opinion”, Application No. PCT/US2013/061225, Oct. 10, 2014, 6 Pages. |
Allen,“ELiXIR—Solid-State Luminaire with Enhanced Light Extraction by Internal Reflection”, Journal of Display Technology, vol. 3, No. 2, Available at <http://www.nanolab.uc.edu/Publications/PDFfiles/355.pdf>, Jun. 2007, pp. 155-159. |
Aron,“‘Sprinting’ chips could push phones to the speed limit”, New Scientist, Feb. 20, 2012, Issue #2852, Feb. 20, 2012, 2 pages. |
Baluja,“Non-Intrusive Gaze Tracking Using Artificial Neural Networks”, Technical Report CMU-CS-94-102, Available at <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.4027&rep=rep1&type=pdf> , Jan. 5, 1994, 14 pages. |
Barger,“COTS Cooling”, Publication of the National Electronics Manufacturing Center of Excellence, Retrieved from: <http://www.empf.org/empfasis/2009/Oct09/cots.html > on Jul. 9, 2012, Oct. 2009, 4 pages. |
Baudisch,“Back-of-Device Interaction Allows Creating Very Small Touch Devices”, In Proceedings of 27th International Conference on Human Factors in Computing Systems, Retrieved from <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.3337&rep=rep1&type=pdf>, Apr. 2005, 10 pages. |
Baxtor,“TwinTech GeForce GTS 250 XT OC 1GB Graphics Card”, retrieved from <http://www.tweaktown.com/reviews/2733/twintech—geforce—gts—250—xt—oc—1gb—graphics—card/index3.html> on Dec. 30, 2011, Apr. 24, 2009, 4 pages. |
Chang-Yen,“A Monolithic PDMS Waveguide System Fabricated Using Soft-Lithography Techniques”, In Journal of Lightwave Technology, vol. 23, No. 6, Jun. 2005, 6 pages. |
Chen,“A Study of Fiber-to-Fiber Losses in Waveguide Grating Routers”, In Journal of Lightwave Technology, vol. 15, No. 10, Oct. 1997, 5 pages. |
Chen,“Strategies for 3D Video with Wide Fields-of-View”, IEEE Proceeding Optoelectronics, vol. 148, Issue 2, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=926823>, Apr. 2001, pp. 85-90. |
Cheng,“Waveguide Displays Based on Polymer-dispersed Liquid Crystals”, SPIE Newsroom, Available at <http://spie.org/documents/Newsroom/Imported/003805/003805—10.pdf>, Aug. 12, 2011, 2 pages. |
Chirgwin,“Researchers propose ‘overclock’ scheme for mobiles—Processing at a sprint to overcome tech limitations”, The Register, Feb. 21, 2012, 2 pages. |
Coldewey,“Researchers Propose “Computational Sprinting” To Speed Up Chips by 1000%—But Only for a Second”, TechCrunch, Feb. 28, 2012, Feb. 29, 2012, 2 pages. |
Cottier,“Label-free Highly Sensitive Detection of (small) Molecules by Wavelength Interrogation of Integrated Optical Chips”, n Proceedings of Sensors and Actuators B: Chemical, vol. 91, Issue 1-3, Jun. 1, 2003, pp. 241-251. |
DeAgazio,“Selecting Display Backlighting for Portable, Handheld Devices”, Hearst Electronics Products, retrieved from <http://www2.electronicproducts.com/Selecting—display—backlighting—for—portable—handheld—devices-article-farcglobal-feb2008-html.aspx> on Jan. 12, 2012, Jan. 2, 2008, 4 pages. |
Dumon,“Compact Arrayed Waveguide Grating Devices in Silicon-on-Insulator”, In Proceedings of the IEEE/LEOS Symposium Benelux Chapter, May 27, 2014, 4 pages. |
Eadicicco,“First Transparent Tablet Lets You Touch From Both Sides”, Retrieved from <http://blog.laptopmag.com/first-transparent-tablet>, Dec. 26, 2013, 4 pages. |
Glendenning,“Polymer Micro-Optics via Micro Injection Moulding”, Available at: https://web.archive.org/web/20120310003606/http://www.microsystems.uk.com/english/polymer—optics—injection—moulding.html, Jan. 10, 2011, 6 pages. |
