The following details a method of manufacturing phosphors used in a display of the present invention, and their properties such as X-ray diffraction and luminous intensity. Embodiments described below are examples of implementing the present invention, and will not restrain the present invention.
A description is made of a method of manufacturing CaMgSi2O6:Eu blue emitting phosphors used for the present invention. CaCO3, MgCO3, SiO2, and EuCl3 are used phosphor materials, and NH4Cl is used as a flux. The quantities of the materials to be blended are as follows.
The materials are dry-blended in a mortar for about 30 minutes, and then packed in an alumina crucible and subjected to first heating in a muffle furnace at 600° C. and for three hours in an air atmosphere. The obtained first heated phosphor is taken out and lightly loosened, and then packed in a carbon crucible. Furthermore, the carbon crucible is put in a larger alumina crucible, and the carbon crucible with carbon particles packed in voids in the alumina crucible is subjected to second heating in the muffle furnace at 1150° C. for three hours in an air atmosphere. The obtained second heated phosphor is taken out and lightly loosened to obtain a desired CaMgSi2O6:Eu blue emitting phosphor.
In the second heating, the phosphor may also be synthesized in an N2—H2 reducing atmosphere. The first heated phosphor is packed in a quartz double crucible and subjected to second heating at 1150° C. in a tube furnace for three hours in an N2—H2 reducing atmosphere (H2 concentration 0-3%). The obtained second heated phosphor is lightly loosened to obtain a desired CaMgSi2O6:Eu blue emitting phosphor.
Next, X-ray diffraction of CaMgSi2O6:Eu blue emitting phosphor is measured. Rigaku-manufactured RINT 2000 is used for the measurement. Measurement conditions are as follows.
f(x)=c(0)+c(1)exp(−((x−c(2))/c(3))−2) Expression 1
Next, luminescence spectrum of UV excitation of the synthesized CaMgSi2O6:Eu blue emitting phosphor is measured. Handy UV light is used as a UV excitation source. A phosphor sample is used with a phosphor packed in a sample holder of 1 mm in depth. The phosphor is excited by light of 254 nm, and the luminescence of the phosphor is measured by a luminance meter in a reflection side. Measurement results are shown in
Next, SEM (Scanning Electron Microscope) of the synthesized CaMgSi2O6:Eu blue emitting phosphor is observed.
The median diameter of phosphors is measured by an instrument for measuring particle size distribution or directly observed by an electron microscope. For example, in the case of observation by an electron microscope, when the respective sections of variates of particle diameters of phosphors ( . . . , 0.8 to 1.2 μm, 1.3 to 1.7 μm, 1.8 to 2.2 μm, . . . , 6.8 to 7.2 μm, 7.3 to 7.7 μm, 7.8 to 8.2 μm, . . . , and so forth) are represented by class values xi ( . . . , 1.0 μm, 1.5 μm, 2.0 μm, . . . , 7.0 μm, 7.5 μm, 8.0 μm, . . . ), and the frequencies of the variates observed by the electron microscope are indicated by fi, a mean value M is represented as follows.
M=Σx
i
f
i
/Σf
j
=Σx
j
f
i
/N Expression 2
In expression (2), Σfi=N. In this way, the median diameter of each phosphor can be found.
