Display with micro pockets

Abstract
The present invention relates to a thin display, and a method of manufacturing the same. The display comprises an isolated substrate, with cavities also called micro pockets in a pattern, or created with a separate sheet with holes mounted on the substrate. These micro pockets will make the picture elements of the display. The display further comprises perforated holes in the centre of the micro pockets and a conductive material covering the surfaces inside the micro pockets and the perforated holes. An electro-optical material fill the cavities, and a uniform layer of transparent conductive material cover all the filled micro pockets. A top layer of a transparent substrate cover the conductive layer.
Description
FIELD OF INVENTION

The present invention relates to a display, and a method of manufacturing the same. The display comprises an electrode layer, a substrate, which on the surface facing the electrode layer is covered with a set of electrode elements placed in cavities, and a layer of electro-optic material which is arranged between the electrode layer and the substrate.


BACKGROUND OF THE INVENTION

The present invention relates to the technical field of flat displays. An example of a display or screen according to that stated above (also called LCD, Liquid Crystal Display) is disclosed in SE-511,511 with the title: Display, relates to a liquid crystal display, comprising an electrode layer, a substrate, which on the surface facing the electrode layer is covered with a set of electrode elements, and a layer of electro-optic material which is arranged between the electrode layer and the substrate, the substrate being arranged behind the layer of electro-optic material in relation to the viewing direction, the substrate being arranged to support, on the one hand, electronic components for controlling the electrode elements and, on the other, conductive patterns for connecting the electronic components to the electrode elements, and the electrode elements forming picture elements in the display in cooperation with the electrode layer and the layer of electro-optic material.


One drawback with this display is the amount of electro-optic material needed to be filled between the electrode layer and the substrate. The manufacturing method results in a display with pixel regions filled with a continues layer of liquid crystals. The electro-optic material is quite expensive and it is desirable to minimise the amount used.


U.S. Pat. No. 6,266,122 with the title: Liquid crystal display device and method for manufacturing the same relates to a display including: a first substrate and a second substrate, a liquid crystal layer interposed between the first substrate and the second substrate. The first substrate includes a polymer wall formed of transparent resin, the liquid crystal layer includes a plurality of liquid crystal regions partitioned by the polymer wall, and liquid crystal molecules in the plurality of liquid crystal regions which are aligned in axial symmetry, with respect to an axis in a direction substantially perpendicular to a surface of the first substrate.


The main focus in this particular manufacturing method and display is only to achieve a wide viewing angle and improved quality of the displayed information.


The main advantages of the display according to the present invention described herein are reduced production costs compared to other manufacturing methods due to a minimal number of layers, and use of less expensive electro-optical material, combined with a thin and compact display.


SUMMARY OF THE INVENTION

The object of the present invention is to reduce the number of layers and a minimal use of electro-optical material, resulting in a more cost-effective production method and a robust display.


The above object as well as others is achieved with a manufacturing method according to claim 1. The manufacturing method comprises the steps of providing an isolating substrate and making cavities in the top surface of the substrate. For further reference the cavities are referred to as micro pockets. Each micro pockets is applied with holes in the centre extending from the upper surface of the micro pocket and all the way through to the underside of the isolating substrate. A conductive material is applied on the inner surfaces of the micro pockets and into the holes. Thus providing an electrical connection from the underside of the isolating substrate to the inside of the micro pockets. The micro pockets are filled with an electro-optical material and applied a uniform layer of a transparent common conductor to cover all the micro pockets with the electro-optical material. A transparent substrate is applied on top of the transparent conductor to make the top layer.


In a preferred embodiment of the invention, the isolating substrate is made of glassfibre composite, plastic or ceramics.


In another preferred embodiment, the forming of the cavities in the top layer of the isolating substrate can be formed by stamping, imprinting, engraving or etching in the isolating substrate.


In yet another preferred embodiment, the forming of the cavities in the top layer of the isolating substrate are formed by applying a separate sheet with holes, where each hole corresponds to one picture element or pixel. The sheet is mounted on the isolating substrate with depositing conductive material, gluing or heat sealing.


In a preferred embodiment of the invention, the conductive material is ITO, copper or aluminium.


In a preferred embodiment of the invention, the electro-optical material is liquid crystals, LED (inorganic or organic), electrochromic material, or another material changing its optical properties with an applied electric field.


In another preferred embodiment of the invention, the common conductor covering the micro pockets comprises ITO or SnO.


In yet another preferred embodiment of the invention, the transparent substrate is made of glass or plastic.


In addition to the manufacturing method of the thin display, the invention also comprises the display itself with the features stated in the appended claims.


According to one aspect, the invention is based on the understanding that in a display of this type, it is advantageous to let the electrode elements, which are commonly called pixels, be connected to a conductive pattern by means of conductive connections which emanate from the electrode elements in the direction away from the layer of electro-optic material, i.e. the underside of the isolating substrate. This will contribute to the form factor of the thin display. Another aspect also contributing to a thin display according to the invention is the cavities made directly in the isolating substrate, or formed with a separate sheet with holes mounted on the isolating substrate.




BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described by means of exemplifying embodiments with reference to the accompanying drawings, in which:



FIG. 1 is a schematic cross-sectional view of the components in the micro pocket display system of the present invention,



FIG. 2 is a schematic cross-sectional view of an assembled display according to the present invention,



FIG. 3 is a schematic view according to method 1 with micro pockets for the electro-optical material formed in isolating substrate.



FIG. 4 is a schematic view according to method 2 with micro pockets for electro-optical material formed in a separate sheet.




DETAILED DESCRIPTION OF THE INVENTION

With reference to the figures, the following detailed description explains how the invention is obtained.



FIG. 1 shows a cross-section of the different components making the display.


The base of the display is made of an isolating substrate 80 with small cavities 60 imprinted. These cavities 60 will make the picture elements or pixels of the assembled display. For further reference the cavities are referred to as micro pockets. The isolating substrate 80 can be made of a glassfibre composite, plastic, ceramics or another material with isolating characteristics. The micro pockets 60 may be formed by stamping, imprinting, engraving or etching in the substrate 80. After the micro pockets 60 are established, holes 70 in the centre of each micro pocket 60 are made. These holes 70 will in turn provide for an electrical connection between the underside of the substrate and each pocket 60. This connection will be established when a conductive material 40, 50 is applied to the substrate 80. By applying a melted conductive material 40, 50, i.e. copper or aluminium, in the micro pockets 60, the holes 70 will also be filled with the conductive material 40, 50, thus enabling physical contact between the micro pockets 60 and electronic components 90 and wires connected on the underside of the isolating substrate 80. The micro pockets 60 are then filled with an electro-optical material 30, i.e. liquid crystal, LED, electrochromic material. The layer of electro-optical material 30 is covered with a layer of a transparent common conductor 20, i.e. ITO or SnO. The top layer consists of a transparent substrate 10 like glass or plastic.



FIG. 2 shows a cross-section of an assembled display with all the different layers that form the thin display according to the invention. The electrical connections 40, 50 with mounted wires and electronic components 90 will ensure activation of the electro-optical medium 30. The electro-optical material 30 is covered with a layer of a transparent common conductor 20. The top layer consists of a transparent substrate 10 like glass or plastic.



FIG. 3 shows a first method of applying the micro pockets 60 in the isolating substrate 70. The cavities or micro pocket are formed by stamping, imprinting, engraving or etching on the substrate 70.



FIG. 4 shows a second method of applying the micro pockets in the isolating substrate 70. This method involves the steps of forming holes 65 in a separate sheet, where each hole 65 corresponds to one picture element or pixel. The sheet 55 is mounted on the isolating substrate 70 with depositing conductive material, gluing or heat sealing.


The present invention is not restricted to the manufacturing method and display described herein. The display may be manufactured in different variations, for instance the holes in the cavities may be applied out of centre.

Claims
  • 1. A thin display comprising: an isolated substrate, cavities in the substrate perforated holes in the centre of the cavities, a conductive material covering the surfaces inside the cavities and the perforated holes, an electro-optical material fill the micro pockets, a uniform layer of transparent conductive material covering all the filled micro pockets, and a top layer of a transparent substrate covering the conductive layer.
  • 2. The display according to claim 1, where the said isolating substrate is made of glassfibre composite, plastic or ceramics.
  • 3. The display according to claim 1, where the cavities are stamped, imprinted, engraved or etched in the print board material.
  • 4. The display according to claim 1, where the conductive material comprises ITO, copper or aluminium.
  • 5. The display according to claim 1, where the conductive material making an electrical connection from the inside of the cavities to the underside of the isolating substrate is applied such that electronic components and wires may be mounted on the underside of the isolating substrate for activation of the electro-optical medium in each cavities.
  • 6. The crystal display according to claim 1, where the electro-optical material comprises liquid crystals, LED, electrochromic, or an other material changing its optical properties with an applied electric field.
  • 7. The crystal display according to claim 1, where the transparent conductive material covering the cavities comprises ITO or SnO.
  • 8. The crystal display according to claim 1, where the transparent substrate comprises glass or plastic.
Priority Claims (1)
Number Date Country Kind
2001 5569 Nov 2001 NO national
Parent Case Info

This application is a divisional application co-pending U.S. patent application Ser. No. 10/294,330, filed Nov. 14, 2002, which claims priority to U.S. Provisional Application No. 60/331,326 which was filed on Nov. 14, 2001, the entire disclosures of which are hereby incorporated by reference.

Provisional Applications (1)
Number Date Country
60331326 Nov 2001 US
Divisions (1)
Number Date Country
Parent 10294330 Nov 2002 US
Child 10990717 Nov 2004 US