This patent application relates generally to display systems, and more specifically, to display systems that include a plurality of gratings, in which at least one of the plurality of gratings is oriented to reduce, e.g., prevent or minimize, an appearance of a ghost image on an eyebox.
With recent advances in technology, prevalence and proliferation of content creation and delivery has increased greatly in recent years. In particular, interactive content such as virtual reality (VR) content, augmented reality (AR) content, mixed reality (MR) content, and content within and associated with a real and/or virtual environment (e.g., a “metaverse”) has become appealing to consumers.
To facilitate delivery of this and other related content, service providers have endeavored to provide various forms of wearable display systems. One such example may be a head-mounted device (HMD), such as a wearable eyewear, a wearable headset, or eyeglasses. In some examples, the head-mounted device (HMD) may employ a first projector and a second projector to direct light associated with a first image and a second image, respectively, through one or more intermediary optical components at each respective lens, to generate “binocular” vision for viewing by a user. Providing quality images for the user may, however, be challenging.
Features of the present disclosure are illustrated by way of example and not limited in the following figures, in which like numerals indicate like elements. One skilled in the art will readily recognize from the following that alternative examples of the structures and methods illustrated in the figures can be employed without departing from the principles described herein.
For simplicity and illustrative purposes, the present application is described by referring mainly to examples thereof. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present application. It will be readily apparent, however, that the present application may be practiced without limitation to these specific details. In other instances, some methods and structures readily understood by one of ordinary skill in the art have not been described in detail so as not to unnecessarily obscure the present application. As used herein, the terms “a” and “an” are intended to denote at least one of a particular element, the term “includes” means includes but not limited to, the term “including” means including but not limited to, and the term “based on” means based at least in part on.
Some display systems, such as, AR-based head-mounted devices and/or eyewear devices, employ waveguides having multiplexed gratings to propagate light associated with an image from a projector to an eyebox. In some instances, stray light from a projector or one or more intermediary optical components of display systems may create crosstalk and/or reach the eyes of the user before or after it is intended to, thereby creating visual artifacts, such as ghost images. In some examples, the ghost image may be a false image version of the image, an out-of-focus version of the image, a distorted version of the image, etc., or other type of artifact arising in propgation of light through multiplexed gratings. The appearance of the ghost image may affect the quality of the image displayed to a user and thus, may negatively impact a user’s experience with such display systems. Furthermore, the user may experience poor visual acuity and significant visual discomfort, which often results in dizziness, eye fatigue, or other side effects.
Disclosed herein are systems and apparatuses that may provide display systems in which the appearance of artifacts, such as ghost images, may be reduced, e.g., prevented or minimized, on the display systems. The display systems (e.g., AR-based head-mounted device (HMD) or eyewear) described herein may have a lens assembly that includes a waveguide for propagating light from a projector to an eyebox. The light may be associated with an image that may be viewable by a user of the display system when the image is displayed on the eyebox. The waveguide may include a plurality of gratings through which the display light may sequentially be propagated. In addition, at least one of the plurality of gratings may be oriented to propagate the display light to a next grating while reducing an appearance of a ghost image of the image on the eyebox.
Particularly, for instance, a z-direction of at least one of the plurality of gratings may be oriented to cause the appearance of the ghost image on the eyebox to be reduced. By way of particular example, the z-direction of the at least one of the plurality of gratings may be a direction that is opposite a normal z-direction of the at least one of the plurality of gratings. The term “opposite” may mean an opposite sign, e.g., a negative or positive value. The normal z-direction may be defined as a z-direction at which a ghost image appears.
The plurality of gratings described herein may include an input grating, a first middle grating, a second middle grating, and an output grating. In some examples, the z-direction of the first middle grating may be oriented to reduce the appearance of the ghost image. In some examples, the z-direction of the second middle grating may be oriented to reduce the appearance of the ghost image. In some examples, the z-directions of both the first middle grating and the second middle grating may be oriented to reduce the appearance of the ghost image. In these examples, the z-directions of the both the first middle grating and the second middle grating may be oriented to the same direction with respect to each other.