Next, electron beam exciting luminous intensity of the CaMgSi2O6:Eu blue emitting phosphor is evaluated. Each phosphor sample has a phosphor layer formed on a quartz substrate by the sedimentation method. A coating weight is 1 to 3 mg/cm2. Produced samples are set in a demountable device equipped with an electron gun to perform measurement. Electron beams in the demountable device are scanned right and left, and up and down by a deflection yoke in the same frequency as that of general televisions, and draw a square raster (electron irradiation range) in a fixed range on the phosphor layers produced as described above. Luminous intensity is measured by using a color difference meter through an optical fiber from a penetration side. Luminescence property evaluation is performed under conditions of accelerating voltage 7 kV, irradiation area 20×10 mm, irradiation current 10 μA, current density 5 μA/cm2, and sample temperature 20° C. Evaluation results are shown in
Next, a luminescent maintenance factor in electron irradiation of the CaMgSi2O6:Eu blue emitting phosphor is evaluated. A luminescent maintenance factor is evaluated using the above-described demountable device. A phosphor layer is formed on a Ni-plated Cu substrate by the sedimentation method to produce an evaluation sample. A coating weight is the same as that in the above-described luminescence evaluation. Luminous intensity is measured using a color difference meter and Si photo cells from the reflection side. To find a luminescent maintenance factor, an accelerated test is run under conditions of accelerating voltage 7 kV, irradiation area 6×6 mm, irradiation current 100 μA, current density 278 μA/cm2, sample temperature 200° C., and measuring time of one hour. Evaluation results of luminescent maintenance factor are shown in
The CaMgSi2O6:Eu blue emitting phosphor is produced as described above, and properties such as luminous intensity, luminescent maintenance factor, and full width at half maximum of X-ray diffraction are evaluated. As a result, it has become apparent that phosphors having been subjected to second heating in a weak reducing atmosphere such as phosphors heated in a carbon crucible have satisfactory crystallinity and high luminous intensity.
MIM (Metal-Insulator-Metal) Type Electron Source Display 1
In this embodiment, a thin film electron source is used as an electron emitter 301. More specifically, a MIM electron source is used.
The structure of the cathode substrate 601 is as described below. On an insulating substrate 14 such as glass, a thin film electron source 301 comprising lower part electrodes 13 (Al), insulator layer 12 (Al2O3), and upper part electrodes 11 (Ir—Pt—Au) is formed. The upper part electrode bus lines 32 are electrically connected with the upper part electrodes 11 via upper part electrode bus line base films 33, and function as feeder lines to the upper part electrodes 11. In this embodiment, the upper part electrode bus lines 32 function as data electrodes 311. On the cathode substrate 601, a region (referred to as a cathode disposition region 610) in which the electron emitters 301 are disposed in a matrix form is covered with interlayer insulating films 410, on top of which common electrodes 420 is formed. The common electrodes 420 comprise multilayer films of common electrode films A 421 and common electrode films B 422. The common electrodes are connected to the ground potential. Spacers 60, which contact with the common electrodes 420, have a function to pass currents flowing via the spacers 60 from acceleration electrodes 122 of the anode substrate 602, and a function to pass electric charges charged in the spacers 60. In
Inside the anode substrate 602, there are phosphor layers 114A, 114B, and 114C formed by CaMgSi2O6:Eu blue emitting phosphor produced as in the first embodiment, Y2SiO5:Tb green emitting phosphor, and Y2O3:Eu red emitting phosphor. To increase resolution, a black conductive material is provided between pixels. In producing the black conductive material, a photoresist film is applied onto all the surfaces, and the black conductive material is exposed and developed via a mask to partially leave the photoresist film. Then, after forming a graphite film on all the surfaces, the black conductive material is formed by removing the photoresist film and graphite on it by making hydrogen peroxide and the like act. The phosphor layers are formed using the screen printing method. The phosphors are kneaded with vehicle based on cellulose resin and the like and prepared in a paste form. Next, they are pressed and applied via stainless meshes. The red, green, and blue phosphors are separately applied by aligning the positions of mesh holes with the positions of the respective phosphor layers. Next, mixed cellulose resins and the like are removed by heating the phosphor layers formed by printing. Thus, patterns of the phosphors are formed. The acceleration electrodes 122 (metal back) are produced by filming the inner surfaces of the phosphor layers and then vacuum-depositing aluminum. Then, filming agents are removed by performing a heating process. In this way, the anode substrate 602 is completed.