Grabarnik,“Concave Diffraction Gratings Fabricated With Planar Lithography”, In Proceedings of SPIE, vol. 6992, May 3, 2008, 8 pages. |
Greenemeier,“Could “Computational Sprinting” Speed Up Smart Phones without Burning Them Out?”, Scientific American, Feb. 29, 2012, 2 pages. |
Greiner,“Bandpass engineering of lithographically scribed channel-waveguide Bragg gratings”, In Proceedings of Optics Letters, vol. 29, No. 8, Apr. 15, 2004, pp. 806-808. |
Han,“Accurate diffraction efficiency control for multiplexed volume holographic gratings”, Retrieved at: opticalengineering.spiedigitallibrary.org/data/Journals/ . . . /2799—1, 2002, 4 pages. |
Hua,“Engineering of Head-mounted Projective Displays”, In Proceedings of Applied Optics, vol. 39, No. 22, Aug. 1, 2000, 11 pages. |
Ismail,“Improved Arrayed-Waveguide-Grating Layout Avoiding Systematic Phase Errors”, In Proceedings of Optics Express, vol. 19, No. 9, Apr. 25, 2011, pp. 8781-8794. |
Jacques,“Polarized Light Imaging of Tissue”, Available at <http://www.lumamed.com/documents/5—polarized%20light%20imaging.pdf>, 2004, 17 pages. |
Jarvenpaa,“Compact near-to-eye display with integrated gaze tracker”, Second International Conference on Computer Engineering and Applications, Mar. 19, 2010, 9 pages. |
Jaworski,“A Novel Design of Heat Sink with PCM for Electronics Cooling”, 10th International Conference on Thermal Energy Storage, Stockton, May 31-Jun. 2, 2006, retrieved from <https://intraweb.stockton.edu/eyos/energy—studies/content/docs/FINAL—PRESENTATIONS/4b-6%20.pdf> on Jan. 5, 2012, May 31, 2006, 8 pages. |
Karp,“Planar Micro-optic Solar Concentration using Multiple Imaging Lenses into a Common Slab Waveguide”, In Proceedings of SPIE vol. 7407, Available at <http://psilab.ucsd.edu/research/slab—concentration/files/SPIE—Slab—Published.pdf>, Jan. 2009, 11 pages. |
Kress,“Exit Pupil for Wearable See-through displays”, Downloaded From: http://proceedings.spiedigitallibrary.org/ on Jan. 31, 2015 Terms of Use: http://spiedl.org/terms, 2012, 8 pages. |
Krishnan,“A Novel Hybrid Heat Sink Using Phase Change Materials for Transient Thermal Management of Electronics”, IEEE transactions on components and packaging technologies, vol. 28, No. 2, retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1432936> on Jan. 5, 2012, Jun. 2005, pp. 281-289. |
L,“All-Nanoparticle Concave Diffraction Grating Fabricated by Self-Assembly onto Magnetically-Recorded Templates”, In Proceedings of Optical Express, vol. 21, Issue 1, Jan. 2013, 1 page. |
Lanman,“Near-eye Light Field Displays”, In Journal of ACM Transactions on Graphics, vol. 32, No. 6, Nov. 2013, 10 pages. |
Large,“Parallel Optics in Waveguide Displays: a Flat Panel Autostereoscopic”, Display Technology, Journal of, Retrieved from <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2-70F9D4081007/ParallelOpticsinWaveguideDisplaysMS090925.Final.pdf>, Jun. 21, 2010, pp. 1-7. |
Lerner,“Penn Helps Rethink Smartphone Design With ‘Computational Sprinting’”, Penn News Release, Feb. 28, 2012, 2 pages. |
Li,“Design Optimization of Reflective Polarizers for LCD Backlight Recycling”, Journal of Display Technology, vol. 5, No. 8, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5196840 >, Aug. 2009, pp. 335-340. |
Li,“Switchable Electro-optic Diffractive Lens with High Efficiency for Ophthalmic Applications”, PNAS Apr. 18, 2006 vol. 103 No. 16 6100-6104, Retrieved from: <http://www.pnas.org/content/103/16/6100.long> Feb. 22, 2012, Feb. 2, 2006, 4 pages. |
