Computer systems typically employ a display or multiple displays which are mounted on a support stand and/or are incorporated into some other component of the computer system. Images and applications may be displayed across multiple display screens. Such display screens may have different resolutions and sizes. Images may be captured at a resolution that is greater than that of either display.
Example implementations are described in the following detailed description and in reference to the drawings, in which:
Various implementations described herein are directed to interacting with a projection computing system with multi-display configurations. More specifically, and as described in greater detail below, various aspects of the present disclosure are directed to a manner by which a single application spans across multiple displays and appear to have elements of a consistent extent.
Aspects of the present disclosure described herein implement a system with a projector unit and computer that use multiple screens that have differing resolutions and sizes. According to various aspects of the present disclosure, the approach described herein allows a user to move visual elements from one screen to another while preserving the impression of consistency between the elements. Accordingly, the approach described herein adjusts the images and applications and shows the same apparent size as they are moved between screens with different resolutions or sizes.
Moreover, aspects of the present disclosure described herein also disclose adjusting any font that are used in the elements to correspond in size across a plurality of screens with different resolutions or sizes. Among other things, this approach allows the user to preserve the impression of consistency between the plurality of display screens that have different resolutions and sizes. Accordingly, this approach advantageously provides that a single application may span across multiple displays and appear to have elements of a consistent extent, and the adjustments to achieve that may be made at the crossing of that transition.
In one example in accordance with the present disclosure, another system is provided. The system comprises a projector unit, an all-in-one computer attachable to the projector unit, the all-in-one computer having a display unit, and a touch sensitive mat communicatively coupled to the all-in-one computer. The touch sensitive mat has a projector display area. The all-in-one computer instructs a camera to scan a physical object on the touch sensitive mat and to cause the projector unit to project the scanned image back on to the projector display area on the touch sensitive mat based on a resolution value. The touch sensitive mat and the, display unit have different resolutions, and the resolution value is determined based on the resolutions of the touch sensitive mat and the display.
In one example in accordance with the present disclosure, a method for managing display units is provided. The method comprises determining specifications of the display units, the specifications comprising size and resolution, identifying a display unit with a highest resolution and a display unit with a lowest resolution, assigning a native resolution value based on the highest resolution and the lowest resolution, and instructing to display an image on the display units using the native resolution value. The image displayed on the display units presents a physical consistency across all the display units.
In a further example in accordance with the present disclosure, a method for managing a projection system is provided. The non-transitory computer-readable medium comprising instructions which, when executed, cause a device to (i) determine specifications of the display units, the specifications comprising size and resolution, (ii) identify a display unit with a highest resolution and a display unit with a lowest resolution, (iii) assign a native resolution value based on the highest resolution and the lowest resolution. An image is displayed on each display unit using the native resolution value and the image maintains a size that is the same across each display unit.
Referring now to
In addition, in some examples, device 150 further includes a camera 154 that is to take images of a user while he or she is positioned in front of display 152. In one implementation, camera 154 may have a take images at a higher resolution than the images displayed on screen 152. In some implementations, camera 154 is a web camera. Further, in some examples, device 150 also includes a microphone or similar device that is arranged to receive sound inputs (e.g., voice) from a user during operation.
Referring still to
Upright member 140 includes a first or upper end 140a, a second or lower end 140b opposite the upper end 140a, a first or front side 140c extending between the ends 140a, 140b, and a second or rear side 140d opposite the front side 140c and also extending between the ends 140a, 140b. The lower end 140b of member 140 is coupled to the rear end 120b of base 120, such that member 140 extends substantially upward from the support surface 15.
Top 160 includes a first or proximate end 160a, a second or distal end 160b opposite the proximate end 160a, a top surface 160c extending between the ends 160a, 160b, and a bottom surface 160d opposite the top surface 160c and also extending between the ends 160a, 160b. Proximate end 160a of top 160 is coupled to upper end 140a of upright member 140 such that distal end 160b extends outward therefrom. As a result, in the example shown in
Referring still to
During operation, mat 200 is aligned with base 120 of structure 110, as previously described to ensure proper alignment thereof. In particular, in this example, rear side 200b of mat 200 is placed between the raised portion 122 of base 120 and support surface 15 such that rear end 200b is aligned with front side 120a of base, thereby ensuring proper overall alignment of mat 200, and particularly surface 202, with other components within system 100. In some examples, mat 200 is aligned with device 150 such that the center line 155 of device 150 is substantially aligned with center line 205 of mat 200; however, other alignments are possible In addition, as will be described in more detail below, in at least some examples surface 202 of mat 200 and device 150 are electrically coupled to one another such that user inputs received by surface 202 are communicated to device 150. Any suitable wireless or wired electrical coupling or connection may be used between surface 202 and device 150 such as, for example, WI-FI, BLUETOOTH®, ultrasonic, electrical cables, electrical leads, electrical spring-loaded pogo pins with magnetic holding force, or some combination thereof, while still complying with the principles disclosed herein. In this example, exposed electrical contacts disposed on rear side 200b of mat 200 engage with corresponding electrical pogo-pin leads within portion 122 of base 120 to transfer signals between device 150 and surface 202 during operation. In addition, in this example, the electrical contacts are held together by adjacent magnets located in the clearance between portion 122 of base 120 and surface 15, previously described, to magnetically attract and hold (e.g., mechanically) a corresponding ferrous and/or magnetic material disposed along rear side 200b of mat 200.