A proper number of the spacers 60 are disposed between the cathode substrate 601 and the anode substrate 602. As shown in
Table 1 shows color temperatures of the display panel 100 when each CaMgSi2O6:Eu blue emitting phosphor is used. In a comparative example 1, CaMgSi2O6:Eu blue emitting phosphor (full width at half maximum 0.181°) on the market is used. The luminous efficiency of the blue phosphor in this case is 1.51 m/W, and color temperature at the time of combination with the red phosphor (Y2O3:Eu) and the green phosphor (Y2SiO5:Tb) is 6100K. Color temperatures of 9300K or more are required as the performance of a display panel. In the first embodiment, a CaMgSi2O6:Eu blue emitting phosphor having full widths at half maximum of X-ray diffraction peak of 0.16° or less is used. Color temperatures in this case are shown in the table. The luminous efficiency of the blue phosphor at this time is 2.1 1 m/W, and color temperature is 9300K. Thus, a display panel having satisfactory color temperatures can be produced by using a CaMgSi2O6:Eu blue emitting phosphor that is 0.16° or less in full widths at half maximum of X-ray diffraction peak and has satisfactory crystallinity and high luminous efficiency.
A field-emission type electron source such as a Spindt type electron source suffers significant deterioration of electron emission performance when sulfur (element name: S) deposits on its surface. Therefore, by using combinations of phosphors containing no sulfur as in this embodiment, the long life and an improvement in the stability of electron emitters can be achieved.
A field-emission type electron source such as the carbon nanotube type electron source suffers significant deterioration of electron emission performance when sulfur (element name: S) deposits on its surface. Therefore, by using combinations of phosphors containing no sulfur as in this embodiment, the long life and an improvement in the stability of electron emitters can be achieved.
The CaMgSi2O6:Eu blue light emitting phosphor of the present invention constitutes phosphor layers 8 over one substrate 10 of the pair of the substrates and on the surface of the barrier ribs 7. Vacuum-ultraviolet rays having wavelengths of 146 nm and 172 nm emitted from the discharge gas by discharge excite the CaMgSi2O6:Eu blue light emitting phosphor constituting the phosphor layers 8 to emit visible light.
Table 2 shows results of evaluating luminous intensity by 172-nm excitation of the CaMgSi2O6:Eu blue light emitting phosphor produced as in the first embodiment. In phosphors doped with 5% of the Sr element, Br/y increases by 27%, compared with CaMgSi2O6:Eu blue light emitting phosphors on the market. Since the CaMgSi2O6:Eu blue light emitting phosphor of the present invention is narrow in full width at half maximum of X-ray diffraction and has satisfactory crystallinity, luminous intensity is high in vacuum ultraviolet excitation, as in the case of electron beam excitation.
In the plasma display panel 50, after address electrodes (electrodes 6) made of silver and the like, and a dielectric layer 9 made of a glass material are formed on the rear substrate (substrate 10), a barrier rib material made of a glass material is printed with a thick film, and the barrier ribs 7 are formed by blast removal using a blast mask. Next, on the barrier ribs 7, red, green, and blue phosphor layers 8 are successively formed in a stripe shape so as to clad groove faces between corresponding barrier ribs 7. Each phosphor layer 8 is coated by screen printing with a phosphor paste into which a corresponding phosphor powder and vehicle are mixed, and then formed by evaporating volatile components within the phosphor paste and removing organic substance within it by heating. As for materials of phosphors other than the blue light emitting phosphor, a red emitting phosphor is a (Y,Gd)BO3:Eu phosphor, and a green emitting phosphor is a Zn2SiO4:Mn phosphor.
The front substrate (substrate 1) on which display electrodes (electrodes 51 and 52), bus lines 53 and 54, a dielectric layer 2, and a protective layer 3 are formed, and the rear substrate (substrate 10) are frit-sealed, the panel is evacuated, and then filled with discharge gas and sealed. The discharge gas has a composition ratio of 10% in terms of quantity and contains xenon (Xe) gas.
A plasma display has been produced which is constructed to display images in combination of the plasma display panel thus produced, and a driving circuit for driving the plasma display panel. The luminescence life of the produced display is excellent.
Number | Date | Country | Kind |
---|---|---|---|
2006-248872 | Sep 2006 | JP | national |