The plurality of gratings described herein may be associated with a volume Bragg grating (VBG)-based waveguide display device. As used herein, a volume Bragg grating (VBG) may refer to a substantially and/or completely transparent optical device or component that may exhibit a periodic variation of refractive index (e.g., using a volume Bragg grating (VBG)). As discussed further in the examples below, one or more volume Bragg gratings (VBGs) may be provided with or integrated within a waveguide component of a display system. As used herein, a waveguide may be any optical structure that propagates a variety of signals (e.g., optical signals, electromagnetic waves, sound waves, etc.) in one or more directions. Employing principles of physics, information contained in such signals, may be directed using any number of waveguides or similar components.
As shown in
In some instances, for a near-eye display system, it may generally be desirable to expand an eyebox, reduce display haze, improve image quality (e.g., resolution and contrast), reduce physical size, increase power efficiency, and increase or expand field of view (FOV). As used herein, “field of view” (FOV) may refer to an angular range of an image as seen by a user, which is typically measured in degrees as observed by one eye (for a monocular HMD) or both eyes (for binocular HMDs). Also, as used herein, an “eyebox” may be a two-dimensional box that may be positioned in front of the user’s eye from which a displayed image from an image source may be viewed.
In some examples, in a near-eye display system, light from a surrounding environment may traverse a “see-through” region of a waveguide display (e.g., a transparent substrate) to reach a user’s eyes. For example, in a near-eye display system, light of projected images may be coupled into a transparent substrate of a waveguide, propagate within the waveguide, and be coupled or directed out of the waveguide at one or more locations to replicate exit pupils and expand the eyebox.
In some examples, the near-eye display 120 may include one or more rigid bodies, which may be rigidly or non-rigidly coupled to each other. In some examples, a rigid coupling between rigid bodies may cause the coupled rigid bodies to act as a single rigid entity, while in other examples, a non-rigid coupling between rigid bodies may allow the rigid bodies to move relative to each other.
In some examples, the near-eye display 120 may be implemented in any suitable form-factor, including a HMD, a pair of glasses, or other similar wearable eyewear or device. Examples of the near-eye display 120 are further described below with respect to
In some examples, the near-eye display 120 may include any number of display electronics 122, display optics 124, and an eye-tracking unit 130. In some examples, the near eye display 120 may also include one or more locators 126, one or more position sensors 128, and an inertial measurement unit (IMU) 132. In some examples, the near-eye display 120 may omit any of the eye-tracking unit 130, the one or more locators 126, the one or more position sensors 128, and the inertial measurement unit (IMU) 132, or may include additional elements.
In some examples, the display electronics 122 may display or facilitate the display of images to the user according to data received from, for example, the optional console 110. In some examples, the display electronics 122 may include one or more display panels. In some examples, the display electronics 122 may include any number of pixels to emit light of a predominant color such as red, green, blue, white, or yellow. In some examples, the display electronics 122 may display a three-dimensional (3D) image, e.g., using stereoscopic effects produced by two-dimensional panels, to create a subjective perception of image depth.
In some examples, the display optics 124 may display image content optically (e.g., using optical waveguides and/or couplers) or magnify image light received from the display electronics 122, correct optical errors associated with the image light, and/or present the corrected image light to a user of the near-eye display 120. In some examples, the display optics 124 may include a single optical element or any number of combinations of various optical elements as well as mechanical couplings to maintain relative spacing and orientation of the optical elements in the combination. In some examples, one or more optical elements in the display optics 124 may have an optical coating, such as an anti-reflective coating, a reflective coating, a filtering coating, and/or a combination of different optical coatings.
In some examples, the display optics 124 may also be designed to correct one or more types of optical errors, such as two-dimensional optical errors, three-dimensional optical errors, or any combination thereof. Examples of two-dimensional errors may include barrel distortion, pincushion distortion, longitudinal chromatic aberration, and/or transverse chromatic aberration. Examples of three-dimensional errors may include spherical aberration, chromatic aberration field curvature, and astigmatism.