Referring specifically now to
Thus, referring briefly to
Projector assembly 184 is generally disposed within cavity 183 of housing 182, and includes a first or upper end 184a, a second or lower end 184b opposite the upper end 184a. Upper end 184a is proximate upper end 182a of housing 182 while lower end 184b is proximate lower end 182b of housing 182. Projector assembly 184 may comprise any suitable digital light projector assembly for receiving data from a computing device (e.g., device 150) and projecting an image or images (e.g., out of upper end 184a) that correspond with that input data. For example, in some implementations, projector assembly 184 comprises a digital light processing (DLP) projector or a liquid crystal on silicon (LCoS) projector which are advantageously compact and power efficient projection engines capable of multiple display resolutions and sizes, such as, for example, standard XGA (1024×768) resolution 4:3 aspect ratio or standard WXGA (1280×800) resolution 16:10 aspect ratio. Projector assembly 184 is further electrically coupled to device 150 in order to receive data therefrom for producing light and images from end 184a during operation. Projector assembly 184 may be electrically coupled to device 150 through any suitable type of electrical coupling while still complying with the principles disclosed herein. For example, in some implementations, assembly 184 is electrically coupled to device 150 through an electric conductor, WI-FI, BLUETOOTH®, an optical connection, an ultrasonic connection, or some combination thereof. In this example, device 150 is electrically coupled to assembly 184 through electrical leads or conductors (previously described) that are disposed within mounting member 186 such that when device 150 is suspended from structure 110 through member 186, the electrical leads disposed within member 186 contact corresponding leads or conductors disposed on device 150.
Referring still to
Sensor bundle 164 includes a plurality of sensors and/or cameras to measure and/or detect various parameters occurring on mat 200 during operation. For example, in the specific implementation depicted in
Referring now to
Referring now to
In another example implementation, a window of an application (e.g., desktop) may be displayed on display 152. In addition, another window or same window of the application (e.g., extended desktop) may be displayed on surface 202. Such application may comprise information (e.g., fonts) and/or graphics (e.g., spaces, borders) produced by software executing within device 150. In the example of fonts, in order to maintain a physical size consistency of the application windows containing fonts across multiple screens, the adjusting engine determines the characteristics of a screen and adjusts the font displayed on the screen based on the corresponding screen characteristics. For example, a browser window may be displayed on display 152 and the font of the text on such browser window may be displayed in Arial (font type) 12 (font size). If another browser or the same browser window is displayed on surface 202, the font of the text in the browser window may be adjusted to maintain a visual scale similarity between display 152 and surface 202. For example, the font may be changed to size 10 from size 12. Moreover, in the example of, graphics, in order to maintain a physical size consistency of the application windows containing graphics across multiple screens, the adjusting engine determines the characteristics of a screen and adjusts the scale of graphics displayed on that display based on the characteristics of the screen.
As described above, the application being displayed may have a plurality of windows, which may be shown across a plurality of screens. For example, display 152 may show one window of an application while surface 202 shows another window of the same application. In another implementation, the application may have only one window. The window may be first displayed on display 152, and then moved from display 152 to surface 202. In a further implementation, display 152 may show one application, and surface 202 may show a different application.
A user (not shown) may then interact with the image displayed on projector display space 188 and display 152 by physically engaging touch sensitive surface 202 of mat 200. Such interaction may take place through any suitable method such as, direct interaction with a user's hand 35, through a stylus 25, or other suitable user input device(s). The user may interact with the image displayed on projector display space 188 by touch actions outside of the projector display space 188 on touch sensitive surface 202 of mat 200.
In particular, this provides additional functionality. For example, the touch action may act as a scroll bar. More specifically, a user input device (e.g., a hand, stylus, pointing, device) may move up and down in the area outside of projector display space 188. In another example, the touch action may be custom button for various functionalities such as, but not limited to, adjusting the brightness of a display, adjusting the volume, activation or termination of operating system (e.g., start button). Such touch actions may be performed without interfering with the image on projector display space 188.
As best shown in
In addition, in some examples, stylus 25 further includes a transmitter 27 that is arranged to track the position of stylus 25 (whether or not stylus 25 is interacting with touch sensitive surface 202) in or outside of projector display space 188 and to communicate with a receiver 270 disposed within device 150 through a wireless signal 50. In these examples, input received by receiver 270 from transmitter 27 on stylus 25 is also routed through paths 153 to processor 250 such that an output signal may be generated and routed to the assembly 184 and/or the display 152 as previously described.