Lindau,“Controlling the Groove Depth of Holographic Gratings”, In Proceedings of Optical System Design, Analysis, and Production, vol. 0399, Oct. 26, 1983, 2 pages. |
Man,“IT Equipment Noise Emission Standards: Overview of New Development in the Next Edition of ISO/ECMA Standards”, In Proceedings of 37th International Congress and Exposition on Noise Control Engineering, Available at <http://www.ecma-international.org/activities/Acoustics/Inter-noise%202008%20paper%20on%20ECMA-74%20updates.pdf >, Oct. 26, 2008, 8 pages. |
Massenot,“Multiplexed holographic transmission gratings recorded in holographic polymer-dispersed liquid crystals: static and dynamic studies”, Retrieved at: http://oatao.univ-toulouse.fr/2874/, 2005, 8 pages. |
McMillan,“Your Future iPhone May Be Stuffed With Wax”, Aug. 23, 2013, 3 pages. |
Melcher,“LCoS for High Performance Displays”, In Proceedings of LEOS 2003, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1253048>, Oct. 27, 2003, pp. 812-813. |
Minier,“Diffraction Characteristics of Superimposed Holographic gratings in Planar Optical waveguides”, IEEE Photonics Technology Letters, vol. 4, No. 10, Oct. 1992, 4 pages. |
Moore,“Computational sprinting pushes smartphones till they're tired”, Michigan News Release, Feb. 28, 2012, 2 pages. |
Morga,“History of SAW Devices”, In Proceedings of the IEEE International Frequency Control Symposium, May 27, 1998, 22 pages. |
Nguyen,“Advanced Cooling System Using Miniature Heat Pipes in Mobile PC”, IEEE Transactions on Components and Packaging Technology, vol. 23, No. 1, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=833046&userType=inst>, Mar. 2000, pp. 86-90. |
Owano,“Study explores computing bursts for smartphones”, PhysOrg.com, Feb. 21, 2012, 2 pages. |
Papaefthymiou,“Computational Sprinting on a Hardware/Software Testbed”, In the Proceedings of the 18th Eighteenth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Mar. 2013., 12 pages. |
Patrizio,“Researchers Working on Ways to Put 16-Core Processors in Smartphones”, Brighthand, Mar. 18, 2012, 2 pages. |
Pu,“Exposure schedule for multiplexing holograms in photopolymer films”, Retrieved at: lo.epfl.ch/webdav/site/lo/shared/1996/OE—35—2824—Oct1996.pdf, Oct. 1996, 6 pages. |
Raghavan,“Computational Sprinting”, In the Proceedings of the 18th Symposium on High Performance Computer Architecture (HPCA), Feb. 2012, 12 pages. |
Raghavan,“Designing for Responsiveness With Computational Sprinting”, IEEE Micro's “Top Picks of 2012” Issue, May 2013, 8 pages. |
Scott,“RearType: Text Entry Using Keys on the Back of a Device”, In Proceedings of 12th Conference on Human-Computer Interaction with Mobile Devices and Services, Retrieved from <https://research.microsoft.com/pubs/135609/reartype%20mobilehci.pdf>, Sep. 7, 2010, 9 pages. |
Singh“Laser-Based Head-Tracked 3D Display Research”, Journal of Display Technology, vol. 6, No. 10, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5462999>, Oct. 2010, pp. 531-543. |
Smalley,“Anisotropic Leaky-Mode Modulator for Holographic Video Displays”, In Proceedings of Nature, vol. 498, Jun. 20, 2013, 6 pages. |
Stupar,“Optimization of Phase Change Material Heat Sinks for Low Duty Cycle High Peak Load Power Supplies”, IEEE transactions on components, packaging and manufacturing technology, retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6081913> on Jan. 5, 2012, Nov. 15, 2011, 14 pages. |