In some examples, the one or more locators 126 may be objects located in specific positions relative to one another and relative to a reference point on the near-eye display 120. In some examples, the optional console 110 may identify the one or more locators 126 in images captured by the optional external imaging device 150 to determine the artificial reality headset’s position, orientation, or both. The one or more locators 126 may each be a light-emitting diode (LED), a corner cube reflector, a reflective marker, a type of light source that contrasts with an environment in which the near-eye display 120 operates, or any combination thereof.
In some examples, the external imaging device 150 may include one or more cameras, one or more video cameras, any other device capable of capturing images including the one or more locators 126, or any combination thereof. The optional external imaging device 150 may be configured to detect light emitted or reflected from the one or more locators 126 in a field of view of the optional external imaging device 150.
In some examples, the one or more position sensors 128 may generate one or more measurement signals in response to motion of the near-eye display 120. Examples of the one or more position sensors 128 may include any number of accelerometers, gyroscopes, magnetometers, and/or other motion-detecting or error-correcting sensors, or any combination thereof.
In some examples, the inertial measurement unit (IMU) 132 may be an electronic device that generates fast calibration data based on measurement signals received from the one or more position sensors 128. The one or more position sensors 128 may be located external to the inertial measurement unit (IMU) 132, internal to the inertial measurement unit (IMU) 132, or any combination thereof. Based on the one or more measurement signals from the one or more position sensors 128, the inertial measurement unit (IMU) 132 may generate fast calibration data indicating an estimated position of the near-eye display 120 that may be relative to an initial position of the near-eye display 120. For example, the inertial measurement unit (IMU) 132 may integrate measurement signals received from accelerometers over time to estimate a velocity vector and integrate the velocity vector over time to determine an estimated position of a reference point on the near-eye display 120. Alternatively, the inertial measurement unit (IMU) 132 may provide the sampled measurement signals to the optional console 110, which may determine the fast calibration data.
The eye-tracking unit 130 may include one or more eye-tracking systems. As used herein, “eye tracking” may refer to determining an eye’s position or relative position, including orientation, location, and/or gaze of a user’s eye. In some examples, an eye-tracking system may include an imaging system that captures one or more images of an eye and may optionally include a light emitter, which may generate light that is directed to an eye such that light reflected by the eye may be captured by the imaging system. In other examples, the eye-tracking unit 130 may capture reflected radio waves emitted by a miniature radar unit. These data associated with the eye may be used to determine or predict eye position, orientation, movement, location, and/or gaze.
In some examples, the near-eye display 120 may use the orientation of the eye to introduce depth cues (e.g., blur image outside of the user’s main line of sight), collect heuristics on the user interaction in the virtual reality (VR) media (e.g., time spent on any particular subject, object, or frame as a function of exposed stimuli), some other functions that are based in part on the orientation of at least one of the user’s eyes, or any combination thereof. In some examples, because the orientation may be determined for both eyes of the user, the eye-tracking unit 130 may be able to determine where the user is looking or predict any user patterns, etc.
In some examples, the input/output interface 140 may be a device that allows a user to send action requests to the optional console 110. As used herein, an “action request” may be a request to perform a particular action. For example, an action request may be to start or to end an application or to perform a particular action within the application. The input/output interface 140 may include one or more input devices. Example input devices may include a keyboard, a mouse, a game controller, a glove, a button, a touch screen, or any other suitable device for receiving action requests and communicating the received action requests to the optional console 110. In some examples, an action request received by the input/output interface 140 may be communicated to the optional console 110, which may perform an action corresponding to the requested action.
In some examples, the optional console 110 may provide content to the near-eye display 120 for presentation to the user in accordance with information received from one or more of external imaging device 150, the near-eye display 120, and the input/output interface 140. For example, in the example shown in
In some examples, the optional console 110 may include a processor and a non-transitory computer-readable storage medium storing instructions executable by the processor. The processor may include multiple processing units executing instructions in parallel. The non-transitory computer-readable storage medium may be any memory, such as a hard disk drive, a removable memory, or a solid-state drive (e.g., flash memory or dynamic random access memory (DRAM)). In some examples, the modules of the optional console 110 described in conjunction with
In some examples, the application store 112 may store one or more applications for execution by the optional console 110. An application may include a group of instructions that, when executed by a processor, generates content for presentation to the user. Examples of the applications may include gaming applications, conferencing applications, video playback application, or other suitable applications.