Further, in some examples, the sensors disposed within sensor bundle 164 (e.g., sensors 164a, 164b, 164c, 164d) may also generate system input which is routed to device 150 for further processing by processor 250 and device 260. For example, in some implementations, the sensors within sensor bundle 164 may sense the location and/or presence of a user's hand 35 or stylus 25 and then generate an input signal which is routed to processor 250. In one implementation, processor 250 identifies a task associated with the input signal and performs the task. In another implementation, processor 250 generates a corresponding output signal which is routed to display 152 and/or projector assembly 184 in the manner described above. In particular, in some implementations, sensor bundle 164 includes a pair of cameras or sensors that, are arranged to perform stereoscopic stylus tracking (e.g., of stylus 25). More specifically, such cameras or sensor may perform tracking in an area that covers outside of projector display space 188. In still other implementations, stylus 25 includes a tip 26 that is coated in an infrared retro-reflective coating (e.g., paint), thus allowing it to serve as an infrared retro-reflector. Sensor bundle 164 (and more particularly sensors 164c or 164d) may then further include infrared cameras or sensors as previously described which detect infrared light that is reflected off of tip 26 of stylus 25 and thus track the location of tip 26 as is moves across surface 202 during operation.
As a result, in some examples, the image projected onto surface 202 by assembly 184 serves as a second or alternative touch sensitive display within system 100. In addition, interaction with the image displayed on surface>202 is further enhanced through use of the sensors (e.g., sensors 164a, 164b, 164c 164d) disposed within bundle 164 as described above.
Still referring to
The machine-readable instructions may be stored in a memory, such as a non-transitory computer-usable medium, coupled to processor 250 and may be in the form of software, firmware, hardware, or a combination thereof. In a hardware solution, the machine-readable instructions may be hard coded as part of processor 250, e.g., an application-specific integrated circuit (ASIC) chip. In a software or firmware solution, the instructions may be stored for retrieval by processor 250. Some additional examples of non-transitory computer-usable media may include static or dynamic random access memory (SRAM or DRAM), read-only memory (ROM), electrically erasable programmable ROM (EEPROM) memory, such as flash memory, magnetic media and optical media, whether permanent or removable, etc. Some consumer-oriented computer applications are software solutions provided to the user in the form of downloads, e.g., from the Internet, or removable computer-usable non-transitory media, such as a compact disc read-only memory (CD-ROM) or digital video disc (DVD). Storage device 260 may store digital image data (e.g., bitmaps, PDFs, TIFFs, JPEGs, etc.) corresponding to (e.g., representing) the data-bearing media disclosed herein.
Referring still to
While device 150 has been described as an all-in-one computer, it should be appreciated that in other examples, device 150 may further employ the use of more traditional user input devices such as, for example, a keyboard and a mouse. In addition, while sensors 164a, 164b, 164c, 164d within bundle 164 have been described as each representing a single sensor or camera, it should be appreciated that each of the sensors 164a, 164b, 164c, 164d may each include multiple sensors or cameras while still complying with the principles described herein. Further, while top 160 has been described herein as a cantilevered top, it should be appreciated that in other examples, top 160 may be supported at more than one point and is thus may not be cantilevered while still complying with the principles disclosed herein.
Turning now to the operation of the system 100,
The process 800 may begin at block 805, where the system determines the specifications of display units in the system. More specifically, this process may involve identifying the sizes and resolutions of the display units in the system. This process may also involve identifying the display unit with the highest resolution and the display unit with the lowest resolution.
At block 810, the system determines a resolution value that is used to maintain a physical size consistency of an image across the plurality of display units. In particular, the resolution value is higher than the highest resolution value across the display units and is a multiple of the lowest resolution value across the display units.
At block 815, the system displays an image on one of the display units based on the determined resolution value. In one implementation, the image may be captured by a camera in the system. In another implementation, the image may be provided by a computing device in the system. In one implementation, the image may be moved to another display unit, where the image is displayed based on the determined resolution value and maintains a physical size consistency. Thus, the image appears to have elements of a consistent extent.
In an example implementation, a window of an application may be displayed on one of the display unit. The application may comprise information and visual assets (e.g., graphics) designed for a certain resolution. When the window of the application is displayed on one display nit, the fonts in the information may be adjusted based on the specification of the display unit. More specifically, the specification of the display unit may identify a resolution value, and thus, the fonts may be changed based on the resolution value of the display unit. In one example, when the same or a different window is displayed on another display unit, the fonts may be readjusted based on the corresponding display unit to maintain the physical size consistency between the windows across all the display units.
The present disclosure has been shown and described with reference to the foregoing exemplary implementations. Although specific examples have been illustrated and described herein it is manifestly intended that the scope of the claimed subject matter be limited only by the following claims and equivalents thereof. It is to be understood, however, that other forms, details, and examples may be made without departing from the spirit and scope of the disclosure that is defined in the following claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/014122 | 1/31/2014 | WO | 00 |