Tari,“CFD Analyses of a Notebook Computer Thermal Management System and a Proposed Passive Cooling Alternative”, IEEE Transactions on Components and Packaging Technologies, vol. 33, No. 2, retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5466211> on Dec. 30, 2011, Jun. 2010, pp. 443-452. |
Teng,“Fabrication of nanoscale zero-mode waveguides using microlithography for single molecule sensing”, In Proceedings of Nanotechnology, vol. 23, No. 45, Jul. 7, 2012, 7 pages. |
Tien,“Microcontact Printing of SAMs”, In Proceedings of Thin Films, vol. 24, May 28, 2014, 24 pages. |
Travis,“Collimated Light from a Waveguide for a Display Backlight”, Optics Express—Retrieved from <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2-70F9D4081007/OpticsExpressbacklightpaper.pdf>, Oct. 15, 2009, pp. 19714-19719. |
Travis,“The Design of Backlights for View-Sequential 3D”, Microsoft Corporation, Available at <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2-70F9D4081007/Backlightforviewsequentialautostereo.docx>, Jul. 3, 2010, 4 pages. |
van“A Survey of Augmented Reality Technologies, Applications and Limitations”, The International Journal of Virtual Reality, 2010, 9(2), Available at <http://www.ijvr.org/issues/issue2-2010/paper1%20.pdf>, Jun. 2010, pp. 1-19. |
Walker,“Thermalright Ultra-120 Extreme CPU Cooler”, retrieved from <http://www.pro-clockers.com/cooling/66-thermalright-ultra-120-extreme-cpu-cooler.html> on Dec. 30, 2011, Jul. 2, 2009, 7 pages. |
Westerinen,“Light Guide Display and Field of View”, U.S. Appl. No. 13/428,879, Mar. 23, 2012, 46 pages. |
Wigdor,“LucidTouch: A See-Through Mobile Device”, In Proceedings of 20th Annual ACM symposium on User Interface Software and Technology, Retrieved from <http://dl.acm.org/citation.cfm?id=1294259>, Oct. 7, 2007, 10 pages. |
Xie,“Fabrication of Varied-Line-Spacing Grating by Elastic Medium”, In Proceedings SPIE 5636, Holography, Diffractive Optics, and Applications II, Nov. 2004, 4 pages. |
Yan,“Multiplexing holograms in the photopolymer with equal diffraction efficiency”, 2005, 9 pages. |
Zharkova,“Study of the Dynamics of Transmission Gratings Growth on Holographic Polymer-Dispersed Liquid Crystals”, International Conference on Methods of Aerophysical Research, ICMAR 2008, 2008, 4 pages. |
Charles, et al.,' “Design of Optically Path Length Matched, Three-Dimensional Photonic Circuits Comprising Uniquely Routed Waveguides”, In Proceedings of Applied Optics, vol. 51, Issue 27, Sep. 20, 2012, 11 pages. |
Mei, et al.,' “An all fiber interferometric gradient hydrophone with optical path length compensation”, In Proceedings of Summaries of Papers Presented at the Conference on Lasers and Electro-Optics, May 28, 1999, 2 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/447,419, Feb. 2, 2016, 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/617,574, Feb. 26, 2016, 22 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/617,710, Mar. 2, 2016, 16 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/617,697, Feb. 29, 2016, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/617,735, Apr. 5, 2016, 12 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 14/447,464, Jan. 12, 2016, 2 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/015496, Apr. 11, 2016, 11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/016241, Apr. 20, 2016, 12 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/617,746, Apr. 11, 2016, 7 pages. |