In some examples, the headset tracking module 114 may track movements of the near-eye display 120 using slow calibration information from the external imaging device 150. For example, the headset tracking module 114 may determine positions of a reference point of the near-eye display 120 using observed locators from the slow calibration information and a model of the near-eye display 120. Additionally, in some examples, the headset tracking module 114 may use portions of the fast calibration information, the slow calibration information, or any combination thereof, to predict a future location of the near-eye display 120. In some examples, the headset tracking module 114 may provide the estimated or predicted future position of the near-eye display 120 to the virtual reality engine 116.
In some examples, the virtual reality engine 116 may execute applications within the artificial reality system environment 100 and receive position information of the near-eye display 120, acceleration information of the near-eye display 120, velocity information of the near-eye display 120, predicted future positions of the near-eye display 120, or any combination thereof from the headset tracking module 114. In some examples, the virtual reality engine 116 may also receive estimated eye position and orientation information from the eye-tracking module 118. Based on the received information, the virtual reality engine 116 may determine content to provide to the near-eye display 120 for presentation to the user.
In some examples, the eye-tracking module 118 may receive eye-tracking data from the eye-tracking unit 130 and determine the position of the user’s eye based on the eye tracking data. In some examples, the position of the eye may include an eye’s orientation, location, or both relative to the near-eye display 120 or any element thereof. So, in these examples, because the eye’s axes of rotation change as a function of the eye’s location in its socket, determining the eye’s location in its socket may allow the eye-tracking module 118 to more accurately determine the eye’s orientation.
In some examples, a location of a projector of a display system may be adjusted to enable any number of design modifications. For example, in some instances, a projector may be located in front of a viewer’s eye (i.e., “front-mounted” placement). In a front-mounted placement, in some examples, a projector of a display system may be located away from a user’s eyes (i.e., “world-side”). In some examples, a head-mounted display (HMD) device may utilize a front-mounted placement to propagate light towards a user’s eye(s) to project an image.
In some examples, the HMD device 200 may present, to a user, media or other digital content including virtual and/or augmented views of a physical, real-world environment with computer-generated elements. Examples of the media or digital content presented by the HMD device 200 may include images (e.g., two-dimensional (2D) or three-dimensional (3D) images), videos (e.g., 2D or 3D videos), audio, or any combination thereof. In some examples, the images and videos may be presented to each eye of a user by one or more display assemblies (not shown in
In some examples, the HMD device 200 may include various sensors (not shown), such as depth sensors, motion sensors, position sensors, and/or eye tracking sensors. Some of these sensors may use any number of structured or unstructured light patterns for sensing purposes. In some examples, the HMD device 200 may include an input/output interface 140 for communicating with a console 110, as described with respect to
In some examples, the information received by the virtual reality engine 116 may be used for producing a signal (e.g., display instructions) to the one or more display assemblies. In some examples, the HMD device 200 may include locators (not shown), but similar to the virtual locators 126 described in
It should be appreciated that in some examples, a projector mounted in a display system may be placed near and/or closer to a user’s eye (i.e., “eye-side”). In some examples, and as discussed herein, a projector for a display system shaped liked eyeglasses may be mounted or positioned in a temple arm (i.e., a top far corner of a lens side) of the eyeglasses. It should be appreciated that, in some instances, utilizing a back-mounted projector placement may help to reduce size or bulkiness of any required housing required for a display system, which may also result in a significant improvement in user experience for a user.
In some examples, the near-eye display 300 may include a frame 305 and a display 310. In some examples, the display 310 may be configured to present media or other content to a user. In some examples, the display 310 may include display electronics and/or display optics, similar to components described with respect to
In some examples, the near-eye display 300 may further include various sensors 350a, 350b, 350c, 350d, and 350e on or within a frame 305. In some examples, the various sensors 350a-350e may include any number of depth sensors, motion sensors, position sensors, inertial sensors, and/or ambient light sensors, as shown. In some examples, the various sensors 350a-350e may include any number of image sensors configured to generate image data representing different fields of views in one or more different directions. In some examples, the various sensors 350a-350e may be used as input devices to control or influence the displayed content of the near-eye display 300, and/or to provide an interactive virtual reality (VR), augmented reality (AR), and/or mixed reality (MR) experience to a user of the near-eye display 300. In some examples, the various sensors 350a-350e may also be used for stereoscopic imaging or other similar application.
In some examples, the near-eye display 300 may further include one or more illuminators 330 to project light into a physical environment. The projected light may be associated with different frequency bands (e.g., visible light, infra-red light, ultra-violet light, etc.), and may serve various purposes. In some examples, the one or more illuminator(s) 330 may be used as locators, such as the one or more locators 126 described above with respect to
In some examples, the near-eye display 300 may also include a camera 340 or other image capture unit. The camera 340, for instance, may capture images of the physical environment in the field of view. In some instances, the captured images may be processed, for example, by a virtual reality engine (e.g., the virtual reality engine 116 of
In some instances, a user experience of using an artificial reality system may depend on several characteristics of the optical system, including field of view (FOV), image quality (e.g., angular resolution), size of the eyebox (to accommodate for eye and head movements), and brightness of the light (or contrast) within the eyebox. Also, in some examples, to create a fully immersive visual environment, a large field of view (FOV) may be desirable because a large field of view (FOV) (e.g., greater than about 60°) may provide a sense of “being in” an image, rather than merely viewing the image. In some instances, smaller fields of view may also preclude some important visual information. For example, a head-mounted display (HMD) system with a small field of view (FOV) may use a gesture interface, but users may not readily see their hands in the small field of view (FOV) to be sure that they are using the correct motions or movements. On the other hand, wider fields of view may require larger displays or optical systems, which may influence the size, weight, cost, and/or comfort of the head-mounted display (HMD) itself.
In some examples, a waveguide may be utilized to couple light into and/or out of a display system. In particular, in some examples and as described further below, light of projected images may be coupled into or out of the waveguide using any number of reflective or diffractive optical elements, such as gratings. For example, as described further below, one or more volume Bragg gratings (VBG) may be utilized in a waveguide-based, back-mounted display system (e.g., a pair of glasses or similar eyewear).
In some examples, one or more volume Bragg gratings (VBGs) (or two portions of a same grating) may be used to diffract display light from a projector to a user’s eye. Furthermore, in some examples, the one or more volume Bragg gratings (VBGs) may also help compensate for any dispersion of display light caused by each other to reduce the overall dispersion in a waveguide-based display system.
In some examples, the at least one substrate 501 and the at least one photopolymer layer 502 may be optically bonded (e.g., glued on top of each other) to form the waveguide 500. In some examples, the substrate 501 may have a thickness of anywhere between around 0.4-0.6 millimeters (mm) or other thickness range. In some examples, the photopolymer layer 502 may be a film layer having a thickness of anywhere between about 10-800 micrometers (µm) or other range.
In some examples, one or more volume Bragg gratings (VBGs) may be provided in (or exposed into) the photopolymer layer 502. That is, in some examples, the one or more volume Bragg gratings may be exposed by generating an interference pattern 503 into the photopolymer layer 502. In some examples, the interference pattern 503 may be generated by superimposing two lasers to create a spatial modulation that may generate the interference pattern 503 in and/or throughout the photopolymer layer 502. In some examples, the interference pattern 503 may be a sinusoidal pattern. Also, in some examples, the interference pattern 503 may be made permanent via a chemical, optical, mechanical, or other similar process.
By exposing the interference pattern 503 into the photopolymer layer 502, for example, the refractive index of the photopolymer layer 502 may be altered and a volume Bragg grating may be provided in the photopolymer layer 502. Indeed, in some examples, a plurality of volume Bragg gratings or one or more sets of volume Bragg gratings may be exposed in the photopolymer layer 502. It should be appreciated that this technique may be referred to as “multiplexing.” It should also be appreciated that other various techniques to provide a volume Bragg grating (VBG) in or on the photopolymer layer 502 may also be provided.
In some examples, a projector 612 of the display system may transmit display light 614 to the arrangement of volume Bragg gratings (VBGs) 602-608 in the waveguide configuration 600. As shown, the projector 612 may output the display light 614 to the input grating 602. The input grating 602 may include a grating configuration that may propagate the display light 614 received from the projector 612 to the first middle grating 604. The first middle grating 604 may include a grating configuration that may propagate the received display light 614 to the second middle grating 606. The second middle grating 606 may include a grating configuration that may propagate the display light 614 to the output grating 608. The output grating 608 may include a grating configuration that may propagate the received display light 614 to an eyebox 616 or a user’s eye (not shown). The display light 614 may be associated with an image 618 that may be displayed on the eyebox 616 or that a user may otherwise see the image 618.
Each of the input grating 602, the first middle grating 604, the second middle grating 606, and the output grating 608 may include grating configurations to cause received light to be propagated, e.g., refracted, diffracted, and/or reflected, into certain directions as shown by the arrows 610. It should be understood that the arrows 610 depicted in
As discussed above, the waveguide configuration 600 may include any number of volume Bragg gratings (VBGs) that may be exposed into a “see-through” photopolymer material. In this way, the entire waveguide configuration 600 may be relatively transparent so that a user may see through to the other side of the waveguide configuration 600. At the same time, the waveguide configuration 600, with its arrangement of volume Bragg gratings 602-608, may (among other things) receive the propagated display light 614 from the projector 612 and may cause the propagated display light 614 to be displayed as an image 618 in front of a user’s eyes for viewing. For instance, the waveguide configuration 600 may cause an image 618 corresponding to the display light 614 to be displayed on the eyebox 616. In this way, any number of augmented reality (AR) and/or mixed reality (MR) environments may be provided to and experienced by the user.
In some examples, the input grating 602 and the output grating 608 may have the same grating vector with respect to each other. Additionally, the first middle grating 604 and the second middle grating 606 may have the same grating vector with respect to each other. As a result, dispersion of light propagated through the input grating 602, the first middle grating 604, the second middle grating 606, and the output grating 208 may cancel. In order to incorporate an intended range of field of view and spectrum, each of the gratings 602-608 may contain multiplex grating pitches to support the intended range of field of view and spectrum. In some instances, crosstalk, which is represented as a dashed arrow 620 in
Reference is now made to
According to examples, at least one of the gratings 702-708 in the waveguide configuration 700 may be oriented to reduce (e.g., prevent or minimize) a ghost image 622 from being displayed on an eyebox 716. For instance, at least one of the gratings 702-708 may be oriented to cause a display light 714 from a light source 712 to be directed to a predefined direction that causes the appearance of the ghost image 622 to be reduced on the eyebox 716. By way of example, a z-direction of the first middle grating 704 may be oriented to cause the display light 714, which may include light propagated through crosstalk 720 among some of the gratings 702-708, to be directed to a predefined z-direction that causes the appearance of the ghost image 622 on the eyebox 716 to be reduced. For instance, the crosstalk 720 may be directed in a direction that does not lead to the eyebox 716. Instead, an intended image 718 may be displayed on the eyebox 716 without the appearance of the ghost image of the intended image 718.
Reference is now made to
The k-vector diagrams 630 and 730 respectively show the k-vector conservations of the waveguide configurations 600, 700. Particularly, the ray vector first enters the input grating 602, 702 at (0,0,1) where kx=ky=0 and kz=1. The ray vector then follows Ka and reaches k2 (the Ka of the input grating 602, 702. The ray vector then follows Kb to reach k3 (the kb of the first middle grating 604) or Kb′ to reach k3 (the kb′ of the first middle grating 702). It should be noted that k1, k2, and k3 are the three intercepts shown on the k-vector diagrams 630, 730. As light propagates at k3 and reaches the second middle grating 606, 706, wherein the light may experience -Kb or-Kb′, thus going back to direction k2 and reaches the output grating 608, 708. As the output grating 608, 708 provides -Ka, the ray direction becomes k1, which is the same as the incident direction at which the input grating 602, 702 propagated the light. As a result, dispersion is zero or, similarly, conserved.
In the discussion above, Kb is designed to cover the required FOV and spectrum while maintaining a small grating region. Flipping the Kb z-component as described herein does not change the FOV and the spectrum coverage while maintaining the same grating size. This may also result in the reduction of the ghost image path 620 as discussed herein.
In comparing
Although particular reference has been made herein to the z-direction of the grating configuration 742 in the first middle grating 704 as being opposite to the normal z-direction of the grating configuration 642 in the first middle grating 604, it should be understood that the z-directions of the grating configurations in one or more of the other ones of the gratings 702, 706, 708 may alternatively or additionally be configured to reduce the appearance of a ghost image on the eyebox 716. For instance, the z-direction of the grating configuration in the second middle grating 706 may similarly or alternatively be oriented to be opposite that of the z-direction of the grating configuration in the second middle grating 606. In other words, either or both of the first middle grating 704 and the second middle grating 706 may have grating 742 configurations that may reduce the appearance of the ghost image on the eyebox 716. In some examples, the grating 742 configuration of either or both of the first middle grating 704 and the second middle grating 706 may be determined through testing, modeling, historical data, and/or the like. In some examples, the z-directions of the both the first middle grating 704 and the second middle grating 706 may be oriented to the same direction.
In some examples, the volume Bragg gratings 702-708 may be patterned (e.g., using sinusoidal patterning) into and/or on a surface of the photopolymer material. Accordingly, in some examples and in this manner, the volume Bragg gratings (VBG) 702-708 may receive and direct propagated light 714 for viewing by a user. In addition, in some examples, the volume Bragg gratings (VBG) 702-708 may be implemented to “expand” (i.e., horizontally and/or vertically) a region in space to be viewed so that a user may view a displayed image 718 regardless of where a pupil of a user’s eye may be. As such, in some examples, by expanding this viewing region, the volume Bragg gratings (VBG) 702-708 may ensure that a user may move their eye in various directions and still view the displayed image 718.
In addition, the second lens assembly 804 may include a waveguide configuration 820 that may include an input grating 822, a first middle grating 824, a second middle grating 826, and an output grating 828. The second lens assembly 804 may also include an eyebox 716 positioned behind the output grating 828. For instance, the waveguide configuration 820 may be formed in a first photopolymer layer and the eyebox 716 may be formed in a second photopolymer layer that is adjacent to the first photopolymer layer.
According to examples, each of the first middle gratings 810, 824 in the first lens assembly 802 and the second lens assembly 804 may respectively include grating configurations that are similar to the grating configurations 742 shown in
As shown in
Accordingly, in some examples, the first lens assembly 802 and the second lens assembly 804 may present a first image and a second image, respectively, to be viewed by a user’s respective eye, when wearing the display system 800, to generate a simultaneous, “binocular” viewing. That is, in some examples, the first image projected by the first lens assembly 802 and the second image projected on the second lens assembly 804 may be uniformly and symmetrically “merged” to create a binocular visual effect for a user of the display system 800. In other examples, one of the first lens assembly 802 or the second lens assembly 804 may be omitted from the display system 800 such that a monocular viewing is provided to a user of the display system 800
In the foregoing description, various inventive examples are described, including devices, systems, methods, and the like. For the purposes of explanation, specific details are set forth in order to provide a thorough understanding of examples of the disclosure. However, it will be apparent that various examples may be practiced without these specific details. For example, devices, systems, structures, assemblies, methods, and other components may be shown as components in block diagram form in order not to obscure the examples in unnecessary detail. In other instances, well-known devices, processes, systems, structures, and techniques may be shown without necessary detail in order to avoid obscuring the examples.
The figures and description are not intended to be restrictive. The terms and expressions that have been employed in this disclosure are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof. The word “example” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment or design described herein as “example’ is not necessarily to be construed as preferred or advantageous over other embodiments or designs.
Although the methods and systems as described herein may be directed mainly to digital content, such as videos or interactive media, it should be appreciated that the methods and systems as described herein may be used for other types of content or scenarios as well. Other applications or uses of the methods and systems as described herein may also include social networking, marketing, content-based recommendation engines, and/or other types of knowledge or data-driven systems.